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Abbreviations used

AD- A
topic dermatitis
BEAT- B
eating Egg Allergy Trial

FA- F
ood allergy
HEAP-H
en’s Egg Allergy Prevention

IgE- Im
munoglobulin E

IL-4- O
mterleukin 4
LEAP- L
earning Early About Peanut Allergy

PETIT- P
revention of Egg allergy with Tiny amount InTake

STAR- S
olids Timing for Allergy Research

STEP- S
tarting time of egg protein

Th2- T
 helper 2
TLR4- T
oll-like receptor 4
genetic susceptibility. Collectively, the current evidence base
provides a compelling rationale for the primary prevention of
food allergy by introducing common allergens such as peanut
and egg early. In contrast, primary prevention of aeroallergen
sensitization is more complex and perhaps more challenging
to achieve by manipulating allergen exposures. Even so,
recent advances in understanding how the microbiome and
environmental toxins and irritants modulate the mucosal
immune response have identified potential new strategies for
primary prevention of food and aeroallergen
sensitization. � 2025 American Academy of Allergy,
Asthma & Immunology (J Allergy Clin Immunol Pract
2025;13:1243-53)

Key words: Allergic sensitization; IgE; Children; Risk factors;
Asthma; Food allergy; Aeroallergens; Prevention; Allergen
exposure

INTRODUCTION
Whereas exposure to allergens in early life is ubiquitous, these

exposures can vary in quantity, route, adjuvants, and physical
formats. Following contact with epithelial surfaces, local factors
such as barrier function, host genetics or epigenetics, inflamma-
tion, and the microbiome help to initiate and shape epithelial
downstream mucosal immune responses. Given that most allergen
exposures and some cofactors are modifiable, it is critical to un-
derstand how exposure patterns to food and environmental aller-
gens and cofactors related to the host mucosal and skin immune
responses modulate allergic health outcomes. The following sec-
tions review evidence related to these concepts and the results of
interventional studies, highlighting unresolved questions that
could lead to future advances in disease prevention.

EXPOSURE TO FOODS IN EARLY LIFE AND FOOD

ALLERGY

Epicutaneous sensitization and food allergy
The strong causal relationship between atopic dermatitis (AD)

and food allergy (FA)1-3 is underpinned by mechanistic evidence
suggesting that an impaired epithelial barrier (such as in AD) can
cause epicutaneous sensitization to food allergens.4 In the setting
of a disrupted skin barrier, food allergens in the environment
encounter resident dendritic cell subsets in the dermis, which
present these antigens to naive CD4þ T cells in draining lymph
nodes that differentiate into allergen-specific CD4þ T cells.
Downloaded for Anonymous User (n/a) at University of Wiscons
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Secretion of T helper 2 (Th2)eproinflammatory cytokines
(interleukin 4 [IL-4], IL-13) induces B-cell isotype class
switching to immunoglobulin E (IgE), and differentiation into
specific IgE-producing plasma cells.5,6 In the effector phase, oral
exposure to offending allergens crosslinks serum IgE antibodies
and high-affinity receptor for the Fc region of IgE (FcεRI) re-
ceptors on mast cells and basophils, causing degranulation and
release of histamine, leukotrienes, and proinflammatory cyto-
kines, which manifest clinical symptoms.7,8

Loss-of-function mutations in skin barrier genes such as
filaggrin (FLG) and SPINK5 have also been linked to skin barrier
impairment and concomitant increased risks of food sensitization
and FA.9,10 Cohort studies have also demonstrated that early skin
barrier disruption, such as high transepidermal water loss in the
neonatal period; and early-onset AD, could increase the risk of
FA development by 1 to 2 years of age.11-13

