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Figure 1: Nocturnal oximetry recordings (around 3 hours) of four individuals with different 

levels of T90, ODI and HB. The orange dashed line shows the 90% level of SpO2. Abbreviations:

ODI=Oxygen Desaturation Index; SpO₂= Peripheral Oxygen Saturation; T90= Time below 90% 

SpO2; HB: hypoxic burden.
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Abstract

Nocturnal hypoxemia is a prevalent feature of various respiratory diseases, significantly

impacting  patient  outcomes  and therapeutic  strategies.  Oximetry,  a  non-invasive  and widely
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accessible  tool,  enables  the  measurement  of  nocturnal  hypoxemia  through  oxyhemoglobin

saturation (SpO₂)-derived metrics such as the oxygen desaturation index, percentage of sleep time

with SpO₂ below 90%, mean SpO₂, and measures of the area under the desaturation curve (e.g.,

sleep apnea specific hypoxic burden). While these metrics are well established in obstructive sleep

apnea  (OSA),  their  application  in  other  respiratory  conditions,  including chronic  obstructive

pulmonary disease (COPD), pulmonary hypertension, obesity hypoventilation syndrome, heart

failure, neuromuscular disorders, pregnancy, and high-altitude residents, remains an area of active

investigation. This review explores the pathophysiology of hypoxemia in these conditions and

evaluates the role of SpO₂-derived metrics in risk stratification beyond OSA. We also discuss the

challenges of interpreting SpO₂ data,  particularly the difficulty differentiating disease-related

hypoxemia from comorbid OSA. Additionally, we examine the limitations of oximetry, including

sensor inaccuracies, motion artifacts, and skin pigmentation. Finally, we emphasize the need for

further research to standardize these metrics across diverse conditions and advocate for their

integration into clinical practice to enhance patient management and outcomes.

Keywords: Nocturnal hypoxemia, Pulse Oximetry, Respiratory disease, Hypoxic burden, OSA

Introduction

The Respiratory System and Its Role in Hypoxemia

The respiratory system is crucial in maintaining oxygen homeostasis by facilitating gas

exchange between the atmosphere and the bloodstream [1, 2]. It comprises the lungs, airways,

diaphragm, and associated respiratory muscles, all of which work together to ensure the efficient

uptake of oxygen (O₂) and the removal of carbon dioxide (CO₂), a metabolic byproduct. The lungs

oxygenate blood by transferring O₂ from inhaled air into the pulmonary circulation while expelling

CO₂ through exhalation [3].

Oxygen  is  essential  for  cellular  metabolism,  and  a  deficiency—termed  hypoxia/

hypoxemia (hypoxia: inadequate oxygen supply to tissues and organs, hypoxemia: low oxygen

levels in the blood)—can have significant physiological consequences [4]. Hypoxemia is defined

as  an  abnormally  low arterial  oxygen  level  and  can  result  from impairments  in  pulmonary

ventilation,  diffusion,  or  perfusion  [5].  It  is  frequently  observed  in  respiratory  diseases  that

compromise lung function, reducing the efficiency of oxygen uptake. If left untreated, hypoxemia
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can trigger systemic effects, including increased sympathetic nervous system activity, pulmonary

vasoconstriction, and organ dysfunction, ultimately elevating the risk of morbidity and mortality

[4-6].

Hypoxemia Types and Their Implications

Hypoxemia can be broadly classified into two types: intermittent hypoxemia (IH) and

sustained hypoxemia (SH) [4]. Intermittent hypoxemia is characterized by episodic decreases in

blood oxygen levels, which can occur in conditions such as obstructive sleep apnea (OSA), where

oxygen  saturation  fluctuates  throughout  the  night  and  is  associated  with  a  wide  range  of

physiological responses such as changes in heart rate and cortical activity [7, 8]. In contrast,

sustained hypoxemia is characterized by persistently low oxygen levels, which is commonly seen

in diseases such as chronic obstructive pulmonary disease (COPD), pulmonary hypertension and

high-altitude residents [1, 2]. Both types can contribute to disease progression and worsening

outcomes, but their underlying mechanisms and effects may differ [9-12].

The measurement of  hypoxemia is  essential  for  diagnosing and managing respiratory

diseases [13]. Traditionally, oxygen levels are assessed using arterial blood gas (ABG) analysis,

which is invasive and not suitable for continuous monitoring. Non-invasive methods, such as pulse

oximetry, are more commonly used in clinical settings. Pulse oximetry measures the oxygen

saturation of hemoglobin (SpO₂) in the blood and provides a continuous, non-invasive way to

assess oxygenation status. However, it has limitations, particularly in capturing the full extent of

hypoxemia, especially during nocturnal periods when many respiratory conditions manifest [13-

15].

