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Medical advancements over the last century have improved our ability to treat
pediatric infectious diseases, significantly reducing associated morbidity and
mortality worldwide. Although vaccines have been pivotal in this progress,
many viral pathogens still do not currently have effective vaccines. The
COVID-19 pandemic highlighted the need for rapid responses to emerging viral
pathogens and introduced new tools to combat them. This review addresses
humanmonoclonal antibodies (mAbs) as a strategy for treating and preventing
viral infections in pediatric populations. We discuss previously used and cur-
rently available mAbs and advancements in mAb discovery. We address the
future of mAb therapy by describing novel approaches in drug production
and delivery platforms in addition to alternative antibody classes. Finally,
we review the challenges and limitations of mAb therapy development for
newborns and children.

INTRODUCTION

Until the mid-20th century, viral infectious diseases were a major cause of mortal-
ity for newborns and children. Currently, many diseases caused by viral infection
can be prevented or attenuated by specific vaccines: examples include polio, hep-
atitis B, measles, rubella, influenza, and SARS-CoV-2. For other viruses, particularly
those characterized by persistent infection such as cytomegalovirus (CMV), HIV,
and Zika virus, no effective vaccine exists.

Human monoclonal antibodies (mAbs) have favorable safety profiles and may
be an alternative to antivirals for many viral diseases. Historically, both the discov-
ery and production of mAb therapeutics were limited by the time- and labor-inten-
sive approaches needed to produce these agents. High throughput screening and
manufacturing protocols have overcomemany of these hurdles.1 Advancements in
large-scale cell culture and rapid purification, spurred by developments in cancer
mAb products, havemade antibodiesmore feasible products.2 NewermAbs exhibit
remarkable precision in their binding and can function through multiple mecha-
nisms of action. Neutralizing antibodies block viral entry, whereas others employ
effector mechanisms to mark infected cells for targeted destruction. Additionally,
mAbs can be engineered to introduce amino acid mutations that extend their half-
life in vivo, enhance or ablate effector functions, and minimize antidrug antibody
(ADA) responses. With the identification of mAbs that can bind sites on the same
virus protein, it is possible to combine mAbs into a synergistic mixture that can
both increase potency and decrease the chances of viral escape by single-sitemuta-
tion. Ideally, expanded mAb research will lead to the discovery of mAbs that are
cross- and pan-reactive within viral families.
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In this review, we address the current status of human
mAbs as preventive or therapeutic interventions for impor-
tant pediatric viral pathogens. We also discuss novel pro-
duction and delivery platforms and the potential for
different classes of mAbs and engineered mAbs. Finally,
we review recommendations and challenges for using pas-
sive mAbs in early life to complement current clinical prac-
tices and improve the survival and health of infants and
children.

Antibodies Across the Early Childhood Development
Timeline

Antibodies not only protect individuals from viral infec-
tions, but their study enhances our understanding of pro-
tective responses. Immunoglobulin G (IgG) is the primary
antibody responsible for neutralizing viruses and is the
dominant immunoglobulin in serum, whereas immuno-
globulin A (IgA) is the most abundant isotype in mucosal
secretions. Figure 1 illustrates the relative levels and varia-
tions of antibody titers in newborns and children from birth
through their teenage years. Maternal immunoglobulin
(primarily IgG) is transferred across the placenta and
through colostrum and breast milk, providing essential

protection to newborns and infants (Figure 1A).3,4 Mucosal
surfaces in humans are predominantly protected against
infectious pathogens by secretory IgA (sIgA), which com-
prises 80% to 90%of antibodies in breastmilk.5 As a critical
component of early-life immunity, breast milk provides
infants with postnatal maternal immunization via high lev-
els of sIgA.6 Trans-placentally acquired antibodies, princi-
pally IgG, reflect the repertoire present in the mother’s
blood during gestation and delivery. This principle under-
lies the strategy of vaccinating pregnant women, ensuring
that the infant is protected through these vertically trans-
mitted antibodies.7,8 The effectiveness of maternal antibod-
ies provides strong proof that passive immunization of
infants with mAbs can protect against infections.

