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Metabolic Messengers: oestradiol
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Oestradiol (E2), a steroid hormone derived from cholesterol, has long been 
recognized for its central role in female reproduction and pathobiology of 
menopause. However, accumulating evidence underscores a critical role 
for E2 in the regulation of systemic metabolism in both women and men. 
The metabolic actions of E2 are predominantly mediated by oestrogen 
receptor α (encoded by ESR1), a nuclear receptor with heritable expression 
patterns and tissue-specific transcript levels highly correlated with indices 
of metabolic health in both sexes. Here we provide an overview of the 
cell-specific actions of E2 and its receptors (α and β) in modulating key 
metabolic pathways. We contextualize these mechanistic preclinical studies 
with epidemiological data linking the menopausal transition to a marked 
rise of metabolic disease risk and provide evidence that E2 replacement 
mitigates this risk by preserving metabolic health.

Oestrogens are a class of steroid hormones predominantly produced 
by granulosa cells in ovary of females and include oestrone (E1), oes-
triol (E3) and most notably oestradiol (E2), in highest concentrations 
in reproductive females. Although oestrogens circulate at much lower 
concentrations in men compared with women, oestradiol in particular, 
which is predominantly produced by the aromatization of testosterone 
in males, is shown to be critical for the maintenance of metabolic health 
in male rodents and men1–3. Aromatization of androgens to oestro-
gens is not limited to reproductive organs, but also occurs in extrago-
nadal tissues, including adipose tissue and the central nervous system 
(CNS)4–7. However, extragonadal oestrogen production on tissue and 
systemic metabolism remains inadequately understood. Aromatiza-
tion by the enzyme aromatase (CYP19) involves enzymatic alteration 
of androstenedione and testosterone, to yield E1 and E2, respectively, 
and E2 has the highest receptor binding affinity and is more effective at 
inducing oestrogenic activation of target genes than E2 or E3 (refs. 8,9). 
This explains the clinical focus of E2 for human health. Oestrogens pro-
duce biological action predominantly via receptor-mediated processes 
acting on gene transcription in the nucleus; however, nongenomic 
signalling also occurs within the cytosol as well as plasma and organelle 
membranes leading to rapid changes in metabolism, although, these 
pathways are less-well understood.

Preclinical models of oestrogen insufficiency or modulation of 
oestrogen receptor (ER) expression have been instrumental in revealing 

cell, tissue and sex-specific actions of oestrogens. Although oestrogens 
were discovered in the 1930s–1940s (Fig. 1), and the two primary forms 
of the ER were the first of the nuclear receptor superfamily to be cloned 
(1980s–1990s), inadequate understanding of oestradiol production 
(endocrine versus paracrine/autocrine action), the cell-specific actions 
of oestradiol, including identification of target genes (activated and 
repressed), as well as nongenomic signalling via receptor-mediated 
and receptor-independent pathways, have hindered advancement of 
clinical care, especially for women.

The maintenance of ovarian hormone production is linked with 
morbidity and mortality, considering that interval length between 
menarche and menopause is positively associated with longevity and 
a reduced odds ratio of cardiometabolic disease10,11. In menopausal 
women, there is a shift to extraovarian production of oestradiol, 
which circulates at markedly reduced levels. A reduction in circu-
lating oestradiol concentration and impairment in target tissue 
action are thought to underlie the significant increase in metabolic 
disease incidence during this life phase12–14. Evidence from the largest 
National Institutes of Health (NIH)-funded multi-site longitudinal 
epidemiological trial studying women across the menopausal tran-
sition (Study of Women’s Health Across the Nation (SWAN); Fig. 1) 
shows metabolic disruptions decades before the clinical determi-
nation of menopause, the final menstrual period (FMP)15. These 
findings indicate that circulating oestradiol levels are a poor index 
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autocrine/paracrine versus endocrine fashion. These studies were 
foundational for the development of aromatase inhibitors as a cur-
rent standard of care for breast cancer treatment30,31. Oestradiol 
is degraded by sulfation via sulfotransferases (13 human forms) 
with SULT1E1 showing the lowest KM for oestrone and oestradiol, 
and differential expression levels associated with sex-biased driv-
ers of cardiometabolic disease32–35. Oestrogens act within a narrow 
concentration range for maximal biological efficacy; thus, integra-
tion of rates of oestradiol production by ovarian and extragonadal 
sources with rates of degradation is critical for the maintenance of 
metabolic health.