Changes in SpO2 levels and impact on nocturnal hypoxemia during sleep

Sleep has a profound effect on ventilation, gas exchange, and cellular metabolism. During

sleep, ventilation decreases beyond what is expected from reduced metabolic demands[16, 17].

Two mechanisms contribute to hypoventilation: A) Increased resistance of the upper airway due to

hypotonia of the pharyngeal dilator muscles and B) Alteration of the ventilatory response. These

changes, which are not significant in a normal individual, are more intense in individuals with sleep

respiratory disorders. In the awake individual, the central airway, which would tend to collapse due

to the effect of negative inspiratory intraluminal pressure, is kept open by the stimulation of the
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pharyngeal and laryngeal dilator muscles [18]. During sleep, the normal hypotonia of the central

airway dilator muscles causes a slight increase in airflow resistance, often resulting in snoring and,

in men over 40, in short and infrequent episodes of obstructive apnea. These episodes last less than

10 seconds and do not cause significant changes in arterial gases. If the hypotonia is excessive and

especially  if  there  are  factors  contributing  to  upper  airway  obstruction,  more  frequent  and

prolonged episodes of obstructive apnea occur with pathological consequences[19, 20].

Measurement of hypoxemia in OSA

In the context of OSA, frequent episodes of upper airway obstructions often lead to oxygen

desaturation, and SpO2 is monitored to identify “clinically significant” respiratory events [21].

SpO₂-derived metrics are crucial for assessing the severity of OSA-related nocturnal hypoxemia.

In addition, based on standard guidelines, the inclusion of respiratory events in the apnea-hypopnea

index (the primary measure of OSA severity) often requires a 3 or 4% oxygen desaturation[22].

Other metrics that are intended to quantify nocturnal hypoxemia include the oxygen desaturation

index (ODI), which measures the frequency of oxygen saturation drops; T90, which quantifies the

percentage of time spent below a specific oxygen saturation threshold (e.g., 90%); mean SpO₂, the

average oxygen saturation throughout the night; minimum SpO₂ (min SpO₂), the lowest recorded

oxygen  saturation;  and  desaturation  area,  which  quantifies  the  magnitude  and  duration  of

desaturation events [8, 23-26]. However, not all these metrics precisely quantify the extent of

OSA-related hypoxemia and are impacted by other non-OSA-related conditions.

In recent years, several methods have been proposed to better capture the severity of OSA-

related hypoxemia[8, 25]. These methods have been reviewed in depth elsewhere[21, 27]. Among

these metrics, “hypoxic burden”, a measure of frequency, depth and duration of OSA-related

oxygen  desaturation,  has  been  shown  to  be  associated  with  CVD-related  and  all-cause

mortality[25], incident CVD[28], kidney disease[29], white matter hyperintensity[30], daytime

sleepiness[31],  and  CPAP-related  cardiovascular  benefits[32].  Future  prospective  studies  are

needed to confirm and extend these findings. 

Hypoxemia in Other Respiratory Diseases

While SpO₂-derived metrics are extensively utilized in assessing nocturnal hypoxemia in

OSA, their  application in other respiratory diseases remains less defined. Conditions such as
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COPD, pulmonary hypertension, obesity hypoventilation syndrome (OHS), and heart failure also

exhibit nocturnal hypoxemia, but the relationship between SpO₂-derived nocturnal hypoxemia

metrics and disease severity in these disorders is  not  as  well  established [33].  A significant

challenge  in  these  conditions  is  distinguishing  between  hypoxemia  resulting  from sustained

respiratory dysfunction and that induced by intermittent events like coexisting OSA (Figure 1). For

instance, patients with COPD may experience both sustained hypoxemia due to chronic respiratory

impairment and intermittent hypoxemia from concurrent OSA, complicating the interpretation of

SpO₂ metrics [12, 34, 35] for effective clinical decision-making processes. 

This review aims to explore the utilization of SpO₂-derived metrics in assessing nocturnal

hypoxemia  across  various  respiratory  diseases  beyond  OSA.  We  will  examine  the

pathophysiology of hypoxemia in each condition, review studies investigating the use of SpO₂

metrics for quantifying disease severity and assess how these metrics can aid in patient risk

stratification and treatment selection (Table 1).  Additionally, we will discuss the challenges in

measurement and address the distinction between hypoxemia due to the primary disease versus the

contribution of coexisting OSA. Lastly, we will briefly review the potential limitations of oximetry

and the nocturnal hypoxemia metrics.