Because maternally acquired antibodies wane with time
and eventually leave the growing infant increasingly vulner-
able to infection,9 there is a compelling rationale for initiat-
ing infant immunizations early in life to induce a response
before this occurs.10 In newborns and infants, effective
and safe vaccines administered early after birth and in
childhood can provide protective immunity against vaccine-
specific pathogens once levels reach the protective thresh-
old, but this can take weeks to months (Figure 1B). The
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FIGURE 1.
Sources and levels of antibodies in early life. Schematic diagram of Ab titers in arbitrary units (y-axis) as they ebb and flow as a function of time in
development (x-axis) with various treatments. A protective threshold in the graphs is shown as a red dotted line in newborns, infants, toddlers, and
children, depicted at the top of the figure. (A) Maternal Abs are transferred by the placenta during gestation prior to birth (blue) and by maternal
breast milk (aqua) via breastfeeding. Following decay of these Abs, the infant is highly susceptible in the absence of vaccination or if vaccines are
not available. (B) The introduction of vaccines (ochre) in newborns, infants, and children can reestablish a threshold of protective Abs that are
specific to each vaccine. A gap of limited or no protection can occur for diseases with no vaccines or for vaccines that are not given. (C) The use of
passive mAbs (gray shading near birth and later in childhood, as examples) increases Abs against a specific agent either prior to vaccination or
when needed if an outbreak occurs, leaving no gap in protection.
Abbreviations: Ab, antibody; mAb, monoclonal antibody.
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expanded program for immunization was implemented to
maintain and strengthen early-life immunity by vaccinating
children in their first year of life, with continued vaccina-
tions scheduled through their 18th year.11 However, infants
and children will only be protected against diseases for
which we have vaccines, and, unfortunately, some vaccines
are less efficacious than others.

Gaps in vaccine coverage and limited availability provide
an opportunity to use human mAbs as rapid and effective
antivirals for newborns and children who are either unvac-
cinated or partially vaccinated. As illustrated in Figure 1C,
passive mAbs targeting specific viral pathogens can supple-
ment maternal antibodies, preventing infection or disease
in both vaccinated and unvaccinated newborns and chil-
dren. In outbreaks caused by newly emerging pathogens,
administering passive antibodies as drugs could signifi-
cantly reduce the severity of or prevent infections in infants
and children.12

Human mAb Mixtures for Viral Infections

Although the number of human mAb antiviral therapeutics
currently approved or in clinical testing has increased
(Table 1), most are not yet available for newborns and chil-
dren owing to the US Food and Drug Administration (FDA)
requirement for prior safety studies in adults. Large disease
outbreaks such as the recent Ebola, Zika, and SARS-CoV-2
pandemics have demonstrated the need for mAbs,13 as well
as alternative delivery routes. HumanmAb therapeutics are

approved for Ebola, SARS-CoV-2, and respiratory syncytial
virus (RSV), whereas mAbs are still in development for the
other examples that we cite.

Ebola

Four viruses in the Ebolavirus genus cause Ebola virus dis-
ease (EVD), with mortality ranging from 25% to 90%. In
2020, the FDA approved the use of 2 different mAb thera-
pies for the treatment of Ebola virus species, Zaire ebolavi-
rus. One of them is Ebanga,14 Ansuvimab-zykl (mAb114), a
human mAb against the Ebola envelope (Env) glycoprotein
inhibiting viral entry. The Pamoja Tulinde Maisha (PALM)
trial evaluated the efficacy and safety of mAb114 in
pediatric patients,15 with 55 in the treatment arm and 34
in the control arm, and efficacy was 64.9%.16 The other
mAb therapy is Inmazeb (ie, REGN-EB3, a combination of
Atolivimab, Maftimimab, and Odesivimab-ebgn),17 which
was tested in the PALM trial in 42 pediatric patients and
showed similar efficacy. Despite the 2022 recommenda-
tions by the World Health Organization to treat patients
with EVD or neonates born to infected mothers with
mAb114 or REGN-EB3,17 there are still notable availability
and equity challenges globally.