Dual allergen exposure hypothesis and FA

prevention

Food allergens are ubiquitous in the indoor environment.14,15

Food enters the environment during processing or preparation
and can become airborne or coat environmental surfaces, to the
extent of inducing reactions on inhalation16 or skin contact.
Higher environmental allergen levels also correlate with increased
risk of allergen sensitization. For example, household peanut
exposure increases the risk for peanut allergy, particularly in
children with more severe AD and FLG mutations.17-19 Like-
wise, applying peanut-containing skin preparations to inflamed
skin is associated with infant peanut allergy.20 Repeated skin
exposures to high concentrations of food antigens, with or
without eczema, may also increase the risk of FA.21-23

The dual-allergen exposure hypothesis, proposed in 2008,
postulated that food exposure through a disrupted skin barrier in
AD caused sensitization, whereas early oral exposure to food
allergens promoted tolerance and prevented FA.24-26 Observa-
tional studies indicated that avoiding consumption of allergenic
foods in early life could increase the risk of FA, especially in high-
risk infants with AD, in whom transcutaneous sensitization to
food allergens frequently leads to development of clinical FA.27,28

Conversely, earlier oral introduction of food allergens between 4
and 6 months of age could mitigate this pathway and protect
against FA by inducing gastrointestinal tolerance (Table I).29-39

Subsequently, several randomized controlled trials found that
early introduction of peanut or egg to high-risk infants with
severe AD or preexisting food sensitization reduced the risk of
developing allergies to those foods (Table I). The landmark
Learning Early About Peanut Allergy (LEAP) trial found that
high-risk infants who consumed 6 g of peanut protein in a week,
or 2 g 3 times a week, had an 81.4% lower risk of developing
challenge-proven peanut allergy by age 5 years, compared with
those who completely avoided peanut.32 This effect was sus-
tained for up to 72 months.40 Many scientific organizations
subsequently released consensus statements recommending the
early introduction of peanut in high-risk populations for the
prevention of peanut allergy.41-43

Several other trials on the early introduction of egg and milk
have also since been performed in other countries (Table I).44

The earlier trials left doubt about whether early egg con-
sumption reduced the risk of FA in normal or high-risk in-
fants.33-37 Subsequently, the PETIT (Prevention of Egg allergy
with Tiny amount InTake) study confirmed that early
in-Madison from ClinicalKey.com by Elsevier on June 07, 
on. Copyright ©2025. Elsevier Inc. All rights reserved.



TABLE I. Studies on early food-allergen exposure and FA risk.

Food

Year

Country

Author

(Study name) Study population Study type I C FA outcome

FA outcomes in relation to allergen-

consumption patterns

Observational studies

Wheat 2006
United States
Poole27

n ¼ 1,612 normal-risk infants Longitudinal
observational
study

NA Parent reported wheat
allergy up to age 4 y

0.41% if wheat introduced before 6 mo
1.8% if wheat introduced after 6 mo
OR 3.8; 95% CI 1.18e12.28; P ¼ .025

Cow’s milk 2010
Israel
Katz28

n ¼ 13,019 normal-risk
infants

Longitudinal
observational
study

NA OFC or suggestive history
up to age 3e5 y

0.05% if CMP formula started in first 14 d
1.75% if CMP formula started between 105

and 194 d
OR 19.3; 95% CI 6.0e62.1; P < .001

Cow’s milk 2022
United States
Switkowski29

(Project Viva)

n ¼ 1,484
normal-risk infants

Longitudinal
observational
study

NA Parent reported cow’s
milk allergy up to
age 13 y

5.3% if CMP introduced < 2 wk of age
7.1% if CMP introduced between 2 wk and

6 mo of age
OR 1.4; 95% CI 0.8e2.4
10.8% if CMP introduced > 6 mo of age
OR 2.1; 95% CI 1.2e3.7

Peanut 2008
Israel and United

Kingdom
Du Toit30

n ¼ 5615 Israel
n ¼ 5,171 United Kingdom

Normal-risk infants

Cross-sectional study NA Parent reported peanut
allergy at age
4e18 y

69% of Israeli infants consumed peanut by
age 9 mo

7.1 g median monthly peanut consumption
in first year of life

10% of UK infants consumed peanut by
age 9 mo

0g median monthly peanut consumption in
first y of life

Peanut allergy 0.17% in Israel vs 1.85% in
United Kingdom

RR 5.8; 95% CI 2.87e11.8

Egg 2010
Australia
Koplin31

(HealthNuts)

n ¼ 2,589 normal-risk infants Cross-sectional study NA Egg allergy by OFC at age
15e18 mo