Chronic Obstructive Pulmonary Disease (COPD)

Pathophysiology

COPD refers to a group of lung diseases, primarily chronic bronchitis and emphysema,

characterized by persistent airflow limitation [36, 37]. COPD remains a leading cause of morbidity

and mortality globally, with smoking being the predominant risk factor, although environmental

pollutants and genetic predispositions also contribute [38].  The pathophysiology of COPD is

characterized by chronic inflammation and structural changes in the airways and lung parenchyma,

resulting  in  airway  obstruction,  alveolar  destruction,  and  impaired  gas  exchange  [36,  39].

Hypoxemia in COPD arises from impaired ventilation-perfusion matching, wherein the alveolar

ventilation is insufficient relative to pulmonary capillary perfusion [40]. This imbalance leads to

reduced oxygen uptake and elevated carbon dioxide levels in the blood, manifesting as chronic

respiratory  symptoms,  such  as  cough,  sputum  production,  and  dyspnea  [2,  40].  As  COPD

progresses, the lungs' ability to respond to hypoxia diminishes, leading to sustained hypoxemia,

which becomes more prominent during exercise and sleep [2].
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Metrics for nocturnal hypoxemia assessment

Key parameters used to assess nocturnal desaturation include the frequency of the drops,

mean nocturnal SpO₂ and the percentage of time spent below a specific saturation threshold, such

as 90% or 80% [41-43]. In COPD, the severity of nocturnal hypoxemia is closely linked to the level

of daytime hypoxemia[44]. For example, a of daytime and nighttime arterial oxygen saturation in

41 COPD patients  found that  patients  with lower daytime saturations exhibited significantly

greater mean and maximum falls in SpO₂ at night [45]. In addition, one study suggested that both

total-sleep-time-related  hypoxemia  (measured  by  %sleep  time  below 90% SpO2)  and  REM-

specific nocturnal hypoxemia (measured by %sleep time below 85% SpO2) predict mortality,

however,  REM-related desaturation appeared to predict improved survival with supplemental

oxygen use [46]. A study assessing the relationship between lung function and sleep parameters in

patients with OSA and COPD indicated that T90 was negatively correlated with different lung

function indices (e.g., forced vital capacity (FVC)) [47]. Furthermore, in another study of COPD

patients, T90 was strongly correlated with mean pulmonary artery pressure [48]. These studies

emphasized the use of SpO₂-derived metrics to enhance risk stratification and assess treatment

effects in COPD patients.

Overlap with OSA 

OSA is prevalent in COPD patients, with an incidence of approximately 10–15% higher

than in the general population [12, 34, 49]. The coexistence of COPD and OSA (overlap syndrome)

complicates  the  interpretation  of  nocturnal  hypoxemia.  COPD  patients  with  OSA  tend  to

experience more severe hypoxemia during sleep because they begin each apnea episode in a

hypoxemic state, whereas patients with isolated OSA typically saturate to normal levels between

apneas. This makes COPD-OSA patients more susceptible to complications of chronic hypoxemia,

such as cor pulmonale and polycythemia [34]. It is crucial for clinicians to distinguish between

hypoxemia due to COPD and hypoxemia caused by OSA in order to guide appropriate treatment

strategies[35, 49].

Pulmonary Hypertension (PH)

Pathophysiology
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Pulmonary hypertension (PH) is a condition characterized by elevated pressure in the

pulmonary  arteries,  leading  to  increased  right  ventricular  afterload  and  potential  right  heart

failure[50, 51]. The underlying pathophysiology includes pulmonary vasoconstriction, vascular

remodeling, and increased pulmonary vascular resistance, all of which contribute to impaired

oxygenation and hypoxemia. PH can occur as an isolated condition or as a secondary consequence

of  diseases  such  as  COPD,  left  heart  disease,  or  chronic  thromboembolic  disease  [52-54].

Hypoxemia in PH often results from impaired gas exchange due to ventilation-perfusion (V/Q)

mismatch,  diffusion  limitations,  and  reduced  pulmonary  capillary  surface  area[51].  As  PH

progresses, oxygen saturation levels decline, particularly during exertion or sleep, exacerbating

right  heart  strain  and  worsening  prognosis.  In  more  advanced  stages,  pulmonary  vascular

remodeling leads to the thickening and stiffening of the arterial walls, further impairing oxygen

exchange. The resultant right ventricular dysfunction contributes to carbon dioxide retention and

further desaturation events, compounding hypoxemia severity [50, 55, 56].