SARS-CoV-2

The SARS-CoV-2 pandemic led to COVID-19 disease
and approximately 14.9 million deaths globally. Five differ-
ent anti-SARS-CoV-2 mAbs were tested to limit viral

TABLE 1. An Overview of Clinically Evaluated Human mAb Therapies for Viral Diseases

Virus mAbs Mechanism of Action Study Types
Study Participant

Ages

Ebola mAb113, REGN-EB3 Targets Ebola glycoprotein to inhibit viral entry Phase 3 clinical trial16 Any age, including
neonates16

SARS-CoV-2 Bamlanivimab-Etesivimab,103 Casirivimab-
Imdevimab,19 Sotrovimab,20 Bebtelovimab,
Tixagevimab/Cilgavimab,22 Pemvivibart24

Binding to the viral surface spike glycoprotein
to inhibit cell entry

Phase 3 clinical trial >12 years

RSV Palivizumab,25 Nirsevimab26 Binds to the RSV fusion protein to inhibit viral
entry

Phase 3 clinical trial <2 years

HIV 3BNC117+ 10–1074,34 VRC0130 Each mAb neutralizes the virus by targeted
nonoverlapping epitopes on the HIV Env
protein104

Phase 3 clinical trial;
Phase 2 clinical trial;
Phase 1 trial in
infants30

>18 years; infants
>36 weeks’
gestation at birth

CMV MCMV3068A+MCMV5322A37 Binds to CMV surfactant glycoproteins Phase 2 clinical trial >18 y37

HSV HDIT101105 Binds to glycoprotein B (found on viruses and
infected cells), inhibiting the virus’s ability to
enter cells or spread via cell-to-cell
transmission

Phase 1 clinical trial105 Ages 21–56 years

Hepatitis B
and D

Myrcludex B (Bulevirtide)106 Blocks HBV/HDV host receptor Phase 2 and 3 trials for
compensated patients
with chronic hepatitis D

>18 years

Chikungunya
virus

mRNA-1994107 mRNA coding for Chikungunya-specific
neutralizing mAb

Phase 1 trial 18–50 years

Note: “+” indicates a combined mAb therapy.
Abbreviations: CMV, cytomegalovirus; Env, envelope; HBV, heptatis B virus; HDV, heptatis D virus; HSV, herpes simplex virus; mAb, monoclonal antibody; mRNA, messenger RNA; RSV,
respiratory syncytial virus.
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dissemination by binding to the viral Env (spike): (1) The
combination Bamlanivimab and Etesivimab was tested for
mild-or-moderate COVID-19 in 518 patients (including 4
who were aged 12–17 years) vs placebo in 517 patients
(including 7 who were agesd12–17 years). Only 2.1% of
patients in the mAb group required hospitalization, with
no patient deaths, whereas 7.0% of placebo group patients
were hospitalized owing to COVID-19 complications, with 9
COVID-19 related deaths. (2) A combination of Casirivimab
and Imdevimab was evaluated for its impact on viral load
and progression to symptomatic infection.18 Patients
received mAbs (39 patients, of which 15 were aged 12–
17 years) or placebo (42 participants, of which 11 were
aged 12–17 years). At 28 days, treated patients had a
13.3% decreased risk of becoming symptomatic, signifi-
cantly decreased symptoms,19 and significant decreases
in viral load. (3) Bebtelovimab treatment decreased viral
load compared to placebo but did not have significant
results in low-risk groups. (4) Sotrovimab (VIR-7831)
was tested in a phase 3 trial in which the primary outcome
was determined based on hospitalization for more than
1 day and on survival at 29 days after beginning the therapy.
Only 1% of patients receiving mAbs were hospitalized for
over 1 day or died compared with 7% of those in the pla-
cebo group.20 (5) Evusheld (Tixagevimab/Cilgavimab)21

