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A B S T R A C T

Wearables have evolved into accessible tools for sports, research, and interventions. Their use has expanded to 
real-time monitoring of behavioural parameters related to ageing and health. This paper provides an overview of 
the literature on wearables in disease prevention and healthcare over the life course (not only in the older 
population), based on insights from the Future of Diagnostics Workshop (Leiden, January 2024).

Wearable-generated parameters include blood glucose, heart rate, step count, energy expenditure, and oxygen 
saturation. Integrating wearables in healthcare is protracted and far from mainstream implementation, but 
promises better diagnosis, biomonitoring, and assessment of medical interventions.

The main lifestyle factors monitored directly with wearables or through smartphone applications for disease 
prevention include physical activity, energy expenditure, gait, sleep, and sedentary behaviour. Insights on di-
etary consumption and nutrition have resulted from continuous glucose monitors. These factors are important for 
healthy ageing due to their effect on underlying disease pathways.

Inclusivity and engagement, data quality and ease of interpretation, privacy and ethics, user autonomy in 
decision making, and efficacy present challenges to but also opportunities for their use, especially by older 
people. These need to be addressed before wearables can be integrated into mainstream medical and public 
health strategies. Furthermore, six key considerations need to be tackled: 1) engagement, health literacy, and 
compliance with personalised feedback, 2) technical and standardisation requirements for scalability, 3) 
accountability, data safety/security, and ethical concerns, 4) technological considerations, access, and capacity 
building, 5) clinical relevance and risk of overdiagnosis/overmedicalisation, and 6) the clinician's perspective in 
implementation.

1. Introduction

Throughout the life course, people experience gains and losses across 
biophysiological and psychological dimensions, accompanied by pro-
gressive losses in bodily functions and an increased risk of multi- 

morbidity and mortality [1]. Governed by the interactions between in-
dividual and environmental capacities, ageing healthily is a lifelong 
endeavour necessitating a shift from focusing on age-related disease 
treatment to prevention. This shift is essential when observed from the 
lens of biological ageing that progresses at different rates among 
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individuals of the same chronological age, manifesting in varying signs 
of ageing and disease at similar times in life [2].

Behavioural and environmental factors play a key role in maintain-
ing good health [3]. Low population adherence to behavioural guide-
lines and the need to identify individuals at risk have given rise to an 
increasing need for personalised advice in what is termed today as 
precision health, integral to disease prevention and management [4]. An 
important tool for precision health is artificial intelligence (AI) with an 
expanding role of wearables for real time monitoring of biomarkers of 
ageing, metabolism, behaviours, and health [5]. Advances in technology 
have made wearables popular and accessible for tracking behaviour for 
professional and recreative sports, research, and healthcare.

In this paper, we present an overview of wearables in prevention and 
healthcare, starting with an introduction on biomarkers of ageing. The 
insights presented are based on discussions at an international workshop 
on the ‘The Future of Diagnostics’ organized by the Dutch Society of 
Research on Ageing, Leiden, 10–12 January 2024. The search terms for 
the discussed literature based on these insights in PubMed, Scopus, Web 
of Science, Embase, Medline, and Google Scholar are available in Ap-
pendix 1. Accordingly, we generate summary points (S1–S5) and rec-
ommendations (R1–R5), concluding with a vision for future 
implementation that integrates key considerations (C1–C6) for medicine 
and public health.

2. The wearables landscape for healthy ageing

Wearables have evolved into adaptable lightweight devices worn on 
the head, limbs, or torso as helmets, wristbands, and belts among others 
[6,7]. Combined sensors such as three-dimensional accelerometers, gy-
roscopes, photoplethysmography, peripheral skin temperature, and 
electrodermal activity are used to estimate metrics including gait, en-
ergy expenditure, physical and brain activity, oxygen saturation, heart 
rate and derivative measures, and blood pressure, as well as biomarkers 
present in biofluids such as saliva, blood, and tears [7]. Wearables are 
usually coupled with smart applications enabling interpretation of the 
measures by the user. The derived outputs from algorithms in estimating 
biometrics and behaviours, provide user feedback to encourage lifestyle 
adjustments. The role of AI in analysing and interpreting big data 
generated from wearables is promising for timely and accurate disease 
diagnosis, management, treatment, and prognosis. Despite systemic 
biases (such as external validation in other representative populations), 
wearables and AI can assist humans in monitoring and fast interpreting 
of data from different sensor inputs while minimising errors in research 
and clinical outcomes [6,8].