Metrics for hypoxemia assessment

Studies  have  demonstrated  the  clinical  significance  of  SpO₂-derived  metrics  in  PH,

particularly  in  assessing  disease  severity  and prognosis.  In  PH,  nocturnal  desaturation  is  an

essential  but  often  overlooked  marker  of  disease  progression  and  worsening  pulmonary

hemodynamics [51, 57]. In a large retrospective study analyzing polysomnographic data from 493

PH patients,  higher  nocturnal  hypoxemia,  defined as  T90,  was  significantly  associated  with

increased  mean  pulmonary  artery  pressure,  pulmonary  vascular  resistance,  and  right  atrial

pressure, underscoring its potential utility as a prognostic marker [58]. Similarly, an investigation

into patients with idiopathic pulmonary fibrosis assessed the relationship between resting PaO₂

and T90 over a 24-hour period. The study found that lower resting PaO₂ was associated with

prolonged  periods  of  nocturnal  hypoxemia.  However,  T90  did  not  correlate  with  systolic

pulmonary artery pressure, suggesting that while T90 reflects nocturnal hypoxemia severity, it may

not directly predict PH severity in this population [59]. Another study comparing sleep parameters

in patients with interstitial lung disease (ILD) with and without PH found that those with PH

exhibited significantly higher T90 compared to those without PH [60].

Overlap with OSA
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OSA is frequently observed in PH patients and represents an important confounder in

assessing  nocturnal  hypoxemia[33].  The  coexistence  of  OSA and  PH exacerbates  nocturnal

hypoxemia and may further accelerate right ventricular dysfunction [33]. Patients with PH across

various aetiologies exhibit a high prevalence of OSA, and conversely, OSA increases the risk of

PH[61]. In a study of 169 patients with pulmonary arterial hypertension, 26.6% had an apnea-

hypopnea index >10 events/h, with 16% having OSA and 10.6% having central sleep apnea [62].

Overall, 27%–30% of OSA patients without left ventricular dysfunction or hypoxemic lung disease

develop PH [63]. Notably, OSA patients with PH experience a lower quality of life and higher

mortality compared to those without PH [64]. 

Obesity Hypoventilation Syndrome (OHS)

Pathophysiology

Obesity  Hypoventilation  Syndrome  (OHS)  is  a  disorder  characterized  by  chronic

hypoventilation  in  individuals  with  obesity,  resulting  in  hypercapnia  (elevated  blood  carbon

dioxide  levels)  and,  in  some cases,  hypoxemia [65].  The pathophysiology of  OHS involves

multiple factors, including mechanical airway obstruction, reduced chest wall compliance, and

diminished central respiratory drive, particularly during sleep. Excess adipose tissue around the

thorax and abdomen can impair  diaphragmatic  movement,  further  restricting ventilation and

exacerbating gas exchange abnormalities [65-67]. Intermittent hypoxemia and hypercapnia are

hallmarks of OHS, contributing to significant complications such as pulmonary hypertension, right

heart failure, and chronic respiratory failure [65, 68]. If left untreated, OHS can lead to increased

morbidity and mortality [69]. Diagnosis is typically based on clinical symptoms, obesity-related

comorbidities, and arterial blood gas analysis, with non-invasive positive pressure ventilation often

required for management[70]. 

Metrics for hypoxemia assessment

Various measures of nocturnal hypoxemia have been assessed in OHS, including T90,

nadir SpO₂, and mean SpO₂. Additionally, some studies have explored the combined use of SpO₂

parameters with biochemical markers such as serum bicarbonate levels to improve diagnostic

accuracy [71-73]. One study examined the utility of T90 as a diagnostic marker for OHS but found

that it lacked sufficient sensitivity and specificity. The findings suggest that T90 alone is not a
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reliable diagnostic tool and should be complemented by biochemical assessments, such as arterial

blood gas analysis [74]. One study assessed the potential benefit of sleep apnea-specific hypoxic

burden  (%min/h)  to  identify  obesity-related  sleep  hypoventilation  in  adults  with  no  other

respiratory or neurological diseases who underwent polysomnography or polygraphy. The results

showed Hypoxic burden as a  measure of  intermittent  hypoxemia has a  low correlation with

transcutaneous  CO2 pressure  and  a  low  ability  to  diagnose  obesity-related  sleep

hypoventilation[75]. Additionally, prolonged nocturnal hypoxia reflected by lower mean SpO₂

and increased T90 was significantly associated with calculated HCO3 and OHS presence and

severity. These findings suggest that monitoring these indices may aid in early detection and risk

stratification in obese individuals with suspected sleep-disordered breathing [68]. Given that OHS

involves both sustained and intermittent hypoxemia, further analysis is needed to refine nocturnal

hypoxemia measures for distinguishing OHS from OSA.

Heart Failure (HF)

Pathophysiology

Heart failure (HF) is a condition characterized by the heart's  inability to pump blood

effectively, leading to inadequate tissue perfusion and oxygenation [76]. The pathophysiology of

hypoxemia in HF is  multifactorial,  involving both diminished cardiac output  and pulmonary

edema,  which  disrupts  alveolar  gas  exchange  [77].  One  additional  potential  contributor  to

nocturnal hypoxemia is Cheyne-Stokes respiration (CSR), a common breathing pattern observed

in HF, which is characterized by alternating periods of hyperventilation and hypoventilation. This

cyclical breathing pattern leads to fluctuating oxygen saturation levels, further complicating the

clinical presentation of HF-related hypoxemia [76, 77]. 