was compared to the standard of care (Remdesivir) in a
phase 3 multisite trial and decreased recovery time relative
to the control.22 When given as preexposure prophylaxis
and evaluating the infection rate over 49 to 73 days, only
4.4% of immunocompromised patients developed COVID-
19.23 Use of these mAbs was discontinued owing to viral
escape. In 2024, a new mAb called Pemivibart (Pemgarda)
was approved for prophylaxis for immunocompromised
individuals under an Emergency Use Authorization.24

RSV

RSV is more likely to significantly affect infants and adults
over age 60 years. In 2022 and 2023, there were significant
spikes in RSV infection in children, with hospitalization
rates going up from 13.3 to 61.5 per 100 000 from 2021
to 2022, respectively. Palivizumab (marketed as Synagis),
an IgG1 mAb that targets RSV’s fusion protein, became
the first FDA-approved mAb for RSV in 1998. Study partic-
ipants were children under the age of 6months, born before
35 weeks, or those under the age of 2 years being treated
for bronchopulmonary dysplasia. Following 5 monthly
Palivizumab injections or placebo, RSV-related hospitaliza-
tions over 150 days were decreased by 55% relative to the
placebo.12,25 Nirsevimab is a more potent IgG1 human mAb
modified for extended durability. In a 2022 phase 3 trial, the
efficacy of Nirsevimab vs placebo was evaluated in patients
younger than age 1 year who had been born at a minimum
of 35 weeks’ gestation to assess the rate of developing RSV
and of hospitalization over 150 days after mAb injection.

Nirsevimab efficacy was 74.5% and significantly better at
preventing medically attended, RSV-associated lower respi-
ratory tract infection than placebo,26 although hospitali-
zation rates were not significantly different. In August
2023, the Centers for Disease Control and Prevention’s
Advisory Committee on Immunization Practices deter-
mined that Nirsevimab should be the preferred therapy
for all infants and children.27

HIV

Transmission of HIV to children who are born to mothers
living with the virus can occur in utero, intrapartum, and
during breastfeeding. Antiretroviral therapy (ART) regi-
mens are very effective in limiting transmission and con-
trolling viremia, but more than 100 000 children acquire
HIV every year. Moreover, children living with HIV must
adhere to ART for their entire lives to prevent viral rebound,
and ART availability, adherence, and inherent toxicity all
limit effectiveness. Human broadly neutralizing antibodies
(bNAbs) directed to the Env potently neutralizemany diver-
gent HIV variants, and their therapeutic potential is under
evaluation. Two parallel randomized, placebo-controlled,
double-blinded, multicenter, phase 2b trials in men and
women tested the preventive efficacy of the moderately
potent bNAb VRC01. Although VRC01 did not significantly
decrease acquisition of HIV relative to placebo, this single
bNAb limited the acquisition of viruses that were sensitive
to VRC01, thereby demonstrating antibody efficacy against
HIV. The study also suggested that 2 or 3 bNAbs directed
against different epitopes on the Env may be necessary to
prevent infection owing to the extreme global diversity of
HIV.28,29 A phase 1 study of VRC01 in infants living with HIV
and receiving ART showed that subcutaneous (SC) delivery
is safe and well tolerated, achieving therapeutic doses and
opening the door to efficacy studies.30 In infant primate stud-
ies using the chimeric virus simianHIV (SHIV), amixture of 2
bNAbs delivered as postexposure prophylaxis cleared infec-
tion when given as late as 30 hours following oral exposure
to the virus.31,32 Combination bNAb trials are currently in
the planning phase, with the goal of preventing HIV infection
in newborns and breastfeeding infants.33 The therapeutic
potential of bNAbs has also been evaluated in individuals liv-
ing with HIV. In the absence of ART, 2 human bNAbs tempo-
rarily suppressed HIV in the plasma of adults who had a
neutralization-sensitive virus, and viral suppression lasted
30 weeks longer than in those who received the placebo.34