5.6% if egg introduced at 4e6 mo
7.8% if egg introduced at 7e9 mo (OR 1.3;

95% CI 0.8e2.1)
10.1% if egg introduced at 10e12 mo [OR

1.6; 95% CI 1.0e2.6)
27.6% if egg introduced after 12 mo (OR

3.4; 95% CI 1.8e6.5); p < .001

Randomized controlled trials

Peanut 2015
United Kingdom
Du Toit32 (LEAP)

n ¼ 640 infants
Moderate to severe eczema

and/or egg allergy
Peanut SPT � 4 mm

Randomized
controlled trial

I: 6 g peanut protein/wk from 4 to
11 mo

C: avoidance

Peanut allergy by OFC at
age 5 y

I: 10 of 312 (1.9%)
Cl: 54 of 313 (13.7%)
OR 0.19; 95% CI 0.10e0.36; P < .001
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TABLE I. (Continued)

Food

Year

Country

Author

(Study name) Study population Study type I C FA outcome

FA outcomes in relation to allergen-

consumption patterns

Multiple
foods*

2016
United Kingdom
Perkin33 (EAT)

n ¼ 1,303 normal-risk infants
Exclusively breastfed

Randomized
controlled trial

I: 6 allergenic foods ¼ 4 g
protein/wk/food* from 3 mo

C: standard guidelines, introduce
from 6 mo

Food allergy by OFC at 1
y and 3 y

Peanut
I: 7 of 571 (1.2%)
C: 15 of 597 (2.5%)
OR 0.49 (0.20 e 1.19) p¼0.11

Egg
I: 21/569 (3.7%)
C: 32/596 (5.4%)
OR 0.69; 95% CI 0.40e1.18; P ¼ .17

Egg 2017
Australia
Palmer34 (STEP)

n ¼ 820
Infants of atopic mothers
No known allergic disease

Randomized
controlled trial

I: pasteurized raw whole egg
powder (0.4 g protein) daily
from 4 to 6 mo

C: placebo

Egg allergy by positive
SPT and OFC at 12
mo

I: 26 of /371 (7%)
C: 39 of 377 (10.3%)
OR 0.75; 95% CI 0.48e1.17; P ¼ .20

Egg 2013
Australia
Palmer35 (STAR)

n ¼ 86
Moderate to severe eczema

Randomized
controlled trial

I: pasteurized raw whole egg
powder (0.9 g protein) daily
4e8 mo and cooked egg
from 8 mo onward

C: placebo

Egg allergy by OFC at age
12 mo

I: 14 of 42 (33%)
C: 18 of 35 (51%)
OR 0.65; 95% CI 0.38e1.11; P ¼ .11

Egg 2017
Germany
Bellach36 (HEAP)

n ¼ 406
Normal-risk infants with

egg-specific IgE < 0.35
kUA/L

Randomized
controlled trial

I: pasteurized egg white powder
(2.5 g protein) 3 times a
week from 4 to 6 mo

C: placebo

Egg sensitization by sIgE
� 0.35 kUA/L at 12
mo

I: 3 of 142 (2.1%)
C: 1 of 156 (0.6%)
OR 3.30; 95% CI 0.35e31.32; P ¼ .35

Egg 2017
Australia
Tan37 (BEAT)

n ¼ 319 high-risk infants with
first-degree relative with
history of atopy, and egg
white SPT < 2 mm

Randomized
controlled trial

I: pasteurized whole egg powder
(0.35 g) from 4 mo and
cooked egg from 8 mo
onward