Oestrogens are lipophilic and pass freely through membranes, 
exerting biological action predominantly by nucleocytoplasmic α and β 
forms of the receptor (encoded by distinct genes ESR1 (ref. 36) and ESR2 
(ref. 37), respectively). The α form of the receptor is expressed at mark-
edly higher levels than β and is shown to possess higher ligand affinity 
and downstream biological action for most metabolic cell types. ERs 
have six domains, A–F (Fig. 2a), each exerting unique elements of ER 
biology and cellular action38–40. ESR1 includes eight exons that encode 
a 66-kDa full-length protein (Fig. 2a)41.

Oestradiol action by genomic versus nongenomic, 
receptor-dependent and receptor-independent 
mechanisms
ESR1 receptor expression is heritable, and receptor levels are positively 
associated with indices of metabolic health42–44. Oestradiol binding 
initiates a reorientation receptor conformation45 dictating cofactor 
association and transcriptional activity, which modulates processes 
including cell differentiation, proliferation, survival and metabolism46. 
In addition to direct DNA binding (Fig. 2b), ERs can tether to transcrip-
tion factors via protein–protein interaction (Fig. 2c) or be activated 
via post-translational modification (Fig. 2d). Although it is estimated 
that >90% of ER abundance is localized to the nucleus, mice geneti-
cally engineered to express only cytosolic-localized receptor retain 
specific metabolic functionalities (Fig. 2e,f). The ligand-dependent 

of oestrogen action and metabolic health; thus, a clearer under-
standing of ER status seems of critical clinical importance during 
this life phase.

To combat vasomotor symptoms associated with menopause 
(including hot flashes), the US Food and Drug Administration (FDA) 
approved hormone replacement in 1942. Hormone replacement for the 
indication of osteoporosis was not approved until 1988 (Fig. 1). Despite 
US FDA approval, interventional hormone replacement trials, including 
single-hormone oestradiol and conjugated equine oestrogens with 
progestin medroxyprogesterone acetate, were not initiated until the 
early 1990s16. Not until the early 2000s were reports published from the 
largest NIH-funded interventional trial, studying over 27,000 women 
between the ages of 50–79 years17,18. Because participants were widely 
heterogenous for time since menopause (including women 10–30 years 
after FMP), confusion and concern regarding the biological impact of 
E2 administration and disease risk (for example breast cancer) caused 
dramatic reductions in menopausal hormone therapy prescriptions19,20. 
Debate over the timing of hormone administration and the impact of 
hormone replacement on disease risk and primary disease prevention 
is ongoing20–23.

Discovery of oestrogens and oestrogen receptors
Measurement of oestrogens (specifically estrone) in the urine of preg-
nant women, was first reported in the 1930s5,24,25 (Fig. 1) and over the next 
decade, the field focused on testosterone aromatization. These seminal 
studies in endocrinology set in motion a century of intense investiga-
tion to understand the structure, biosynthesis, secretion patterns, sites 
and mechanisms of hormone responsiveness, as well as the clinical 
consequences of ovarian hormone action by receptor-dependent and 
-independent means.