In children, a recent proof-of-concept trial showed that a
2-bNAbmixture of antibodies could replace ARTwhen given
during treatment interruption, resulting in sustained sup-
pression in 44% of those in the study.35

CMV

CMV is a common virus that can infect people of all ages,
with over 50% of adults infected by age 40 years.
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Although most individuals are unaware of their CMV status,
the virus can lead to severe complications in immunocom-
promised individuals, including neonates and older adults.
RG7667, a mAb mixture therapy, comprises 2 mAbs,
MCMV3068A and MCMV5322A, that inhibit viral transmis-
sion by binding to CMV surface glycoproteins.36 In a phase 2
trial involving renal transplant patients receiving either the
mAb or placebo at 1, 4, and 8 weeks after kidney transplant,
the rate of CMV viremia in the mAb group was only 15.3%
less than that in the control group.37 Currently, no FDA-
approved CMV mAb exists.38

Lassa Virus

Lassa virus, which poses a high fatality risk to pregnant
women and their fetuses, is ranked as the top threat among
50 zoonotic viruses and is thereby an important target for
developing mAb therapies.39 In primate studies, low doses
of Arevirumab, a mixture of 3 potent mAbs directed to the
Lassa glycoprotein C complex, uniformly prevented lethal
disease against the major lineages of Lassa.40

Novel Antibody Production Platforms

The production of antibodies in mammalian cells, princi-
pally Chinese hamster ovary cells, remains a standard
practice owing to the requirement for posttranslational
modifications that closely resemble human proteins.
These cells offer high yields and the ability to perform com-
plex glycosylation. However, the complexity, cost, and risk
of contamination associated with mammalian cell cultures
is driving the exploration of alternative production systems.

Plant-Produced mAbs

Using plants as bioreactors for mAb production has several
advantages, including decreased animal pathogenic con-
taminants, rapid expression and evaluation, low production
costs, and easy agricultural scalability compared to existing
production systems.41 mAbs generated using plant plat-
forms include those directed to anthrax, Clostridium perfrin-
gens, Ebola virus, HIV, herpes simplex, rabies, RSV,
staphylococcal enterotoxin, and West Nile virus.41 During
the 2014 Ebola outbreak, a combination of 3 tobacco-
derived, IgG-based chimeric mAbs was used as an emer-
gency treatment for 7 patients, 5 of whom recovered.42

Repeated delivery of the plant-produced HIV-1 bNAb
PGT121 protected infant macaques from repeated oral
SHIV challenge, suggesting that plant-produced bNAbs hold
promise as passive immunoprophylaxis to prevent breast
milk transmission of HIV-1.43 Glycan engineering of plant
systems has enabled the production of mAb glycovariants
with enhanced functional capacity.44 Notably, plant-derived
afucosylated mAb PGT121 demonstrated increased binding
to FcγRIIIa and enhanced antibody-dependent, cell-
mediated cytotoxicity in vitro and in vivo.45 However,
plant-derived recombinant HIV-specific mAbs, including

engineered variants with higher neonatal Fc receptor
(FcRn) affinity, demonstrated poor placental transfer in
rhesus macaques compared to mammalian-derived ver-
sions of the same mAbs.46,47 This difference could have
important therapeutic implications and requires further
investigation.