2.1. Biomarkers of ageing and wearables

According to Butler, a good biomarker of ageing is one that predicts 
age-associated outcomes and longevity better than chronological age 
and can be safely tested in humans and animals [9]. Over the past 
decade and with the methodological advancement in training age pre-
diction models, many ageing clocks with different biomarkers have been 
suggested and wearable sensors have been developed to detect them 
[10]. The biomarkers estimate the mean absolute difference between the 
predicted and chronological age in what is termed the “biological age 
gap.” The optimal biomarker would thus better predict age-associated 
outcomes for function, pathology, and mortality than chronological 
age. Candidate biomarkers are either cellular (such as telomere length), 
omics, biophysical, and blood biochemistry, image-based (such as brain, 
face, and retina), and other cardiac, lung, cognitive, and bio-
psychological markers (such as subjective age) [11]. However, organs 
and systems do not age in the same way meaning that ageing biomarkers 
differ between organs adding another layer of complexity in monitoring 
changes over the life course [9]. Most of the biomarkers and associated 
wearables are in the experimental phase and their clinical significance 
remains challenging for reasons such as standardisation, human 

diversity, interconnectedness of mechanisms, scalability, cost, and the 
difficulty in differentiating between benign and harmful age-related 
changes [10,11] (Table 1. S1 & R1).

Table 1 
Wearables and healthy ageing: biomarkers, healthcare, and prevention sum-
mary & point-by-point recommendations.

Summary Recommendations (point-by-point)

Biomarkers of ageing and healthcare
S1. Coupling a “gold standard” biomarker 

of ageing with reliable wearables and 
analytical model for monitoring ageing 
and improving pathways of prevention 
and care is a daunting task and is yet to 
be achieved.

R1. Practical and external validity based 
on long-standing cohort studies in 
different populations and contexts is 
warranted to inform interventions.

S2. Compared to traditional pathways of 
care, integrating wearables in 
healthcare promises better outcomes, 
but with varying degrees of confidence 
and evidence between diseases.

R2. Rigorous studies that independently 
tackle diseases where wearables have 
proved promising are still warranted. 
Levelling up remote patient monitoring 
from passive symptom tracking to 
active participation, potentially even 
leveraging the power of gamification for 
compliance, presents a key opportunity 
for improving healthcare outcomes. 
Challenges of standardisation of care, 
skills in use, privacy, data 
heterogeneity, efficacy, 
representativeness of different 
population groups, cost-effectiveness, 
and data quality and interpretation 
need to be addressed before wearables 
become fully integrated into healthcare.

Public health & lifestyle factors
S3. Precision nutrition: Wearables are 

essential tools for automating, 
optimizing, and personalizing general 
nutrition guidelines. Many challenges 
remain: traditional time-consuming 
approaches to keeping food diaries, 
expensive lab-based nutrition 
biomarkers, limitations relating to 
participant adherence and awareness, 
standardisation of wearable tools, and 
difficulties to scale up at the population 
level. Until these challenges are 
addressed, the use of wearables for 
precision nutrition will remain 
experimental.

R3. Challenges need to be addressed 
with the user in mind before wearables 
for precision nutrition can be 
implemented into mainstream public 
health prevention strategies. Future 
research needs to focus on the efficacy 
and cost-effectiveness associated with 
the use of wearables, setting a gold 
standard comparator, and using longer 
follow-up times. 
Furthermore, tailoring diets to genetic, 
epi-genetic, food availability and 
environmental factors of the individual 
are a significant challenge

S4. Sleep: Wearables can play a 
significant role in facilitating therapy 
aimed at resetting circadian rhythms 
and improving sleep quality, both in 
diagnosing sleep disturbances and in 
providing feedback about the efficacy 
of an intervention. The use of wearables 
in sleep improvement is promising in 
early detection of neurodegenerative 
disorders.