A major conceptual advance in the 1970s–1990s was the 
observation of extragonadal expression and activity of aromatase 
cytochrome P450 (refs. 26–29). This research expanded the field 
view of oestrogen biosynthesis by extragonadal sites and resolved 
important questions about cell-specific oestrogens acting in an 
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Fig. 1 | Timeline of important discoveries in oestrogen research from discovery 
to clinical application. Significant progress has been made over the past 75 years 
in the understanding of oestradiol action and the development of therapeutics 
that can serve to replace or diminish/antagonize the hormone and its cognate 
receptors. Studies from the 1930s–1960s were focused on identifying oestrogens 
and studying clinical phenotypes in the absence of hormone and hormone 
replacement. Studies from the 1960s–1990s were focused on identifying ERs 
and the mechanisms of oestrogen action in a limited number of cell types. In 
the late 1990s and early 2000s, large interventional trials (for example the NIH-

sponsored WHI) were conducted to understand the clinical efficacy of oestrogen 
replacement and the first studies employing mouse genetics to ablate ERs were 
performed. SWAN (initiated in 1994 and is ongoing), was the first NIH-sponsored 
multi-site, longitudinal study to report on clinical features of a multi-ethnic 
population across the menopausal transition. From the early 2000s to present, 
novel tools and techniques have been leveraged to study the molecular 
mechanisms of oestrogen/ER action in a tissue and cell-specific contexts utilizing 
bulk and spatial-focused multiomic assays and chromatin architecture analyses. 
HRT, hormone replacement therapy.
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transcriptional activity of ERα is mediated by the activation function 
(AF) site located in the N-terminal A/B domain (AF1) and the C-terminal, 
ligand-binding domain (AF2-ligand dependent)47,48.

Oestradiol can also remodel cellular membranes (for example 
plasma membrane, lipid rafts and outer mitochondrial membrane) by 
controlling cholesterol-linked fluidity49,50 and mitochondrial electron 
transport chain functionality (ATP and H2O2 production)49 independ-
ent of ERs, although evidence supporting direct hormone action to 
improve in vivo metabolic health in the absence of ERα is lacking. An 
abundance of data shows that genomic actions of E2-ERα are required 
for the maintenance of mitochondrial function, metabolic health and 
insulin sensitivity42,51–55. Indeed, compensatory elevation of circulating 
oestradiol in the global Esr1 null mouse is inadequate to preserve mito-
chondrial metabolism and metabolic health, suggesting that oestradiol 
levels alone cannot overcome metabolic dysfunction consequent to 
ERα deletion/inactivation51,56.

With respect to potential oestradiol-induced receptor-mediated 
actions in mitochondria, although there is evidence for the expres-
sion of both forms of the receptor in mitochondrial fractions of 
breast cancer cell lines and reproductive tissues57–60, a direct role for 
mitochondrial-localized ERs in the regulation of metabolism and 
mtDNA-transcribed targets in non-neoplastic cells remains unknown. 
Thus, the localization of ERs in mitochondria and the contribution of 
nongenomic action of E2 independently on mitochondria requires 
additional investigation.

Physiological actions of oestradiol in metabolic 
tissues
Ovariectomized and Esr1 null mice
Ovarian oestrogens play a major role in the regulation of energy homeo-
stasis12. Oestradiol suppression61 or decreased E2 following ovarian 
senescence or hysterectomy62/ovariectomy (OVX)63 are associated 
with hyperphagia and reduced energy expenditure driving adipose 
tissue weight gain (Fig. 3). Oestradiol replacement prevents obesity and 

metabolic dysfunction by decreasing feeding and increasing energy 
expenditure by enhancing volitional activity and non-exercise energy 
expenditure64. The effects of E2 on energy homeostasis are largely 
mediated by ERα, given that selective ERα agonist propylpyrazole triol 
displays anorectic action65, whereas ERβ agonist diarylpropionitrile 
causes weight gain66. ERα deletion in male and female mice promoted 
hyperphagia, hypometabolism, increased adiposity (both hypertro-
phy and hyperplasia), hyperleptinaemia and insulin resistance51,67,68. 
In contrast, deletion of ERβ failed to promote metabolic dysfunction 
or obesity69.