Expression of mAbs Using Viral Vectors

Adeno-associated viruses (AAVs) have been engineered for
gene therapy applications owing to their lack of pathogenic-
ity and toxicity, excellent safety profiles, and ability to infect
both dividing and nondividing cells and long-term trans-
gene expression profile after a single administration.48

Some examples include an AAV-based mAb against RSV
in murine and ovine models, resulting in robust and sus-
tained placental transfer,49 and an antihuman angiotensin-
converting enzyme 2 (hACE2) mAb that showed potent
inhibitory activity against multiple SARS-CoV-2 variants
such as Omicron.50 Originally modeled with simian
immunodeficiency virus in rhesus macaques, long-term
expression of mAbs prevented infection. This approach
has been appliedwith bNAbs to HIV,51 as has been reviewed
recently.52 ADA directed to both AAV and the encoded
bNAbs are common. Strategies to limit ADA include the
development of synthetic AAV capsids not recognized by
the anti-AAV antibodies, blockade of the FcRn to reduce
host anti-AAV antibodies transiently, and induction of toler-
ance to the AAV-encoded immunoglobulin.53

Expression of mAbs Using Messenger RNA

Messenger RNA (mRNA)-based therapeutics have emerged
as a promising new class of biologics capable of encoding
proteins for direct in vivo expression.54 Because mAbs
acquire various posttranslational modifications during
production that can alter mAb activity and function, exten-
sive analytical characterization and process controls are
required that substantially increase manufacturing com-
plexity and costs.55 mRNA sequences encoding mAbs can
be delivered to patients to induce transient in situ expres-
sion,56 leveraging intrinsic protein productionmachinery to
synthesize functional mAbs, potentially for prolonged peri-
ods following a single treatment.57 Respiratory tract infec-
tions are an attractive therapeutic target for mRNA-based
mAb development in an effort to improve delivery effi-
ciency and resident expression time. Delivery of an
mRNA-based human mAb to the lungs effectively neutral-
ized SARS-CoV-2 variants and protected transgenic mice.58

Alternative Antibody Delivery Methods

Most FDA-approved therapeutic mAbs are administered via
intramuscular (IM) or intravenous (IV) injection.59,60

Improving the ease of delivery can decrease the burden
on related health care costs and resource use, in which scal-
ability is key.61
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Nanoparticle-Based Delivery

A fundamental limitation in using mAbs clinically is
effective delivery to affected tissues, such as the central
nervous system (CNS) and brain, owing to the blood-brain
barrier.62,63 Nanoparticles (NPs) represent a novel
approach to overcoming this barrier, and there is evidence
that administration of bNAb (PGT121)-conjugated NPs
improved delivery to the CNS and decreased SHIV in infant
rhesus macaques.64 Additionally, the NP surface can be
readily modifiedwith proteins that target specific receptors
to localize drug delivery.65

Aerosol Delivery

Aerosol delivery of mAbs directly to airways via inhalation
or intranasal (IN) application offers an alternative to sys-
temic delivery of mAbs for treating respiratory tract infec-
tions that is potentially more effective and convenient and
less costly than IV administration owing to the dose-sparing
effect of direct delivery to lung tissue.66 Recent studies in
small animals and nonhuman primates have suggested that
aerosolizing antibodies may be more effective than sys-
temic delivery in treating or preventing respiratory tract
infections.67–69 AerosolizedmAbs effectively prevented dis-
ease in rhesus macaques inoculated with the Delta variant
of SARS-CoV-2.66 A comparison of different routes of anti-
influenza bNAbs in mice showed that local administration
(ie, IN, aerosol) significantly decreases the amount of
mAbs required for protection.69

SC Delivery

SC delivery of mAbs for oncology is effective, safe, well tol-
erated, and generally preferred by patients and health care
providers and results in reduced drug delivery-related
health care costs and resource use,60,61,70 but it is relatively
novel to infectious diseases. A population pharmacokinetics
(PK) study compared the HIV bNAb VRC01 in pediatric and
adult populations. At 20- to 40-mg/kg doses, infants demon-
strated 2.79-times faster absorption rate and achieved faster
suppressive plasma concentrations of HIV bNAb VRC01
compared to adults.71 Additionally, IM and SC deliveries
were shown to be equivalent in the VRC01 trial,28 and SC
administration was subsequently shown to be safe for new-
borns.30 Respiratory viruses can also be therapeutically tar-
geted with SC delivery, as has been reported in outpatients
with Casirivimab and Imdevimab treatment of COVID-19.61