R4. Integrating wearables with 
traditional health assessments and 
treatments means that data will be 
generated from sensors and predictive 
modelling, circumventing the 
subjectivity associated with patient- 
reported symptom assessments. 
Predictive modelling can facilitate 
personalised interventions based on 
both personal and population-level 
health data. Future research needs to 
focus on the efficacy and cost- 
effectiveness associated with the use of 
wearables, setting a gold standard 
comparator, and using longer follow-up 
times.

S5. Physical activity: Wearables are 
practical and effective in improving 
physical activity and health outcomes 
in different age groups.

R5. More intervention and evaluation 
studies on wearables and physical 
activity are needed to increase trust in 
their use for disease prevention and 
therapeutic purposes. Future research 
needs to focus on the efficacy and cost- 
effectiveness associated with the use of 
wearables, setting a gold standard 
comparator, and longer follow-up post- 
intervention.
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2.2. Wearables in healthcare

While medical devices and implants follow strict regulatory pro-
cesses and are integrated into mainstream medical practice, the use of 
wearables for diagnosis, biomonitoring, and treatment outcomes re-
mains protracted and far from clinical implementation. Their potential 
has been explored for diagnostic and remote monitoring of symptoms, 
disease progression, and clinical outcomes in many diseases, but mainly 
cardiovascular, surgical, metabolic, musculoskeletal, neurological, in-
fectious diseases, and mental health [12–16].

2.2.1. Cardiovascular diseases and surgical interventions
Atrial fibrillation can be detected with increasing reliability using 

data from e.g., most smart watches, Oura ring or CART-I ring, combined 
with external sources of data, such as medical records and self-reported 
questionnaires [17,18]. Among many other applications is their use in 
cardiac surgery where patients are given wearables to encourage pre- 
surgery physical activity and post-surgery rehabilitation, resulting in 
lower in-hospital stays and treatment costs [19]. Long-term remote 
continuous monitoring for recovery after other types of surgeries such as 
spine surgery allows surgeons to identify potential post-operative dete-
rioration based on step count, sleep duration, and heart rate variability 
[20]. Wearable knee sleeves have been used for post-operative knee 
surgery involving an engaging system that improved patient compliance 
to home exercise programmes [21].

2.2.2. Metabolic diseases
For Type-1 diabetes, advanced Continuous Glucose Monitoring 

(CGM) wearables are used and have resulted in improved glucose con-
trol and improved quality of life due to accurate information as to when 
to dose insulin. Some patients with Type-2 diabetes rely on CGM's and 
other wearables to improve their diets and physical activity [22]. Nor-
moglycemic individuals are increasingly using CGMs to achieve a flatter 
glucose response with less extreme spikes following adjustments in meal 
composition [16]. CGMs and some applications of smartwatches are 
registered by the Food and Drug Administration for medical use.

2.2.3. Musculoskeletal and neurological diseases
Smartwatches also measure gait which is important for the elderly to 

aid with falls prevention programmes both in and outside institutions. 
Emerging studies have explored the potential role of wearables in in-
dependent living for the elderly and in early detection of neurodegen-
erative diseases [23,24]. By monitoring the user's falls, the option to 
directly call for help can be provided. For e.g., residents in assisted living 
communities equipped with a system comprising a wristband, location 
monitoring beacons, and a cloud-based AI-powered platform had 
significantly lower hospitalisations and fall rates as compared to com-
munities without it [25]. Smartwatches and associated smart applica-
tions were reliable in early detection of motor and non-motor symptoms 
of Parkinson's Disease [26]. The use of Global Positioning System in 
wearables can allow monitoring of mobility in patients with dementia 
[23]. However, this is a field ripe for further intervention and stand-
ardisation in ageing for improved prevention and care (Table 1. S2 & 
R2).