C: placebo

Egg sensitization by egg
white SPT � 3 mm
at 12 mo

I: 13 of 122 (10.7%)
C: 25 of 122 (20.5%)
OR 0.46; 95% CI 0.22e0.95; p ¼ 0.03

Egg 2017
Japan
Natsume38 (PETIT)

n ¼ 121 high-risk infants with
atopic dermatitis

Randomized
controlled trial

I: 50 mg heated egg powder (6e9
mo) then

250 mg heated egg powder (9
e12 mo)

C: placebo

Egg allergy by OFC at 12
mo

I: 5 of 60 (8.3%)
C: 23 of 61 (37.7%)
OR 0.221; 95% CI 0.090e0.543;

P ¼ .0013

Milk 2021
Japan
Sakihara39

n ¼ 504
normal-risk infants

Randomized
controlled trial

I: 10 mL CMP formula daily
C: avoidance

Cow’s milk allergy by
OFC at 6 mo

I: 2 of 242 (0.8%)
Cl: 17 of 249 (6.8%)
RR 0.12; 95% CI 0.01e0.50; P < .001

C, Control; CMP, cow’s milk protein; I, intervention; OFC, oral food challenge; NA, not available; sIgE, serum immunoglobulin E; SPT, skin prick test.
*Cow’s milk, peanut, egg, sesame, fish, wheat.
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introduction of heated egg from 6 to 12 months of age
reduced the risk of egg allergy at age 1 year, even in infants
without AD.

An updated systematic review and meta-analysis concluded
that there was high-certainty evidence (9 trials, n ¼ 4,811) that
egg introduction between 3 to 6 months of age was associated
with a 40% reduction in the risk of egg allergy (relative risk
[RR] ¼ 0.60; 95% confidence interval [95% CI] 0.46e0.77);
high-certainty evidence (4 trials, n ¼ 3,796) that peanut intro-
duction between 3 to 10 months of age was associated with a
69% reduction in the risk of peanut allergy (RR ¼ 0.31; 95% CI
0.19e0.51); but the evidence linking the timing of cow’s milk
introduction to the risk of cow’s milk allergy was of very low
certainty.45

This field of research demonstrates the juxtaposition of the
opposing pathways; environmental food allergen exposure
through the skin in active AD induces FA and early oral food
allergen exposure can effectively mitigate this adverse outcome,
offering protection against FA.
ALLERGIC RHINITIS AND ASTHMA

Common patterns of indoor and outdoor allergen

exposure
House dust mites, particularly Dermatophagoides pteronyssinus

and Dermatophagoides farinae, are among the most common al-
lergens worldwide.46 Their presence is largely influenced by
humidity and temperature, with variations in distribution
depending on geographical regions and seasons.47 Within the
same region, dust mites are more prevalent in private homes,
especially those associated with higher socioeconomic and
educational levels, lower population densities, older homes, and
the absence of air conditioning.48-51

Cockroaches are significant indoor environmental allergens,
particularly in inner-city areas.52 Cockroach allergens are excreted
through feces or released from their bodies.53-55 Indoor and out-
door mold exposure has been linked to allergic diseases in chil-
dren.56 Atmospheric mold levels are generally higher than indoor
levels.56,57 Indoor molds comprise a combination of outdoor mold
influx and those generated from indoor sources.58 Indoor mold
levels are higher in water-damaged homes, where exposure might
involve other harmful substances.59 Mouse allergens are also a
significant concern owing to their association with allergic diseases,
particularly in urban areas with concentrated poverty.60 Mouse
allergen levels can be substantial not only in households but also in
schools.61,62 The major mouse allergens are synthesized in the
mouse liver and secreted in the urine.63 Aerosolization of mouse
allergens serves as a significant route of exposure.61

Global pet ownership varies widely, with an average of 23% of
people owning cats and 33% owning dogs.64 In a study con-
ducted in the United States, over 50% of households owned
pets, and 12% of the population demonstrated sensitization to
pet allergens.65 Whereas pet allergens are high in households
with pets, they are also frequently detected in schools, day cares,
and homes without pets.65-67