Next, without priority, we present the impact of oestrogen action 
in specific organ systems, tissues and cell types.
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Fig. 2 | Oestrogen receptor-mediated action on metabolism. a, Schematic of 
the ERα illustrating the six domains A–F, oriented from the amino to carboxy 
terminus, showing the respective activation function domains, AF1 and AF2. The 
ligand-binding domain (LBD) binds oestradiol, which causes a conformation 
shift in the structure of ERα protein and a critical repositioning of helix 12 (H12) 
allowing for engagement of activation functions and additional recruitment of 
cofactors critical for specificity of ERα action. The DNA-binding domain (DBD) of 
ERα interacts with oestrogen response element (ERE) motifs in accessible regions 
of chromatin. b, Genomic actions of ERα includes binding of the receptor to ERE 
motifs in DNA. c, ERα can tether to other transcription factors by protein–protein 
interaction (for example via Fos/Jun dimer to AP-1 sites). d, Ligand-independent 
signalling can occur by rapid action of growth factors to modulate modifications 
of ERα, which alter downstream cytosolic signalling and possibly interactions 
with proteins involved in regulation of mitochondrial metabolism. e, Rapid 
oestradiol signalling in the cytoplasm achieved by receptor-dependent and 
-independent action on metabolic cascades, as well as mitochondrial function 
by inner and outer membrane alterations in fluidity, protein turnover and 
protein modification (for example phosphorylation and acetylation) impacting 
processes including energetics, calcium homeostasis, cholesterol biosynthesis 
and steroidogenesis. f, Fundamental mechanism of ERα-driven genomic action 
includes access to EREs of target genes by the recruitment of pioneer factors 
(lime triangle; for example, FOXA1 and GATA 3) that modify the chromatin state. 
Liganded receptor induces a unique conformation leading to the recruitment 
of coactivator complexes (for example SRC3 and p300), facilitating RNA Pol II 
translocation to the transcription start site (TSS). Unique assembly of cofactors 
drive increased transcription of the ER target gene. g, Model of chromatin 
looping to promote the interaction between enhancers and promoters near 
the gene TSS. Enhancers are characterized by the presence of enhancer RNA, 
Pol II, p300, acetylation of histone 3 lysine 27 (H3K27Ac) and monomethylation 
of histone H3 lysine 4 (H3K4Me1). Cohesin and mediator proteins promote 
the connection between the enhancer and promoter(s) near the TSS116. 
Figure adapted from ref. 38, Oxford University Press.
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Brain
Oestrogens are locally produced in a variety of brain regions7, and ERs 
are abundantly expressed in the CNS and are responsive to central 
administration of E2 (ref. 70). Genetic models show that central ERα 
is required for optimal body weight management. Compared with 
wild-type animals, both male and female CNS-specific ERα-null mice 
develop hyperphagia, visceral (but not subcutaneous) adiposity, and 
show decreased energy expenditure and volitional locomotor activity, 
as well as compensatory elevation of circulating E2 (ref. 71). Specifically, 
ERα is highly expressed in several hypothalamic nuclei (for example 
ventromedial (VMH), arcuate (ARC), paraventricular (PVH), preoptic 
(POA) and lateral (LHA) areas) compared with significantly lower ERβ 
expression70. The actions of oestrogens on food intake are thought 
to predominate in pro-opiomelanocortin (POMC) neurons70, as ERα 
deletion from POMC-selective neurons drive hyperphagia without 
alteration in energy expenditure or fat distribution71. The molecu-
lar mechanisms mediating the effect of oestrogens on POMC neu-
rons are unclear; however, recent findings indicate that E2 inhibits 
AMP-activated protein kinase72.

While the ARC is considered central for hypothalamic feeding con-
trol, the VMH seems key for modulation of energy expenditure73. Elec-
trical, pharmacological, and hormonal stimulation of this brain region 
increases interscapular brown adipose tissue (BAT) temperature. 