2.2.4. Infectious diseases
Furthermore, wearables allow time series data of dynamic mea-

surements over time that can estimate oxygen saturation and heart rate 
recovery. Trends of these parameters over time are highly instructive for 
early disease detection for e.g., through distinct reductions in oxygen 
saturation (<90 %) and heart rate recovery. Similarly significant re-
ductions in resting heart rate and heart rate recovery could suggest that 
the user is losing cardiorespiratory fitness. Other illness-associated 
physiological and inflammatory responses such as elevations in pe-
ripheral temperature, heart rate, heart rate variability, respiratory rate, 
and energy expenditure can be monitored [27]. Changes in these 

parameters are indicative of early signs of Lyme Disease, COVID 19, or 
even insulin resistance, but are not specific to discern between them 
[28–30].

2.2.5. Mental health
For mental health, their relevance, though promising, is suboptimal 

for predicting depression and patient-response to treatment [31]. When 
describing behavioural patterns, the picture changes. Studies that 
mainly used the Oura ring or the Whoop wrist band yielded positive 
results in describing behaviours associated with neurological stress, 
depression, anxiety, and affective states [32–35]. Apart from sleep 
quality, assessment of body temperature has been used to evaluate the 
severity of depression symptoms [36]. The most accurate parameters for 
detecting stress and anxiety appear to be heart rate variability, elec-
trodermal activity, and respiratory rate [37]. Detecting mental disorders 
via machine learning and deep learning models has shown promising 
results [38,39].

2.3. Wearables in public health: lifestyle factors

At the population level, wearables have been rising in popularity to 
record in ‘real time’ a diverse range of physiological functions, providing 
users with intra-person dynamic personalised feedback, and helping 
them set goals to improve their lifestyle. Some of the monitored health 
indicators include heart rate, heart rate variability, heart rate recovery, 
step count, pulse, and body temperature as well as behaviours such as 
diet, sleep, and physical activity [13]. Importantly, while some of these 
indicators such as body temperature is measured directly, others such as 
heart rate, pulse, step count, and sleep are deduced from photo-
plethysmography or tri-axial accelerometery [40]. In this section, we 
shed light on three main lifestyle factors where wearables are mostly 
used: physical activity, sleep, and nutrition. These are of particular 
importance for healthy ageing due to their effect on underlying path-
ways in the pathogenesis of diseases such as cardiometabolic diseases, 
mental health, cognition, physical functioning, and cancer [41].

2.3.1. Physical activity and wearables
It is almost common knowledge today that adhering to moderate 

physical activity levels, even below the recommended 150 min/week for 
adults, reduces mortality risk and brings physical, metabolic, and mental 
health benefits over the life course [42,43]. Underlying mechanisms 
involve regulation of cardiorespiratory, immune, neurological, muscu-
loskeletal, and metabolic functions that promote good health [44]. Ac-
cording to the WHO, 80 % of adolescents and 55 % of adults do not meet 
the recommendations for physical activity [45]. The introduction of tri- 
axial accelerometers for e.g., as wristbands, smartwatches, belts, and 
rings resulted in considerable improvement in objectively monitoring 
physical activity. Being non-intrusive and affordable, these wearables 
became popular lifestyle monitors among the young and old. Based on 
estimated daily activity and facilitated by AI, wearable-generated data 
can distinguish clusters of behavioural patterns and provide a key tool 
for personalised behaviour for healthy ageing in the population [46]. A 
recent review of 39 systematic reviews of interventional studies showed 
that wearables are practical and effective tools in improving physical 
activity levels as well as physiological and psychosocial health outcomes 
in different age and clinical groups [47] (Table 1. S5 & R5).