The types of outdoor pollens and molds and their concen-
trations vary by region and season,68,69 and atmospheric pollen
levels and allergen concentrations fluctuate in similar patterns.70

Aeroallergens can attach to other fine particles that have adjuvant
properties, including diesel combustion by-products, pollutants,
and submicron biological particles.71
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Aeroallergen exposure should be evaluated not only in terms
of the exposure itself but also by considering various factors that
can influence aeroallergen concentrations, such as climate and
geographic region. Furthermore, the distribution of indoor and
outdoor allergens is anticipated to evolve due to ongoing changes
in urbanization, climate change, and lifestyle shifts. Climate
change might expand the geographic range of pollen and mold
spores, and increasing urbanization and indoor living could
elevate exposure to indoor allergens such as dust mites and pet
dander. In addition, changes in environmental policies and ad-
vancements in housing and ventilation systems could further
influence allergen exposure patterns.

Inner-city environments have frequently been the focus of
studies on allergen exposure and allergic diseases, because they
provide critical insights into the interplay between environmental
and socioeconomic factors shaping health outcomes.72 The
neighborhoods disproportionately house Black and Hispanic/
Latinx communities, who are more likely to face structural in-
equalities that further increase their exposure to environmental
allergens.73 These conditions contribute to significant disparities
in allergic diseases by increasing exposure to prevalent environ-
mental allergens such as mouse and cockroach allergens as well as
mold.74

Aeroallergen exposure in early life and allergic

sensitization and disease
Early-life allergen exposure can modify allergic sensitization

versus tolerance and the development of allergic diseases through
immune system modulation, barrier function disruption,
microbiome alterations, and environmental factors, which vary
with genetic susceptibility.75-77 The timing of exposure (prenatal,
lactational, or postnatal periods), the amount of allergen expo-
sure, and interactions with factors such as air pollution further
influence these associations (Figure 1).75-81

Cockroach exposure in children with asthma is associated
with cockroach sensitization and acute exacerbations of
asthma.82,83 For example, high-level cockroach exposure in
children with asthma and cockroach allergy is associated with
increased asthma morbidity,82 and similar relationships exist for
other indoor allergens such as mouse and cat.62,84 However, in
a multicenter birth cohort study of children in disadvantaged
neighborhoods, cockroach, mouse, and cat allergen levels in
house dust obtained during infancy were inversely associated
with recurrent wheezing.85 Notably, preschoolers with con-
current exposure to rich house dust microbiomes had the
lowest rates of allergic sensitization and respiratory symp-
toms.86 The sum of exposure to 3 common allergens (cock-
roach, cat, and mouse) was also related to reduced asthma at
ages 7 and 10 years.87,88

Similar paradoxical relationships have been described for pets.
Exposure to elevated levels of pet allergens in the home is asso-
ciated with increased asthma attacks in children sensitized to these
allergens.65 Conversely, early-life exposure to dogs reduces rates of
recurrent wheezing and early onset of asthma, without affecting
the risk of allergic sensitization.89-91 Similarly, studies designed to
dissect which farm exposures are associated with reduced allergic
diseases and asthma indicate that exposure to farm animals, as well
as barns and farm milk, are related to reduced risk.92

These findings suggest that the relationships between early-life
allergen exposure, allergic sensitization, and symptoms depend
on personal characteristics or other environmental factors.93,94
in-Madison from ClinicalKey.com by Elsevier on June 07, 
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FIGURE 1. How early-life allergen exposure influences the development of allergic sensitization and the progression of allergic diseases.
ILC2, innate lymphoid type 2 cells.
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Epithelial barrier dysfunction could be pivotal in allergic sensi-
tization by facilitating allergen penetration and modulating
downstream immune responses. Barrier dysfunction could result
from internal factors, such as type 2 inflammation, hormones,
and genetic variation, or external factors, including injury, pol-
lutants, proteases, and dietary and microbial factors.95,96 Envi-
ronmental tobacco smoke exposure during the first few months
of life increases the risk of allergic sensitization, potentially
through mucosal damage and inflammation.80,97 The composi-
tion of environmental bacteria encountered during infancy can
also affect allergic outcomes.85 For instance, reduced exposure to
Firmicutes and Bacteroidetes in infancy has been associated with a
higher risk of allergic sensitization and atopic wheezing later in
childhood.85 A meta-analysis showed that early-life antibiotic
exposure is associated with an increased risk of hay fever, eczema,
and food allergies later in life, but no significant association was
found with atopy based on skin prick test or specific IgE levels.98

