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uncertainty arose. While we acknowledge the limitations 
of PPV in certain clinical states—including altered lung 
compliance or RV dysfunction—we carefully considered 
its validity criteria. The critique regarding presumed use 
of low tidal volumes (< 8 mL/kg PBW) is speculative, 
as this was not systematically the case in our cohort. In 
fact, following current research, we transiently increased 
tidal volumes above 8 mL/kg PBW to validate PPV when 
needed [6]. Therefore, concerns about widespread mis-
classification of FR based on this assumption are likely 
overstated.

Importantly, preload responsiveness is dynamic dur-
ing critical illness. As we have previously demonstrated, 
many FR+ patients evolve into an FR− state over short 
periods of time [5]. Similar patterns were reported in 
the FRESH trial, where fluid responsiveness decreased 
as time from inclusion progressed [7]. A more plausible 
explanation for the 38% FR+ rate in our cohort is the 
broad inclusion window (up to 24 h post-ICU admission); 
many patients were likely assessed later in their resuscita-
tion trajectory, having already transitioned to a FR− state 
[5]. Indeed, the median time to study measurement was 7 
[1–16] hours after ICU admission.

Second, Bussy et al. correctly suggest that RV after-
load effects may mimic FR+ status on PPV and that could 
explain why patients had a positive FR+ while conges-
tion signals were present. While physiologically sound, 
this hypothesis is not well supported by our data. Only 
23% (21) of patients had RV/LV area ratios > 0.6, and only 
five of them were categorized as FR+. Among these 21 
patients, none had RV/LV area ratios of > 1, the median 

To the editor,
We appreciate the thoughtful comments by Bussy et 

al. [1] regarding our study on the coexistence of fluid 
responsiveness (FR) and venous congestion (VC) in 
critically ill patients [2]. We agree that the intersection 
between fluid responsiveness, right ventricular (RV) 
dynamics, and fluid tolerance is complex and warrants 
ongoing discussion and investigation. However, we would 
like to address several points raised in the letter, many 
of which stem from inferences rather than actual data 
presented.

First, regarding the use of pulse pressure variation 
(PPV) to assess FR: we applied PPV and other tests in 
accordance with expert recommendations [3, 4], using a 
pragmatic approach reflective of real-world ICU practice 
as we did in our prior studies [5]. Physicians selected the 
most appropriate test based on individual clinical context 
(e.g., arrhythmias, spontaneous breathing), and a second 
confirmatory test was performed in 11% of cases when 
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CVP was 8 [6–11.8] mmHg and TAPSE was 19 [15–25] 
mm, suggesting preserved RV function. Additionally, 
this subgroup had a mean PEEP of 8 [5–8] cmH₂O, driv-
ing pressure of 11 [10–16] cmH₂O, PaO₂/FiO₂ ratio of 
186 [110–302], and PaCO₂ of 39 [36–46] mmHg—all of 
which argue against marked RV afterload. Furthermore, 
in 38% (8) of these cases, FR was determined using pas-
sive leg raising (PLR), a technique not influenced by 
heart-lung interactions.

We appreciate the authors’ call for more invasive and 
standardized methods to assess preload dependence and 
VC. While ideal for mechanistic studies, our goal was not 
to establish a gold standard but rather to explore a prag-
matic bedside framework. Notably, other studies using 
different methodologies have yielded similar findings. For 
example, Joseph et al. found that using a passive leg rais-
ing (PLR) maneuver to assess preload and central venous 
pressure (CVP) to assess congestion (with a cut-off > 12 
mmHg), the prevalence of VC exceeded 25% across FR 
states. This rate increased above 50% when using a CVP 
threshold of 8 mmHg [8]. Similarly, Kenny et al., using 
carotid corrected flow time and internal jugular Dop-
pler during a PLR maneuver, showed heterogeneous 
responses in both stroke volume and venous congestion 
signals [9].

Lastly, regarding the VC markers chosen in our study, 
we prioritized bedside tools that align with standard clin-
ical practice and discussed their limitations transparently 
in the original manuscript [2]. However, we respectfully 
disagree with the notion that only pressure-based param-
eters should be considered the only valid indicators of 
venous congestion. Doppler-derived indices—such as 
those in the VExUS score or the renal vein stasis index—
have demonstrated a stronger prognostic association to 
adverse outcomes than pressure-based measures alone 
in various clinical contexts [10, 11]. But most impor-
tantly, integrating these signals synergically rather than 
competitively could provide a better understanding of 
such a complex phenomenon. In this line, Guinot et al. 
employed an unsupervised machine learning approach 
to define distinct hemodynamic congestion endotypes, 
including a comprehensive set of variables, such as echo-
cardiography, abdominal organ venous doppler, stroke 
volume response to passive leg raising, and CVP, among 
others. They identified 3 distinct endotypes (i.e., hemody-
namic congestion, volume overload congestion and sys-
temic congestion), which had different clinical patterns, 
risks of organ dysfunction and overall clinical trajectories 
[12]. Thus, integrating signals that provide complemen-
tary information regarding the hemodynamic status of 
the individual patient could allow for further refinement 
of risk stratification and personalization of therapy, how-
ever, further research is still needed.

We are grateful for the opportunity to clarify these 
points and view this exchange as a constructive step 
toward improving our collective understanding of hemo-
dynamics in the critically ill.
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