Although BAT itself expresses ERs42,74, classical electrophysiological 
data show that E2 modulates the excitability of neurons in the VMH 
through a cAMP-dependent mechanism mediated by steroidogenic 
factor-1 (SF1) neurons. In mice lacking ERα selectively in SF1 neurons, 
high fat-diet feeding increased body weight and visceral adiposity 
further above controls, but only in females71. Despite similar caloric 
intake between the genotypes, hypometabolism because of reduced 
BAT thermogenesis was explained by a reduced sympathetic outflow 
and diminished expression of uncoupling protein 1 (UCP1), peroxi-
some proliferator-activated receptor γ, PGC-1α and β3 adrenergic 
receptors. Chemogenetic activation of ERα-positive VMH neurons 
stimulated heat generation and movement in both sexes; however, 
sex-biased expression of the reprimo gene seems to regulate thermo-
genesis in females75. Moreover, E2 and CRISPR-mediated activation of 
melanocortin-4 receptor (MC4R) signalling in VMHvl neurons by ERα 
increased volitional physical activity76. Collectively these findings show 
that oestrogen action in specific brain regions controls complex meta-
bolic traits including feeding, thermoregulation and volitional activity.

Cardiac tissue
Before menopause, a female-biased protection against cardiovascu-
lar disease, including atherosclerosis and heart failure is observed77. 
There is high metabolic demand for ATP production by oxidative 
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Fig. 3 | Tissue-specific regulation of metabolism by oestradiol/ERα. 
ERs, specifically Esr1/ERα, are highly expressed in most metabolic tissues. 
Ovariectomy with oestradiol replacement, as well as LoxCre approaches in mice 
to manipulate Esr1/ERα in a tissue-specific and time dependent strategy have 
produced largely consistent findings between laboratories. Tissue-specific 
deletion of Esr1 from brain, heart, liver, skeletal muscle, pancreatic islets, BAT, 
WAT and macrophages reproduce selective phenotypes of the whole body 

Esr1 null mouse and phenocopy specific features of metabolic disruption and 
heightened metabolic disease risk observed during menopause in women. 
Notably, in many instances similar metabolic features are also recapitulated 
in male Esr1 knockout (KO) rodents. Thus, by and large, actions of ERα are 
conserved between female and male rodents, and these preclinical studies are 
consistent with observations of oestrogen action on metabolism in humans. IL, 
interleukin; IFN, interferon.
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phosphorylation within cardiomyocytes78. Cardiac tissue relies heav-
ily on the metabolism of fatty acids to fuel contraction; however, in 
the diabetic or failing heart, there is a shift in substrate utilization to 
glucose and ketones79. Positron emission tomography imaging shows 
that myocardial fatty acid oxidation rates are markedly higher in women 
compared with men, and trended higher in postmenopausal women 
receiving hormone replacement versus untreated80. In the specific case 
of cardiac hypertrophy, findings of oestradiol acting via ERβ have been 
shown (findings confounded by the use of global deletion models); 
however, recent evidence suggests a more significant role for ERα in 
the protection of cardiomyocytes from mitochondrial dysfunction, 
oxidative stress, fibrosis and cardiac hypertrophy81. Cardiomyocellular 
ERα is now implicated in the production of heart-derived extracellular 
vesicles that exert metabolic reprogramming of peripheral tissues 
and energy homeostasis81. As aerobic capacity is the best predictor of 
morbidity and mortality, and cardiac output is determinant of aerobic 
fitness (VO2 max), the importance of cardiomyocellular metabolism in 
heart health and the role that the heart plays in orchestrating systemic 
metabolism82,83, especially in response to oestradiol and ER signalling, 
requires further exploration.