Early-life antibiotic exposure can influence the development of
allergic diseases, such as AD and childhood asthma, by altering
the diversity of the gut microbiome in early life.99,100

Toxic or immunostimulatory properties of some allergens
might also increase their ability to promote sensitization. Some
studies have associated cockroach allergen exposure in early life
with allergic sensitization. This relationship is influenced by
polycyclic aromatic hydrocarbon levels and genetic factors, such
as glutathione-S-transferase m 1.101 Cockroach allergen exposure
in mouse airways can damage airway epithelial cells and induce
allergic inflammation.102 Components of cockroach allergens,
including glycans and serine protease activity, can drive allergic
inflammation.52,103

Effects of aeroallergen exposure on immune

development
Newborns typically exhibit low interferon responses, which

may contribute to a Th2-skewed immune pattern.104-106 House
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dust mite allergens contribute to the development of allergic
diseases by directly activating group 2 innate lymphoid cells via
the Toll-like receptor (TLR4)emediated ERK/p38/NF-kB (NF-
kB) nuclear factor kappa B) signaling pathway.107 In addition,
house dust mite sensitization interacts with the TLR4 rs1957911
polymorphism, influencing the development of allergic rhinitis,
which highlights the interactions of genetic and innate immune
mechanisms in the development of allergic diseases in exposure
to house dust mite.108

Environmental molds and their components, including
proteases and chitin, promote IL-25, IL-33, and thymic
stromal lymphopoietin and activating type 2 innate lymphoid
cells, leading to Th2-mediated allergic inflammation.109,110

Mold components can activate immune cells through pattern
recognition receptors, triggering immune responses involving
innate and adaptive immune cells, as well as airway epithelial
cells.109

Exposure to allergens in early life could modulate immune
development. For example, allergens in house dust such as dog
(suburban homes),111 cockroach (urban homes),112 and farm
exposures (which are complex)113 have been related to increased
peripheral blood mononuclear cell cytokine responses. Farm
exposures during prenatal and early life are associated with
increased T regulatory cells and enhanced innate immune re-
sponses.114,115 Also, dust from protective dairy farm environ-
ments contains increased quantities of lipocalins, such as Bos d 2
(a major cow allergen). Lipocalins can bind free fatty acids and
other molecules, and these complexes can exert immunomodu-
latory effects and enhance epithelial barrier function.116

In summary, early-life exposure to aeroallergens may play a
dual role in immune development, with the potential to promote
either Th2-mediated responses or protective immunoregulatory
effects, depending on the nature, timing, amount, and context of
allergen exposure, as well as host susceptibility, including genetics
and barrier function. These findings underscore the complex
in-Madison from ClinicalKey.com by Elsevier on June 07, 
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interplay between environmental exposures, genetic factors, and
immune mechanisms in shaping the risk of atopic sensitization
and allergic diseases. These findings suggest that early-life
allergen exposure alone might not significantly affect the risk
of allergic sensitization and diseases.93,94
Allergen exposure and the atopic march

The sequential occurrence of allergic diseases during child-
hood, often termed the “atopic march,” remains a topic of
debate. Some argue it represents a genuine progression of allergic
conditions, whereas others suggest it reflects the co-occurrence of
these diseases owing to shared genetic and environmental fac-
tors.117-122 For some children, allergen exposure could facilitate
sensitization and also drive the progression of allergic diseases,
especially in individuals with epithelial barrier dysfunction,
highlighting its pivotal role in this relationship. The AD could
increase the risk of allergic rhinitis and asthma by facilitating
epicutaneous sensitization to aeroallergens due to epidermal
barrier dysfunction.4
CLINICAL IMPLICATIONS: ALLERGEN AVOIDANCE

AND DISEASE PREVENTION

AD and FA

Clinical trials typically recruit well-defined populations who
follow a strict research protocol. In a real-world setting, other
considerations that impact efficacy include clinical heterogeneity,
optimal window for intervention, treatment adherence, and
feasibility of intervention at scale.