Metrics for hypoxemia assessment

Nocturnal hypoxemia has emerged as a significant predictor of adverse health outcomes in

HF patients. In patients with Heart Failure with Reduced Ejection Fraction (HFrEF), nocturnal

hypoxemia measures have been identified as an independent risk factor for all-cause mortality[78].

Specifically, a cohort study involving 280 patients with HFrEF assessed nocturnal hypoxemia

using multiple pulse oximetry-derived indices, including T90, Area of the SpO₂ curve below 90%,

and Event-related and non-specific T90 components. After adjusting for established risk factors,
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T90, non-specific T90, the area under 90% SpO2, and the non-specific area under 90% SpO2

remained statistically significant predictors of mortality. In contrast, event-related indices did not

demonstrate a significant association [78]. 

Overlap with OSA

The presence of OSA poses a challenge in the assessment of nocturnal hypoxemia in HF.

Patients with coexisting chronic heart failure    and OSA often experience hypoxemia driven by

both pulmonary  congestion and recurrent  respiratory  events.  Moreover,  central  sleep  apnea—

characterized by diminished or absent respiratory effort due to instability in ventilatory control—is

especially  prevalent  in  patients  with  HF[79]. The  interplay  between  these  conditions  can

exacerbate cardiovascular dysfunction, with significant implications for endothelial health [80]. A

study investigating arterial endothelial function in HF patients with and without sleep disordered

breathing found that the severity of nocturnal hypoxemia, rather than the frequency of respiratory

events, was the primary determinant of vascular impairment. However, neither the AHI nor the

ODI showed a meaningful association, suggesting that cumulative hypoxemic exposure may be

more relevant than discrete respiratory events in predicting cardiovascular risk [81]. Another

prospective cohort study investigated the prognostic significance of hypoxemia in HF patients

using several desaturation metrics, including  T90, ODI, and mean SpO₂. Multivariate analysis

revealed a significant associations with sustained hypoxemic metrics (e.g. T90 and mean SpO2) but

not the ODI [82].

Neuromuscular Disorders and Spinal Cord Injury (SCI)

Pathophysiology

Neuromuscular  disorders  (NMDs) encompass a  diverse  group of  diseases  that  impair

muscle  and/or  nerve  function,  resulting  in  weakness  and  dysfunction.  In  these  conditions,

respiratory muscles are frequently compromised, leading to ventilation impairment and subsequent

nocturnal hypoxemia [83, 84]. Similarly, spinal cord injury (SCI) involves damage to the spinal

cord, leading to partial or complete loss of motor, sensory, and autonomic functions. Individuals

with  high-level  SCI,  particularly  at  the  cervical  or  upper  thoracic  levels,  often  experience

significant respiratory impairment due to paralysis of respiratory muscles, predisposing them to

nocturnal hypoxemia [85]. Both NMDs and SCI significantly impact the diaphragm and intercostal
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muscles,  increasing  the  likelihood of  sleep-related  hypoventilation  [85,  86].  The  severity  of

nocturnal hypoxemia in these conditions often correlates with disease progression, with advanced

stages exhibiting more pronounced respiratory dysfunction [84].  Additionally,  neuromuscular

diseases can impair central respiratory control, further diminishing the ability to maintain stable

ventilation, particularly during sleep [84]. 

Metrics for hypoxemia assessment

Overnight pulse oximetry serves as a cost-effective screening tool for detecting nocturnal

respiratory disturbances in patients with neuromuscular diseases. A typical pattern observed in

these patients includes a low baseline oxygen saturation with cyclical desaturation, particularly in

early disease stages. There has been limited studies in these patients. For example, in a small study

involving patients with ALS, measures of nocturnal hypoxemia were associated with poor memory

retention,  suggesting  a  potential  link  between  nocturnal  oxygen  desaturation  and  cognitive

impairment in ALS [87]. 