Liver
ERα is significantly reduced (~50%) in the liver of humans with poorly 
controlled diabetes, as well as db/db mice compared with controls84. 
Experimental disruption of hepatic oestrogen action in adult mice 
recapitulates aspects of the metabolic syndrome85. 17β-Oestradiol 
inhibits hepatic gluconeogenic genes, including phosphoenolpyruvate 
carboxykinase 1 (Pck-1) and glucose-6-phosphatase (G6Pase) and this 
effect is absent in mice lacking liver ERα (LERKO; Cre driven by the 
albumin promoter), which display fasting hyperglycaemia and impaired 
glucose tolerance85,86. Liver lipids and triglyceride levels are also ele-
vated in LERKO mice consequent to lipogenesis by induction of fatty 
acid synthase (Fas) and acetyl-CoA carboxylase (Acc1)87,88. Reduction 
in basal metabolic rate for LERKO animals versus controls was paral-
leled by atherosclerotic lesion progression in the context of western 
diet feeding88. Additionally, relevant to oestradiol action in the liver, 
interrogation of oral versus transdermal preparations of oestradiol, 
with particular focus on hepatic first-pass hormone delivery by portal 
vein circulation should be considered89, and whether liver ERα can be 
selectively targeted in a ligand-independent manner to protect against 
metabolic disease, including metabolic dysfunction-associated fatty 
liver disease (MAFLD) and metabolic dysfunction-associated steato-
hepatitis (MASH) should be investigated.

Skeletal muscle
Numerous studies have shown that oestradiol treatment protects 
against muscle injury90 and insulin resistance driven by high fat-diet 
feeding, inactivity or genetic obesity. Similar findings in cell culture 
show that oestradiol promotes muscle insulin action and fatty acid 
oxidation. ESR1/Esr1 in the muscle of humans and rodents is posi-
tively associated with indices of metabolic health, including insulin 
sensitivity in both sexes52,91. Moreover, in-depth RNA sequencing of 
muscle from diverse strains of mice shows strong Esr1 heritability 
and significant correlations between Esr1 expression and transcripts 
associated with mitochondrial remodelling and mtDNA replication. 
With respect to clinical relevance, ESR1 is markedly reduced in the 
muscle from premenopausal women displaying clinical features 
of metabolic syndrome, including obesity and impaired glucose 
tolerance52. To establish a causal relationship between muscle Esr1 
expression and metabolic health, gene deletion and overexpression 
models have been studied over the lifespan52,91. Skeletal muscle insulin 
resistance, glucose intolerance, increased adiposity, reduced myo-
cellular oxidative metabolism and disrupted metabolomic profiles 
were consequent to skeletal muscle-selective Esr1 deletion in both 
female and male animals52,91.

Diminished ERα action in the muscle stalled mtDNA replica-
tion and produced morphological changes in mitochondrial inner 
and outer membrane structure in both female and male mice that 
appears consequent to mitochondrial fission incompetence52,92. These 
mitochondrial-related alterations disrupted fatty acid metabolism, 
promoting a marked accumulation of lipid in muscle, and this is thought 
to underpin muscle inflammation and insulin resistance leading to 
decrements in metabolic health. Notably, impairment in muscle ERα 
action blunts physiological adaptations in metabolism during exercise 
training intervention52,91. In contrast, in muscle-selective Esr1 overex-
pression mice, enhanced skeletal muscle insulin sensitivity and protec-
tion against diet-induced insulin resistance was paralleled by enhanced 
mitochondrial fission dynamics, increased mitochondrial cristae den-
sity and heightened oxidative capacity that enhanced exercise-induced 
mitochondrial adaptation91. These findings suggest that skeletal muscle 
ERα is critical for the maintenance of mitochondrial function and insu-
lin action, and that muscle ESR1 may be an effective target to combat 
insulin resistance and diseases associated with metabolic dysfunction.

Pancreatic β-cells
Diabetes, type 1 and 2, manifests when pancreatic β-cells produce insuf-
ficient insulin to promote glucose disposal into peripheral tissues and 
regulate endogenous glucose production by the liver. Although dia-
betes type 1 and 2 yield vastly different phenotypes, preservation of 
β-cell mass is a key therapeutic strategy for both diseases93. Consider-
ing that there is a reduced prevalence of diabetes in premenopausal 
women compared with age-matched men93 and that female ZDF rats are 
protected against β-cell failure compared with males suggests that har-
nessing the protective effects of oestradiol/ERα may prove efficacious 
in the treatment or prevention of type 2 diabetes in women. Moreover, 
because pancreas biopsies from healthy women show a significant 
increase in β-cell number compared with men, there is additional evi-
dence of a sex-biased enhancement of β-cell viability to improve islet 
transplantation outcomes for people with type 1 diabetes94.