2.3.2. Sleep, disease risk, and the role of wearables
Circadian rhythm disruptions due to poor sleep impact body func-

tions and have been associated with an increased disease risk including 
cardiometabolic and neurodegenerative diseases of old age [48]. For 
cardiometabolic diseases, underlying mechanisms include lower glucose 
tolerance, insulinemia, increased evening cortisol levels, higher sym-
pathetic nervous system activity, increased inflammation, disrupted 
energy balance, and hormonal and lipid dysregulation [49]. Recovery 
from lack of sleep and resetting the circadian rhythm have been shown 
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to normalise metabolic parameters in older healthy participants [50]. In 
neurodegenerative conditions like Alzheimer's, Parkinson's, and Hun-
tington's diseases, disruptions in circadian and sleep rhythms are visible 
well before clinical diagnoses [51]. For instance, excessive daytime 
sleepiness, obstructive sleep apnoea, restless leg syndrome, and other 
sleep-related movement disorders are strong predictors of neurodegen-
erative conditions [52]. Mental illnesses like depression, schizophrenia, 
and bipolar disorder are often co-morbidities of neurodegenerative 
conditions. Independently, they are also strongly correlated with dis-
ruptions in sleep-wake cycles [53].

The complex interplay between circadian disruptions and the dis-
eases makes sleep an attractive target for personalised therapy and 
prevention for healthy ageing. Many sleep wearables in the form of 
smartwatches and rings have been used to estimate sleep. Interestingly, 
the literature shows that wearables such as the Oura ring among others 
are well suited for monitoring sleep based on actigraphy, show reduced 
error in sleep measurement, and are accurate in measuring heart rate 
[54,55]. It also triangulates its measurements with other parameters like 
body temperature and circadian rhythm, rather than relying on move-
ment and heart rate variability only like some smartwatches. This means 
that lying still but being awake could erroneously be interpreted as 
sleep. The use of such wearables paired with long-term guided feedback 
on how to improve sleep and exercise behaviours has shown significant 
improvements in sleep onset latency, daily step count, and heart rate 
variability. The circadian rhythm however, changes over the life course 
and shifts to an earlier chronotype with old age [56]. Wearables are not 
able to discern these changes and tend to produce erroneous estimates of 
sleep in the elderly, necessitating further validation studies in this age 
group [57] (Table 1. S4 & R4).

2.3.3. Diet and the gut microbiome: a potential role for precision nutrition
Adherence to a well-balanced diet has long been recommended for a 

healthy lifespan by preventing or postponing the development of age- 
related diseases [58]. Diet, among other body functions, directly im-
pacts the gut microbiota meaning that personalised dietary modifica-
tions play a key role in improving it [59]. Furthermore, the composition, 
diversity, and function of the gut microbiota shift over the life course, 
with the most significant alterations occurring during the transition 
from adulthood into old age [60]. Though the mechanisms of these 
changes with ageing are not fully understood, compared to younger 
adults, microbial diversity and beneficial bacteria are lower in older 
adults, which is affected by dietary intake, social, physical, and bio-
logical environments [61–63]. These alterations are positively associ-
ated with several health conditions, including chronic inflammation, 
cognitive decline, cardiometabolic disorders, and type 2 diabetes [64]. 
Adhering to a healthy dietary pattern can improve both the composition 
and function of the gut microbiota, thereby reducing the risk of age- 
related inflammation and promoting healthy ageing [62,63].

However, nutrient requirements and biological responses to food 
intake vary between individuals, societies and within age groups, 
requiring in certain cases further personalization of general dietary 
recommendations [65]. In the recent decade, precision nutrition has 
emerged as a potential improved model for recommendations by ac-
counting for interindividual variability in preventing and managing 
diseases [66]. Despite the challenges associated with recording dietary 
intake, wearables are evolving towards automation of recording food 
intake and measuring metabolic state through markers such as glucose, 
ketones, and respiratory exchange rates based on sweat, saliva, inter-
stitial fluids, and blood [67]. Wearables can be coupled with smartphone 
applications with large databases of available foods that enable barcode 
scanning and food photo uploading to compute energy intake [68]. 
Studies combining several approaches including dietary records, glucose 
monitoring, and gut microbiome analysis reveal dynamic intra- 
individual fluctuations in blood glucose responses that could be indic-
ative of impaired glucose tolerance, providing new horizons for per-
sonalised nutrition and prevention of metabolic diseases [65,69]. 