Overlap with OSA

Sleep-disordered  breathing,  including  nocturnal  hypoventilation,  central  apneas,  and

obstructive apneas, is prevalent in ALS patients[88, 89].  A study reported that ALS patients

experience up to ten times more apnea/hypopnea events per night compared to healthy individuals,

suggesting  frequent  episodes  of  intermittent  nocturnal  hypoxia.  The  precise  etiology  of  this

intermittent hypoxia remains unclear; however, polysomnographic studies indicate that central

respiratory drive dysregulation or respiratory muscle fatigue, rather than OSA, may be the primary

contributors [90].  Individuals  with SCI,  particularly those with cervical  injuries,  also have a

heightened risk of OSA, with prevalence rates three to four times higher than in the general

population.  In  patients  with SCI,  intermittent  hypoxemia and sleep fragmentation have been

associated with  adverse  cardiovascular  consequences  [85].  A study on cervical  SCI patients

highlighted an increased susceptibility to OSA, as indicated by an elevated ODI of 4% during sleep

[91]. These findings underscore the necessity for targeted screening and management strategies to

mitigate  the  adverse  effects  of  nocturnal  hypoxemia  in  neuromuscular  disorders  and  SCI

populations.
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Pregnancy

Pathophysiology

Pregnancy  induces  significant  physiological  adaptations  in  the  respiratory  system,

including increased tidal  volume and altered ventilation-perfusion ratios to accommodate the

growing metabolic demands of both the mother and fetus [92-94]. While most women adapt

effectively to these changes, some may experience hypoxemia, particularly during sleep. In late

pregnancy, the expanding uterus exerts pressure on the diaphragm, impairing ventilation and

contributing to nocturnal oxygen desaturation. This effect is particularly pronounced during REM

sleep when respiratory drive is naturally diminished [95, 96]. Pregnancy-related hypoxemia is

further exacerbated in women with preexisting respiratory conditions, such as asthma or obesity.

Additionally, pregnancy-induced hypertension and preeclampsia can negatively impact respiratory

mechanics, leading to increased airway resistance, pulmonary edema, and subsequent hypoxemia

[97, 98].

Metrics for hypoxemia assessment

Research on the utility of SpO₂-derived metrics in pregnancy has demonstrated their value

in identifying nocturnal  hypoxemia and predicting adverse maternal  and fetal  outcomes.  For

instance, a randomized controlled trial evaluating the effects of aerobic and breathing exercises in

pregnant women found that such interventions significantly improved mean oxygen saturation

levels [99]. A study of pregnant women reported that an ODI ≥10 was associated with an increased

incidence of congenital abnormalities and neonatal respiratory distress syndrome [100]. Similarly,

higher ODI levels during pregnancy have been linked to an increased likelihood of delivering

small-for-gestational-age  infants  [101].  A large-scale  study  involving  3,006  women in  early

pregnancy and 2,326 in mid-pregnancy utilized home sleep apnea testing to assess nocturnal

hypoxia. A hypoxic burden (averaged desaturation area, %min) exceeding 6.8% minutes in early

pregnancy was associated with a higher risk of preeclampsia, independent of OSA severity. In mid-

pregnancy,  a  hypoxic  burden  exceeding  11.8% minutes  was  linked  to  an  increased  risk  of

gestational diabetes and a low Apgar score (<7 at 1 min), even after adjusting for OSA severity

[102]. In contrast, a comparative study assessing arterial oxygen saturation in 60 pregnant women

across  different  trimesters  and  60  non-pregnant  controls  found  no  statistically  significant

differences in SpO₂ levels between groups [103].
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Physiological changes during pregnancy predispose women to a higher risk of developing

OSA. Factors such as increased body weight, airway edema, and upper airway collapsibility due to

hormonal fluctuations contribute to this heightened susceptibility [104-106]. A study examining

the relationship between SDB and pregnancy outcomes found that among obese pregnant women,

those with altered pulse oximetry readings had a higher incidence of congenital abnormalities,

suggesting a possible link between maternal hypoxemia and fetal development [100]. Moreover,

mid-pregnancy nocturnal hypoxemia measured as T90 and an increasing hypoxemic burden from

early to mid-pregnancy has been associated with a higher risk of delivering large-for-gestational-

age (LGA) infants [107].

High-Altitude Residents

Pathophysiology

Living at high altitudes leads to chronic exposure to reduced atmospheric oxygen, which

triggers physiological adaptations such as increased ventilation and erythropoiesis to maintain

adequate oxygen delivery to tissues [108]. However, despite these compensatory mechanisms,

some individuals  experience persistent  hypoxemia,  particularly  during sleep [109,  110].  The

pathophysiology  of  hypoxemia  in  high-altitude  residents  is  multifactorial,  involving  both

environmental  factors  (e.g.,  reduced  barometric  pressure  and  oxygen  availability)  and

physiological responses that may be insufficient to fully compensate for the hypoxic stress [111,

112].  During sleep, nocturnal hypoxemia at high altitudes is exacerbated by hypoventilation,

particularly during REM sleep, when the ventilatory drive is further diminished. This leads to

recurrent desaturation events, which are commonly observed in individuals residing above 2,500

meters [108, 109].