Studies in islet-specific ERα knockout (KO) mice highlight the 
mechanistic importance of ERα in islets/β-cells to regulate insulin 
synthesis and protect against β-cell apoptosis during stress. Although 
the protective actions of oestrogens/ERα in pancreatic β-cells are well 
documented, the mechanistic underpinnings seem to reflect a complex 
crosstalk of genomic and rapid nongenomic signalling95,96. In part, ERα 
prevents tissue lipid accumulation and promotes β-cell survival by 
maintaining mitochondrial health, and suppressing endoplasmic retic-
ulum stress and apoptotic signalling54. Additional research is required 
to understand the molecular changes that occur in β-cells during the 
menopausal transition and how β-cell ERα can be selectively targeted 
to prevent or mitigate the complications associated with diabetes.

Brown adipose tissue
Distinct from white adipose tissue (WAT), brown adipocytes are char-
acterized by the uncoupling of mitochondrial respiration from ATP 
synthesis to produce heat in thermoregulation. During cold exposure, 
mitochondrial remodelling shifts substrate metabolism to fatty acid 
mobilization linked with the induction of UCP1 to produce heat. WAT 
browning and BAT activation are thought to contribute to improve-
ments in metabolic homeostasis and insulin action. Females have 
increased BAT volume and activation, and female brown adipocytes 
are more highly enriched in mitochondria compared with males97–99. 
BAT metabolism and WAT beiging are induced by E2. Esr1 deletion 
from BAT impairs dynamin-related mitochondrial fission control over 
adipocyte fatty acid oxidation and reduced thermoregulatory and 
glucoregulatory capacity during cold exposure42.

White adipose tissue
Clustering of metabolic abnormalities in the context of excess adi-
pose tissue mass, especially visceral adiposity, contributes to the 
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development of chronic diseases, including type 2 diabetes, cardiovas-
cular disease and certain types of cancer100. Although premenopausal 
women are less prone to metabolic-related diseases than men100, this 
protection is lost during menopause and is associated with a rapid 
increase in central adiposity100, with findings from SWAN showing that 
the mean rate of increase in fat mass nearly doubles during the decade 
before FMP15. Although oestradiol levels are quite variable in women 
across the life course, expression of adipose ESR1 is heritable (TwinsUK; 
narrow-sense heritability estimates h2 = 0.29) and negatively associ-
ated with adiposity42. Of note, a strong negative relationship between 
Esr1/ESR1 and adiposity is similar between females and males from mice 
to humans42,43,101. ESR1, similar to genes associated with mitochondrial 
function, is reduced in adipose tissue from obese women even before 
menopause44. ESR1 expression tracks with mitochondrial function in 
both white and brown adipose92,102,103, as mitochondria-related tran-
scriptional signatures are differentially expressed in adipocytes of 
healthy monozygotic twins discordant for obesity92. Notably, ESR1 is 
normalized to lean control values in adipose tissue within 18–24 months 
after gastric bypass surgery44. Studies in mice with selective deletion 
of ERα from adipocytes demonstrate a causal relationship between 
oestrogen action in regulating adiposity and glucose homeostasis at 
baseline and during thermal challenge in the context of biological sex 
and age42,53,104,105.

Innate immune cells
Over the past decade it has become well accepted that the innate 
immune system exerts important regulatory control over adiposity 
and metabolic health. Considering that innate immune cells are resi-
dent within, as well as recruited to metabolic tissues from the bone 
marrow and thymus, these cells must clearly adopt a variety of phe-
notypes to serve the diverse metabolic demands of these complex 
organ systems. Innate immune function declines with ageing but 
heightened basal immune cell inflammation and circulating cytokine 
concentrations are noted, and these are associated with an increase in 
metabolic disease risk, especially in menopausal women106. Rodents 
harbouring a homozygous Esr1 null mutation display heightened tis-
sue inflammation, insulin resistance, marked obesity and increased 
atherosclerotic susceptibility51. Modulation of inflammatory signalling 
in macrophages and neutrophils by oestradiol is in large part shown to 
be ERα-dependent51,55,107,108. ERα-selective deletion from macrophages 
produces glucose intolerance, insulin resistance, obesity and increased 
atherosclerotic lesion area in female mice55. These myeloid driven phe-
notypes seem consequent to ERα-controlled regulation of mitochon-
drial metabolism, reverse cholesterol transport, iron homeostasis, 
inflammation and wound-healing mechanisms55.