Oral Delivery

Patients prefer pills over injections,71 leading to a tendency
by health care professionals to avoid mAb therapies.
Oral delivery provides a simple and noninvasive but chal-
lenging approach for mAbs owing to poor absorption and
gastrointestinal degradation, limited drug loading, reduced
systemic bioavailability, and delayed PK compared to
parenteral dosing. To overcome these limitations, an oral

pill was developed to deliver liquid formulations systemi-
cally, and, when delivered into the gastric submucosa of
swine, it showed an excellent safety profile.72 These prom-
ising results suggest that delivery of high doses of mAbs
may be feasible, but oral delivery remains a challenge for
newborns and very young children.

Delivery Through Breast Milk and Lacto-Therapeutics

Multiple studies have shown that SARS-CoV-2 spike-specific
sIgA is induced in breast milk after COVID-19 infection or
vaccination.73 Improved infant stool neutralization of
SARS-CoV-2 was observed following maternal vaccination,
suggesting the potential utility of breast milk antibodies as
COVID-19 therapeutics for infants.74 In animal models, sys-
temic administration of dimeric IgA (dIgA) that was pas-
sively transferred into the maternal milk and the stomach
of suckling pups showed protection against rotavirus-
induced diarrhea.75 Therefore, use of breast milk antibodies
could help harness early-life immunity against pathogens.

Use of Non-IgG Antibodies for Passive Immunization

IgA

Rapid IgA-mediated protection is essential against certain
viral pathogens and emerging viruses with short therapeu-
tic windows.6 Considered fundamental for early mucosal
defenses and protection against respiratory viral infections,
IgA is primarily found as a monomer (ie, mIgA). dIgA and
sIgA are 2 larger, more complex forms of IgA. When IgA
was cloned from the B cells of 149 COVID-19-convalescent
individuals, dIgA was 15-times more potent than mIgA
against the same target.76 Four neutralizing IgG mAbs
showed increased avidity and more potent neutralization
activity when engineered as dIgA and sIgA.77 Both dIgA
and sIgA versions neutralized the Omicron lineages BA.1,
BA.2, and BA.4/5 up to 75-fold better than the IgG versions.
In transgenic mice, IN-delivered dIgA reduced viral loads in
the lungs and trachea, providing significant protection
against Omicron BA.5.78 These studies provide a rationale
for considering the production and delivery of IgA.79

Immunoglobulin M

For flaviviruses, the multimeric structure of immuno-
globulin M (IgM) may play a unique role in infection. An
ultrapotent pentameric IgM specific for Zika virus protected
mice from a lethal challenge, but, when expressed as mono-
meric IgG, it was less effective in controlling viremia.80

Although IgM generally has a shorter half-life compared
with IgG owing to its structural features, it can be long-
lasting. Early and prolonged IgM neutralizing antibody
responses have been observed in infections with West
Nile and yellow fever viruses, as well as SARS-CoV-2.81–84

Treatment with potent neutralizing IgM may also decrease
the risk of congenital Zika virus transmission during
pregnancy.
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Polyspecific mAbs

Engineered polyspecific mAbs (PsMAbs) such as bi- and
trispecific antibodies are genetically engineered proteins
that simultaneously engage 2 or more different epitope
types.85 PsMAbs have several potential advantages for anti-
viral mAbs, such as blocking different pathways with
unique or overlapping functions involved in pathogenesis,86

interactingwith 2 ormore distinct antigens instead of 1, and
reducing development and production costs compared to
combinations of multiple single epitope antibodies.87–89