Metrics for hypoxemia assessment

Numerous studies have evaluated SpO₂ metrics in high-altitude environments to establish

reference values and assess acclimatization patterns. A large-scale study established reference

SpO₂ values for individuals aged 1 to 80 years, covering elevations from sea level to the highest

permanent human habitation. The results revealed a progressive decline in SpO₂ with increasing

altitude, particularly beyond 2,500 meters [113]. A study using continuous SpO₂ monitoring from

finger pulse oximeters showed that while SpO₂ levels initially decrease upon altitude exposure,
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partial recovery is observed over time, reflecting physiological adaptation [114]. Additionally,

lower SpO₂ values have been linked to an increased risk of acute mountain sickness  [114]. The

effects of nocturnal hypoxia on cognitive performance at high altitudes have also been examined.

In one study, eleven healthy adults underwent progressive nocturnal hypoxia exposure over two

weeks in an altitude tent [115]. Despite experiencing significant nocturnal hypoxemia, participants

exhibited no impairments in objective vigilance or working memory, nor did they report increased

subjective sleepiness [115]. 

Overlap with OSA

The interaction between OSA and high-altitude exposure has been the subject of increasing

research interest. When OSA individuals ascend to altitudes above 1,600 meters, comparable to

many  popular  tourist  destinations,  hypobaric  hypoxia  exacerbates  sleep-disordered  breathing

[116]. At high altitudes, OSA patients experience a combination of obstructive and central apneas

due  to  hypoxia-induced  instability  in  ventilatory  control  [116,  117].  This  results  in  both

intermittent and sustained hypoxemia, leading to pronounced sympathetic activation, increased

heart rate, cardiac arrhythmias, and systemic hypertension. These physiological changes raise

concerns that individuals with OSA may face an elevated risk of cardiovascular and other adverse

events during high-altitude exposure [116, 117].

Limitations of Oximetry and Nocturnal Hypoxemia Metrics

Several limitations impact the accuracy, reliability, and clinical utility of pulse oximetry.

These limitations arise from inherent technical constraints, physiological variations, and external

factors that influence SpO₂ readings. First, while pulse oximetry provides a convenient method for

continuous monitoring, its accuracy is reduced in certain clinical settings. For example, a study

comparing  oxygen  saturation  levels  measured  by  pulse  oximetry  and  ABG analysis  in  102

hypoxemic patients admitted to intensive care units found that when SpO₂ levels fall below 90%,

pulse oximetry may not be reliable enough for accurate oxygenation assessment [118]. Other

studies suggested that there may be bias and discrepancies between different pulse oximeters and

ABG measurements in critically ill patients [119] and people with uncontrolled diabetes [120,

121]. Second, SpO₂ readings are influenced by peripheral circulation, which may be compromised

in conditions such as SCI, neuromuscular disorders, obesity, and heart failure. In SCI patients with
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lower limb paralysis or individuals with poor perfusion, weak signals from pulse oximeters can

lead to inaccurate SpO₂ measurements [122-124]. Third, Pulse oximetry relies on calibration

curves  based  on  healthy  individuals.  Early  calibration  techniques  used  Beer-Lambert  law

calculations, but optical scattering and reflection effects resulted in overestimated SpO₂ values,

especially at lower saturations. Calibration studies were limited by ethical constraints, preventing

the induction of severe hypoxemia (≤75-80% SaO₂) in volunteers, which affects SpO₂ accuracy in

critically ill patients [125]. Fourth, Pulse oximetry measures hemoglobin saturation but may not

provide adequate information on respiratory function and ventilation, carbon dioxide levels, pH, or

blood oxygen content. Conditions such as anemia may yield falsely reassuring SpO₂ values, as

hemoglobin saturation can be normal despite reduced oxygen-carrying capacity [126, 127]. Fifth,

optical interference, skin pigmentation, and nail polish could affect SpO₂ measurements. For

example, research suggests that pulse oximetry is less accurate in individuals with darker skin due

to  increased  melanin  interfering  with  light  absorption,  prompting  the  U.S.  Food  and  Drug

Administration to issue a warning regarding the potential inaccuracy of pulse oximeters in patients

with pigmented skin [14, 128-132]. Finally, factors, including smoothing, motion artifacts, and

coexisting conditions could influence the SpO₂ measurements and their interpretations.