Oestradiol action, menopausal hormone 
treatment and metabolic-related disease
The field has convincingly shown that impairment of oestradiol pro-
duction and hormone action underpins obesity, insulin resistance 
and metabolic-related disease in both sexes of humans and rodents. 
Moreover, a strong impact of ESR1 on cholesterol and lipid-lowering 
drug efficacy are noted, as for example, simvastatin was more effective 
at increasing high-density lipoprotein and reducing total cholesterol 
in people harbouring rs2234693 and rs3798577 ESR1 variants. These 
data underscore potential mechanisms contributing to variation in 
metabolic traits across a female population, as well as sex-biased vari-
ability in clinical responsiveness to specific therapeutic interventions 
aimed at combating metabolic dysfunction. Of note, for a host of drug 
classes, concern regarding effectiveness, as well as incidence of adverse 
outcomes in women, is mounting109–111. Clinical studies, including find-
ings from the Women’s Health Initiative (WHI), show that menopau-
sal hormone treatment diminishes new-onset diabetes and reduces 
metabolic dysfunction112,113. An age stratified analysis (46–50 and 55–60 
years) revealed significant protective effects of menopausal hormone 

treatment at ages closer to FMP; thus, the timing of E2 treatment for 
maximal therapeutic benefit must be examined114. Considering that 
there is no other life phase with a comparative magnitude increase of 
metabolic disease risk, physicians are challenged to address metabolic 
dysfunction during the menopausal transition.

Future directions and concluding remarks
Although oestradiol and ERs were discovered early in defining the 
nuclear receptor superfamily, we are still limited in our understanding 
of the mechanisms governing oestradiol action in metabolic cell types. 
Over the past decade, research has focused on understanding the tis-
sue contributions of Esr1 and E2 action on whole-animal physiology, 
as well as the molecular actions of the receptor, including delineation 
of ERα-driven transcriptional, proteomic and metabolomic signatures 
that arise under a variety of challenges, for example oestradiol modu-
lation, ageing, caloric restriction, overnutrition and exercise. Moving 
forward, it will be important to discern the relative control of oestradiol 
over metabolism by genomic, nongenomic and nonreceptor-mediated 
action; however, these studies will require innovative scientific tools for 
improved interrogation. Additionally careful consideration of effective 
oestradiol and receptor dosing, as well as timing of ligand–receptor 
manipulation should be employed (for example, phenotypic differ-
ences observed between conventional versus conditional KO models 
with gene manipulation occurring during development and adulthood). 
Studies to identify signals for cytosolic localization and protein binding 
partners of ERα, as well as whether ERα interacts with mitochondrial 
membranes (outer mitochondrial membrane or internal cristae) are 
sorely needed, especially in light of the recent observation from the 
Molecular Transducers of Physical Activity consortium that oestrogen 
action is a top tissue-conserved pathway (six metabolic tissues studied) 
differentially expressed following exercise intervention115. Consider-
ing that physical activity is a proven strategy for combating metabolic 
dysfunction, understanding the role of oestradiol/ERα in mediating 
the health benefits of physical activity seems prudent. These studies 
reinforce the notion that more robust basic science must be conducted 
to guide the rational design of new therapeutics targeting ERs in the 
pre/peri- and postmenopausal life phases. Moreover, improved rep-
resentation of women in all clinical trials is needed so that studies are 
adequately powered to evaluate sex-specific differences in disease 
progression and pathobiology, as well as drug efficacy and safety.
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