Recently, the trispecific HIV antibody N6/αCD3-αCD28
was shown to reactivate and eliminate long-term ART-sup-
pressed latently infected cells ex vivo.90 A tetravalent bispe-
cific antibody, A7A9 TVB, which neutralizes many SARS-
CoV-2 variants, showed superior neutralization compared
with a mixture of its parental mAbs.91 The bispecific anti-
body CAP256.J3LS, consisting of the light chain of CAP256-
VRC26.25 joined to the J3 nanobody, showed improved
breadth, potency, half-life, and neutralizing properties com-
pared with both antibody and nanobody parental compo-
nents against over one-half of a 208-strain HIV panel.92

Current Challenges and the Future of Human mAb
Therapy

The coordinated sharing of antibodies and related knowl-
edge has significantly accelerated the discovery of antiviral
antibody drugs. One notable outcome of these efforts is the
Coronavirus Immunotherapeutic Consortium database, an
open resource for researchers.93 Although there are signifi-
cant challenges to the widespread adoption of humanmAbs
for infectious disease therapy, the alternative of rapid and
uncontrolled viral spread, as evidenced by the SARS-CoV-2
pandemic, underscores the critical need for proactive
investment in outbreak preparedness. Given the uncer-
tainty of future viral disease outbreaks, we must be pre-
pared to protect our youngest and most vulnerable
populations. mAbs represent a critical tool for pediatricians,
offering an accessible, safe, and potent means to treat and
prevent both endemic viral diseases and emerging viral
threats in infants and children.

Despite the promise of mAbs for treating and preventing
viral infections in pediatric populations, their widespread
implementation is hindered by several challenges and
limitations. Owing to physiological and immunological
differences between adults and pediatric populations,94

extensive pediatric-specific clinical trials are needed to
establish safety, efficacy, and appropriate dosing regimens
in pediatric populations; conducting these studies could be
particularly challenging owing to ethical concerns and lim-
ited participant pools.95,96 In addition, the rapid emergence
of viral escape variants for SARS-CoV-2 and HIV renders
monotherapy with single-target mAbs ineffective,2,97

underscoring the importance of developing combination
mAb therapies against viruses with higher rates of

variants.98 Additionally, the high cost of mAb development
and large-scale production can limit accessibility,99 a par-
ticular challenge in resource-limited settings where rapid
responses to disease outbreaks are paramount.100 In
resource-limited settings, logistical issues such as the need
for cold-chain storage and administration by health care
professionals can further complicate drug delivery and dis-
tribution.101 Additionally, repeated dosing of mAbs could
result in ADA development, limiting long-term therapy’s
efficacy.102 Addressing these challenges could be crucial
in implementing mAb therapies for pediatric viral diseases,
especially against pathogens for which vaccination options
are limited or nonexistent.
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ABBREVIATIONS

AAV: adeno-associated virus
ADA: antidrug antibody
ART: antiretroviral therapy
bNAb: broadly neutralizing monoclonal antibody
CMV: cytomegalovirus
CNS: central nervous system
dIgA: dimeric immunoglobulin A
Env: envelope
EVD: Ebola virus disease
FcRn: neonatal Fc receptor
FDA: Food and Drug Administration
hACE2: human angiotensin-converting enzyme 2
HBV: heptatis B virus
HDV: heptatis D virus
HSV: herpes simplex virus
IgA: immunoglobulin A
IgG: immunoglobulin G
IgM: immunoglobulin M
IM: intramuscular
IN: intranasal
IV: intravenous
mAb: monoclonal antibody
mIgA: monomeric immunoglobulin A
mRNA: messenger RNA
NP: nanoparticle
PALM: Pamoja Tulinde Maisha
PK: pharmacokinetics
PsmAb: polyspecific monoclonal antibody
RSV: respiratory syncytial virus
SC: subcutaneous
SHIV: simian HIV
sIgA: secretory immunoglobulin A
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