A subanalysis from the LEAP cohort found that the protective
effect of early peanut consumption was allergen-specific and early
peanut introduction also did not accelerate resolution of AD or
egg allergy.123 Pooled data from LEAP and Enquiring About
Tolerance (EAT) also showed that the allergen-specific benefit
was consistent despite eczema severity and ethnicity.124

The Peanut Allergy Sensitization (PAS) cohort was an obser-
vational cohort comprising children from LEAP who did not
fulfill the original enrollment criteria: who had either very mild
eczema or highly sensitized (peanut skin prick test wheal sizes >
4 mm) and, thus, were probably peanut-allergic at the screening
visit. They were also followed up to age 60 months and evaluated
for peanut allergy using the same LEAP protocol.125 A combined
analysis (LEAP, EAT, and PAS) found that early peanut intro-
duction by 6 months of age across the entire population, with
even earlier intervention at age 4 months in those with eczema,
would have the greatest benefit on reduction of peanut-allergy
burden.125

The ability to regularly consume high doses of allergenic foods
in infancy limits the efficacy of this intervention. The EAT study
(Table I)33 was a demanding protocol in which the criteria for
adherence was defined as “consumption of at least five of the
allergenic foods (peanut, cooked egg, cow’s milk, sesame, white
fish, and wheat) in at least 75% of the recommended amount (3
g of allergen protein/wk) for at least 5 weeks between 3 and 6
months of age.” Only 42% of infants were able to fully adhere to
this criteria,126 Although the intention-to-treat analysis did not
meet efficacy criteria, early-food introduction was efficacious in
the per-protocol analysis, and in a secondary intention-to-treat
analysis in high-risk infants (moderately severe eczema or sensi-
tized to 1 or more foods).127
Downloaded for Anonymous User (n/a) at University of Wiscons
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Factors associated with nonadherence included increased
maternal age, non-White ethnicity, lower maternal quality of life
at baseline, food-related allergy symptoms, and reported feeding
difficulties by 4 months of age.126 Furthermore, caregivers
struggled with infants’ refusal of the allergenic food (causing a
sense of defeat), and difficulties with adhering to the complicated
regimen.128 Clinicians advocating for early introduction of
allergenic foods in infants for FA prevention should balance these
considerations according to each family’s specific needs and
provide tailored support to promote successful outcomes.

Implementation in the real-world setting is difficult. The
Australian EarlyNuts found that, although peanut consumption
during the first year of life increased from 28.4% (2,007e2,011)
to 88.6% (2,016e2,018) after the rollout of new Australian
infant feeding guidelines recommending early peanut introduc-
tion, there was no significant decline in peanut-allergy preva-
lence.129,130 This could be partly explained by the relatively
looser recommendation for the timing of peanut introduction:
before the first year of life, compared with the 4- to 6-month age
proposed by LEAP/EAT/PAS.

Allergy screening before early-allergen introduction may be
neither cost-effective nor feasible across the general popula-
tion,131 particularly in low-resourced countries, and could
potentially delay allergen introduction while awaiting evaluation.
It might be more practical to recommend early-allergen intro-
duction by the age of 4 months for infants with adequate health
care provider support to promote adherence, and limit allergy
screening to high-risk infants with severe eczema and/or an
existing FA. This approach could be used in high-resource
countries with increased FA prevalence. In other populations
and low-risk infants, parents should be encouraged to start
introducing their children to solid foods at 4 to 6 months of age
according to cultural practices while continuing breastfeeding,
and to adopt a diverse weaning diet inclusive of allergenic foods
without delay.132