However, these approaches remain challenging and are not as 
straightforward as accelerometer recording of physical activity for 
example (Table 1. S3 & R3).

3. Towards an integrated vision for the future of healthy ageing 
and living opportunities and challenges

Earlier in 2024, Canali et al. published a review on how wearables 
are used in healthy ageing focusing on 65+ years and the WHO domains 
of intrinsic capacity i.e. locomotion, sensory functions, psychological 
aspects, cognition, and vitality [70]. They outlined several opportunities 
and challenges associated with the use of wearables in this age group. 
From a clinical and public health perspective, issues relating to popu-
lation group inclusivity and access to wearables, data quality and 
representativeness of different user groups, privacy and ethics, user 
autonomy in decision making, and wearables efficacy, present chal-
lenges as well as opportunities for healthy ageing, also when approached 
from a life course perspective [70]. Given what we have presented so far 
(S1–S5 & R1–R5), we focus on the following additional six key consid-
erations (C1–C6) that are essential for scalability and implementation 
(Table 2).

3.1. Engagement and compliance to personalised wearable feedback

Despite the potential of wearable technology for monitoring health, 
detecting illness, or facilitating independent living, the effect is only as 
powerful as an individual's understanding, motivation and adherence. 
Whereas a small part of the population uses the data from wearables for 
active goal setting, many are passive observers, confused by or even 
mistrust wearable-generated data. Motivation, adherence, and a mind 
shift from passive observation to taking data-based action need to be 
increased by health literacy programmes for those who choose it. This 
can be achieved by co-creating eHealth systems with users in mind and 
leveraging technology such as AI chatbots to provide personalised 
feedback and interaction. If data validity is perceived positively and is 
adequately interpreted, wearables could help enhance awareness, 
intrinsic motivation, and self-actualisation to improve lifestyle habits 
and care (C1).

3.2. Technical and standardisation requirement to enable scalability

Wearable eHealth systems hold intrinsic technical challenges such as 
usability, interoperability, and hardware reliability that need to be 
optimised to enable scalability. Typical challenges are inadequate use, 
inaccuracy of sensors, issues with batteries or power, restricting users' 
actions within the space being monitored and poor interoperability such 
as linkage to applications operating on specific platforms (e.g. iOS) and 
difficulties in pairing devices [71]. A further issue is the lack of under-
standing of the information provided to the user. Overcoming these 
challenges will require collaboration between scientists, digital learning 
experts, and commercial parties. Protocol standardisation and data 
harmonisation (e.g., derived step counts vary by wearable) are also 
paramount to improve the validity of findings. For example, different 
wearables use different sensors, combinations, and algorithms to derive 
physical activity, meaning that the cut-off points for e.g., between 
moderate and vigorous physical activity levels are not interchangeable. 
This requires some standardisation to reduce heterogeneity and enable 
comparison. While no single governing body exists to enforce a wide set 
of standards for data collection and processing, the field has matured, so 
that the analysis of accelerometer data has become standardised. Several 
organisations such as the International Society for Physical Activity and 
Health (ISPAH) and International Physical Activity and the Environment 
Network (IPEN) have set guidelines. However, standards have mostly 
grown organically from large projects such as the UK Biobank and other 
projects have started to follow. Additionally, the use of a small number 
of software packages, notably GGIR R package, has harmonised datasets 
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and analyses for accelerometer-generated data [72]. The procedures 
around acceleration-based quantification of levels of activity has stabi-
lised [73]. As we move towards more advanced use of accelerometer 
data and the inclusion of other types of sensors, proper protocols and 
standards will introduce more challenges. With the advent of recent 
machine learning methods, specifically convolutional neural networks 
and recurrent neural networks, a more detailed picture of people's habits 
and routines emerges [74]. This enables an analysis of more fine-grained 
determinants of health and their impact on ageing biomarkers for per-
sonalised behavioural advice. Nevertheless, comparing data obtained 
over time within ‘self’ may already be highly instructive to the indi-
vidual (C2).