Conclusion and Future Directions

Common nocturnal hypoxemia metrics, such as ODI, T90, and mean SpO2, do not capture

the full spectrum of hypoxemic events. For intermittent hypoxemia, these indices often fail to

incorporate the duration, frequency, and physiological impact of desaturations. The standard SpO₂

threshold for defining hypoxemia is typically set at 90%, yet this cutoff may not be appropriate for

all populations. Patients with chronic respiratory diseases, such as COPD, may require a lower

threshold (≤88%) for clinical relevance. Uniform SpO₂ thresholds can lead to misclassification,

underestimating hypoxemia severity in some patients. To address these challenges, future research

should  focus  on  developing  and  validating  SpO₂-derived  metrics  that  integrate  desaturation

dynamics and severity; combining oximetry with other modalities, such as capnography and sleep

staging, to provide a more comprehensive assessment of hypoxia-related pathology; implementing

personalized SpO₂ thresholds based on patient characteristics (age, comorbidities, baseline oxygen

levels) to improve hypoxemia classification. In addition, technical issues related to pulse oximetry

itself also warrant attention. SpO₂ measurements are subject to inaccuracies due to calibration
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differences among devices and signal quality degradation from motion artifacts, poor perfusion, or

improper sensor placement. Notably, recent evidence has highlighted racial disparities in pulse

oximetry accuracy—individuals with darker skin pigmentation may experience overestimated

oxygen saturation levels, leading to under-recognition of clinically significant hypoxemia. These

discrepancies can have serious implications for diagnosis, monitoring, and treatment decisions.

Therefore, future research should also aim to refine the optical and algorithmic components of

pulse oximeters to ensure equitable and reliable measurements across diverse populations and

clinical contexts. By addressing these limitations and expanding the scope of nocturnal hypoxemia

assessment, clinicians will be better equipped to evaluate the impact of hypoxia across various

respiratory conditions. This, in turn, will facilitate more targeted interventions aimed at mitigating

the long-term consequences of chronic hypoxemia.

Figure 1: Nocturnal oximetry recordings (around 3 hours) of four individuals with different 

levels of T90, ODI and HB. The orange dashed line shows the 90% level of SpO2. Abbreviations:

ODI=Oxygen Desaturation Index; SpO₂= Peripheral Oxygen Saturation; T90= Time below 90% 

SpO2; HB: hypoxic burden.

Table 1: Oximetry-derived nocturnal hypoxemia severity metrics in respiratory medicine.
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Table 1: Oximetry-derived nocturnal hypoxemia severity metrics in respiratory medicine.

Metrics Definition and application in respiratory disease Potential limitations

ODI Number of desaturation events (typically ≥3% or

≥4%) per hour of sleep. Commonly used to 

measure intermittent hypoxemia in COPD, OHS 

and OSA diagnosis and severity classification.

Does not account for duration or depth of 

desaturation; influenced by desaturation 

threshold; may miss longer, milder events; 

depends on sampling rate and artifact 

rejection.

Mean SpO2 Average oxygen saturation throughout the sleep

period. Reflects overall oxygenation status and is

associated with prognosis in diseases like COPD,

heart failure, and pulmonary hypertension.

Does not reflect intermittent desaturations or

variability;  may  mask  underlying  events;

affected  by  sensor  accuracy  and  signal

dropout.

Min SpO2 Lowest oxygen saturation recorded during sleep.

Used  in  assessing  severity  of  desaturation,

particularly in those lining in high altitude, COPD

and sleep apnea.

Single-point measure; highly susceptible to

artifacts or transient events; may not reflect

clinical impact.

T90/T88/T85 Percentage of total sleep time spent with SpO₂

below  90%,  88%  or  85%.  Used  to  quantify

severity  of  sustained  nocturnal  hypoxemia  in

COPD, OHS, and interstitial lung disease.

Threshold-based;  may  not  capture

intermittent  and  brief  but  physiologically

important  events;  dependent  on  baseline

SpO₂ and may misclassify individuals with

low baseline values. 

Desaturation

pattern

Morphology  and  recurrence  of  desaturation

events  considering  specific  duration  and

frequency  of  hypoxemic  events.  May  provide

Not  standardized  specifically  in  terms  of

defining  intermittent  and  sustained

hypoxemia;  interpretation  varies  across
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insight into the type of hypoxemia in respiratory

disorder such as OSA, OHS and COPD.

studies;  requires  advanced  signal  analysis

and  may  be  affected  by  sleep  architecture

variability and sensor reliability.

OSA-related

hypoxic 

burden

Integrated  area  under  the  desaturation  curve

below  a  defined  threshold  or  in  response  to

obstructive events considering a specific search

window for everyone. Represents the depth and

duration of oxygen desaturation. Emerging metric

in  OSA,  COPD,  OHS,  hypoxemia  during

pregnancy and heart failure prognosis.

Studies  are  needed  to  define  clinical

thresholds; not yet widely adopted in clinical

practice specifically beyond OSA.

Abbreviations: ODI = Oxygen Desaturation Index; SpO₂ = Peripheral Oxygen Saturation; T90 = Time below 90%

SpO₂; T88 = Time below 88% SpO₂; OSA = Obstructive Sleep Apnea; COPD = Chronic Obstructive Pulmonary

Disease; OHS = Obesity Hypoventilation Syndrome.
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