Reducing allergen exposure to prevent allergic

rhinitis and asthma

Several interventional studies have tested whether reducing
aeroallergen exposure during the prenatal period or infancy can
prevent subsequent allergic diseases or asthma (reviewed in116

and133). For example, 3 controlled studies successfully reducing
dust mite exposure levels in the home reported no lessening of
either asthma or allergic rhinitis.134 In the Manchester Asthma
and Allergy Study, the intervention group had an early reduction
in wheeze but increased dust mite sensitization.134 Several studies
included allergen avoidance measures with multimodal in-
terventions including reducing dietary allergens, and smoking
cessation yielding mixed results.135-137 These studies are difficult
to compare owing to differences in study design and in-
terventions used, and the inconclusive results preclude consensus
recommendations for primary prevention of aeroallergen sensi-
tivity or asthma.

There are several potential reasons why allergen avoidance
studies have not consistently improved health outcomes. Perhaps
the amount of allergen exposure needed to prevent sensitization
and disease is lower than that achieved by previous interventions,
Second, reducing home allergen exposure may be insufficient,
given that children are exposed to allergens in daycares and other
places outside of the home. Finally, it is possible that the main
difference between children who develop allergic disease versus
in-Madison from ClinicalKey.com by Elsevier on June 07, 
on. Copyright ©2025. Elsevier Inc. All rights reserved.
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tolerance is not the level of allergen exposure, but instead indi-
vidual or neighborhood factors that promote sensitization and
allergic diseases.

Besides reducing allergen exposure, there are additional po-
tential approaches to primary prevention of respiratory allergy
and childhood asthma. Improving epithelial barrier function and
the skin and mucosal immune environment in early life could be
critical to achieving immune tolerance versus allergic sensitiza-
tion.138 In addition, as AD and FA prevention protocols are
implemented, it will be interesting to see whether preventing
these early atopic outcomes leads to reduced respiratory allergy or
morbidity. Results to date have been mixed.123 Other potential
approaches include minimizing exposure to oral antibiotics,
pollutants, tobacco smoke, and epithelial irritants, while pro-
moting breastfeeding and healthy diets. Additional dietary factors
(fermented food, fiber, and nutritional supplements), commensal
bacteria, and bacterial metabolites are being evaluated for ther-
apeutic use in the gastrointestinal tract, skin, and nasal airways.

There is greater evidence to support recommending targeted
or multi-allergen avoidance for older children with established
allergic asthma. Still, trials for house dust mite, pet, cockroach,
mouse, or multi-allergen avoidance have had variable results. The
2020 updates to the National Asthma Education and Prevention
Program (NAEPP) guidelines acknowledged the low certainty of
evidence that allergen mitigation in the home is beneficial for
asthma and recommended a tailored approach for patients with
allergy asthma that considers not only individual characteristics
of asthma but also participant burden and social barriers to
achieving success with allergen interventions.139

CONCLUSIONS
Early-life exposure to certain food allergens reduces the risk of

allergy to these foods. There are challenges, such as adding suf-
ficient levels of multiple allergens to the infant’s diet to achieve
tolerance. More studies are needed to understand the mecha-
nisms and antigen specificity of this effect and to refine current
protocols to enhance their feasibility. The effects of allergen
exposure during early life on aeroallergen sensitivity are more
complex. Whereas increased exposure to some antigens (mold or
house dust mites) might promote sensitization owing to their
enzymatic or immunological properties, broad exposure to al-
lergens and commensal microbes may have trophic effects on the
developing immune system. In sensitized children with asthma,
allergen exposure can reduce asthma control and promote exac-
erbations. Mitigating allergens in the home is difficult but may
lead to significant improvement for some children. One common
feature in the pathogenesis of food and respiratory allergy is the
central role of epithelial barrier dysfunction and T2 inflamma-
tion. Designing interventions to improve the epithelial milieu in
early life could prevent or treat both types of allergic diseases and
perhaps other chronic inflammatory conditions.140
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