3.3. Accountability, data safety and security, and ethical concerns

Data privacy, accountability, and procedural transparency are of 
great concern in the use of wearable-generated data [75]. Data safe-
guarding and flexibility to (de)activate certain features need to be 
considered before implementation [76,77]. Breach of confidentiality 
and data privacy need to be avoided by tight regulation through official 
channels such as the EU General Data Protection Regulations and the AI 
Act. Technological entrepreneurs play a key role in ensuring privacy by 
design i.e., developing wearable technologies without compromising 
privacy and giving back control of data to users (C3).

3.4. Technological literacy, access, and capacity building

The use of wearables must remain a matter of choice even if incor-
porated into mainstream prevention and care. However, wearables are 
quickly evolving with accompanying AI tools that will necessitate 
commitment to continuous capacity building for users, providers, 
healthcare professionals, and researchers. Accessibility and ease of use 
are necessary for professionals and users who should have access to 
training sessions and should be kept informed on the developments, 
standardisation, and interpretation of collected parameters. This in-
cludes capacity building for clinicians in interpreting the estimated 
parameters as well as that of the patients in distinguishing what is or is 
not clinically meaningful, thus preventing unnecessary worrying. For 
certain population groups such as the elderly and individuals from low 
socioeconomic status, accessibility and acceptability of wearables will 
depend on the individual's means, adaptability, technological savviness, 
perceived importance and physical capability, social influence, and the 
quality of information delivered [78]. Without careful consideration, the 
use of wearables is likely to worsen existing health disparities, leaving 
those with low health and digital literacy at a disadvantage. Factors such 

as age, race, socioeconomic status, health conditions, eHealth literacy, 
and geographic location are significant contributors to health inequities 
resulting from digital health technologies [79]. To ensure that the most 
vulnerable populations do not fall between the cracks in the transition to 
eHealth, it is essential to incorporate wearables and related education 
into health insurance plans to mitigate economic and literacy-related 
barriers. In addition, wearables should be designed to function in 
areas with low network coverage, such as rural regions and urban areas 
with inadequate network infrastructure and should be available in 
multiple languages to accommodate diverse populations. Moreover, 
cultural attitudes towards technology and healthcare must be consid-
ered, as they can significantly affect the acceptance and trust of wear-
able devices. Addressing these aspects is imperative to reduce health 
disparities and promote equitable access to digital health advancements 
as it becomes more central to prevention and care in health systems [79] 
(C4).

3.5. Clinical relevance and risk of overdiagnosis and overmedicalisation

AI models are fed by the information provided. If the information is 
incomplete or not representative it may lead to over- or under-diagnosis 
[80]. If thresholds to diagnose a disease or to create an episode alarm (e. 
g., arrhythmia, hypo-/hyper-glycemia) are set low or inconclusive to 
overcome false negatives, an increase of false positives may result 
[81,82]. However, this type of input will encourage the user to interact 
with their healthcare provider who can follow up and take proper ac-
tions. This may alleviate unnecessary stress and anxiety in patients to 
avoid overuse of medical resources [83]. On the other hand, under-
diagnosing may occur in underserved populations that are not repre-
sented in the information fed to algorithms [84] (C5).

3.6. Keeping treatment and clinical implementation in mind: the 
clinician's perspective

Clinicians would benefit and consequently should play a vital role in 
the successful integration and optimal use of wearables in practice. 
There is a slow acceptance of wearables from the health professional for 
patient empowerment, medical history access, behaviour change facil-
itation, and efficient communication from use of wearables. In the area 
of diabetology, the use of CGMs is probably most settled and advanced. 
However, some concerns persist. In the first place is the degree with 
which general practitioners and health care providers are themselves 
familiar with wearable outputs and their health implications. In the 
second place is education, specifically post graduate education of health 
professionals that should include wearable technology teaching. In the 

Table 2 
Key considerations for scalability and implementation.

C1. Engagement and compliance to wearable feedback: Wearables present a viable and acceptable option that can accompany and optimise conventional prevention and therapeutic 
approaches to more personalised ones. Addressing the mistrust of users and improve health literacy with eTools, in particular by the elderly, is necessary for engagement and can be 
done through valid feedback based on collected raw data and not only device algorithms. Complexities in human identities, behaviours, and contexts need to be acknowledged which 
means that personalised recommendations, although highly desired, might be challenging.

C2. More advanced use of data comes with additional procedural choices, and proper standards around machine learning models for ageing research are yet lacking. The same applies 
to more novel biomarkers and measurement devices, such as CGM. Where acceleration measurement and gait in research was mostly a collaborative, open-source development, 
CGMs appear to be the domain of large corporations. It remains unclear whether this difference will encourage or inhibit shared practices.

C3. Tightly safeguarding ethical concerns creates vast opportunities for continuous improvement of wearables that can generate data safely and allow personalizing prevention and 
care. Intrinsic human errors, ethical breaches, bias fallacies, systemic inequalities, and power dynamics should not be transferred to wearables and AI.

C4. Commitment to continuous training and learning is needed to facilitate the streamlined use of these wearable technologies in research and practice. Health psychologists and digital 
health experts should engage to build trust in wearables through calibration, reproducibility, and benchmarking studies to find the “gold standard” tools and communication routes, 
thus improving validity, quality, and accuracy for large-scale implementation. Strategic investments need to be streamlined with interdisciplinary research, interventions, and 
technological developments.

C5. The decision-making will need to always involve the smart system and the healthcare team, together with the patient and their support circle. AI can be a tool to optimise 
information, but not the final decision maker. In this context, the need for a systematic integration of epistemic, ethical, legal, and social considerations becomes necessary. Total 
algorithmic automation needs to be avoided and human oversight of the accuracy and efficiency of these tools should be maintained to ensure quality checks and avoid algorithmic 
injustices. Advancements in AI technology, such as explainable AI (XAI), aim to make AI decision-making more transparent and understandable. Integrating AI with other emerging 
technologies, such as telemedicine and wearable health devices, can enhance healthcare delivery.

C6. The wearables industry needs to work closely with healthcare providers to optimise the wearables design for efficient and safe use. Guidelines for wearable-generated data needs to 
be readily available for clinicians.

M. Menassa et al.                                                                                                                                                                                                                               Maturitas 196 (2025) 108254 

5 



third place is fear of patient self-diagnosis and self-medication that can 
negatively affect well-being, an increase in clinician workload, and fear 
of breach of confidentiality [85]. Guidelines for “smartwatch interro-
gation” in clinical practice is a promising approach for informed deci-
sion making based on readily available wearable-generated data [86] 
(C6).

4. Conclusions

Across the many domains of prevention and care, wearables have, to 
a considerable extent, demonstrated their potential for personalised 
interventions to promote healthy ageing and living, notably for the 
elderly. Their use however remains protracted and varies across diseases 
and pathways of care in terms of benefits, challenges, and added value in 
mainstream public health and clinical practice. The way forward to 
reaping the benefits of these technologies in prevention and healthcare 
necessitates consolidated efforts and a social pact that is not solely based 
on profit but holds people's health in high regard. Stakeholders 
including clinicians and medical professionals, tech companies, educa-
tors, patients, healthcare systems, academic institutions, funders, and 
governments should work together and with the entire population to 
ensure it. Active collaboration between scientists from diverse disci-
plines such as medicine, biology, computer science, applied mathe-
matics health psychology, digital learning and engineering is needed to 
advance the safe use of wearables, communication of generated insights, 
standardisation, efficiency, and reliability within personalised preven-
tion and healthcare.
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