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REVIEWS AND COMMENTARY•STATEMENTS AND GUIDELINES – BEST PRACTICE

A rtificial intelligence (AI) and deep learning (DL) have gener-
ated excitement and optimism in radiology for their poten-

tial to transform the field of radiology. Potential uses of AI in 
radiology include automated diagnoses of complex diseases at 
medical imaging (1–3), triage of potentially actionable findings 
in the emergency department (4,5), and automated extraction of 
patient outcomes information from free-text reports (6). Despite 
the excitement around AI in radiology, troubling findings of algo-
rithmic biases, or AI biases, among different demographic groups 
have been reported (7–11), with performance disparities disad-
vantaging historically underrepresented groups (Fig 1A). Subse-
quent studies have identified potential factors leading to these 
biases, such as the lack of demographic diversity in datasets used 
to train DL models (12,13) and the ability of DL models to pre-
dict patient demographics such as biologic sex and self-reported 
race (14–16) on the basis of images alone. Because these algorith-
mic biases frequently disadvantage historically underrepresented 
groups, they risk perpetuating—or exacerbating—pre-existing 
health inequities at scale.

Despite the growing awareness of problems related to fairness 
of AI models in radiology, evaluation of algorithmic biases is chal-
lenging for reasons that span both clinical and technical domains. 
From a clinical perspective, identifying biases is often difficult or 
impossible because medical imaging datasets frequently either 
do not report demographics or they report limited demographic 
information (eg, age and sex but not race) (8,12). From a techni-
cal perspective, although algorithmic fairness concepts are well 
defined in the machine learning communities (17–19), they are 
not always easily translated into clinical concepts important to 

the radiology and medical communities because of differences in 
how bias is conceptualized between the groups. From a sociotech-
nical perspective, DL models can predict self-reported race from 
a medical image (14,15), which suggests a possible mechanism of 
biased DL models in radiology.

To guide the careful consideration and mitigation of biases in 
AI in radiology, this article summarizes potential pitfalls in the 
evaluation of algorithmic biases along with best practices to avoid 
these pitfalls and future directions to mitigate them across three 
key areas: (a) medical imaging datasets, (b) demographic defini-
tions, and (c) statistical evaluations of bias (Fig 1B). Although 
recent articles (20–24) have broadly reviewed AI bias in radiol-
ogy, this article focuses specifically on underrecognized potential 
pitfalls related to the three key areas. Despite being underrecog-
nized, recognition of these pitfalls is critically important to ensure 
the safe and trustworthy use of AI in radiology.

Medical Imaging Datasets
Medical imaging datasets are the foundation for the develop-
ment and evaluation of AI models in radiology (25), including 
for the evaluation of algorithmic biases. Both radiology soci-
eties (25–31) and independent research groups (32–35) have 
led efforts to curate and publicly release large medical imaging 
datasets to promote the development of AI models in radiology. 
Several AI competitions have been held on the basis of these 
datasets to crowdsource AI solutions for clinically important 
problems, ranging from diagnosis of pulmonary embolism  
(26) and identification of traumatic spine injuries (28) on CT 
scans to segmentation of brain tumors on MRI scans (36–38). 

Despite growing awareness of problems with fairness in artificial intelligence (AI) models in radiology, evaluation of algorithmic biases, or AI biases, 
remains challenging due to various complexities. These include incomplete reporting of demographic information in medical imaging datasets, 
variability in definitions of demographic categories, and inconsistent statistical definitions of bias. To guide the appropriate evaluation of AI biases 
in radiology, this article summarizes the pitfalls in the evaluation and measurement of algorithmic biases. These pitfalls span the spectrum from the 
technical (eg, how different statistical definitions of bias impact conclusions about whether an AI model is biased) to those associated with social 
context (eg, how different conventions of race and ethnicity impact identification or masking of biases). Actionable best practices and future directions 
to avoid these pitfalls are summarized across three key areas: (a) medical imaging datasets, (b) demographic definitions, and (c) statistical evaluations 
of bias. Although AI bias in radiology has been broadly reviewed in the recent literature, this article focuses specifically on underrecognized potential 
pitfalls related to the three key areas. By providing awareness of these pitfalls along with actionable practices to avoid them, exciting AI technologies 
can be used in radiology for the good of all people.
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These datasets have facilitated the development of state-of-the-
art AI models for numerous clinical applications—often with 
accompanying descriptions of their technical designs and open-
sourced code (39)—providing benefits for the clinical radiology 

Abbreviations
AI = artificial intelligence, DL = deep learning

Summary
Evaluation of algorithmic biases, or artificial intelligence biases, is 
challenging in radiology due to incomplete reporting of demographic 
information in medical imaging datasets, variability in definitions of 
demographic categories, and inconsistent statistical definitions of bias.

Essentials
 ■ Medical imaging datasets should report demographic variables, 
such as age, sex, race, and ethnicity, as a standard practice.

 ■ Reporting demographic variables is necessary to provide measures 
of diversity of the patients represented in these datasets, as well as 
to facilitate measurements of bias in artificial intelligence (AI) in 
radiology.

 ■ It is important to be precise and specific in the demographic 
definitions used to evaluate algorithmic biases, or AI biases, in 
radiology.

 ■ Precise and specific demographic definitions in radiology ensure 
robust and valid conclusions regarding the presence and magnitude 
of any algorithmic biases.

 ■ Statistical definitions of bias used in AI evaluations in radiology 
should be consistent with standard notions of demographic 
bias and chosen on the basis of specific clinical use cases and 
deployment settings.

and AI research communities. Several datasets have further be-
come the de facto reference standard benchmark datasets for 
radiology AI, such as the popular National Institutes of Health 
ChestX-ray14 (40), Stanford CheXpert (32), and MIMIC-
CXR (34) chest radiograph datasets (9,41,42).

Pitfalls Related to Demographic Reporting  
in Medical Imaging Datasets
Recognizing the importance of these datasets for the rapid de-
velopment of AI in radiology over the past several years, it is 
necessary to highlight potential fairness-related pitfalls related 
to the curation and assembly of medical imaging datasets. The 
first pitfall is whether patient demographics have been reported 
or collected in the first place. Demographic reporting is central 
to the evaluation and mitigation of biases in AI because it pro-
vides a summary of the diversity of data that might be used to 
train an AI model and allows for identification of biases through 
subgroup analyses. Although this consideration may seem ob-
vious, medical imaging datasets frequently do not report de-
mographics. A review of 23 publicly available chest radiograph 
datasets found that 17% and 26% of datasets, respectively, did 
not report demographics in any form in aggregate and at the 
image level (12). Reporting demographics at the image level 
is particularly relevant for bias evaluation, as aggregate de-
mographic reporting does not allow for subgroup analyses to 
identify potential biases. A similar evaluation of the popular 
data science competition platform, Kaggle (43), identified 24 
medical imaging datasets used to host data science competitions 

Figure 1:  Diagrams of (A) bias and (B) evaluation of bias. (A) Algorithmic bias, or artificial intelligence (AI) bias, in radiology has been demonstrated for 
multiple use cases. (B) The evaluation of AI bias in radiology has several potential pitfalls related to datasets, demographic definitions, and statistical evaluations. 
The neural network graphics created by Loxaxs from Wikimedia Commons were modified under Creative Commons license (CC0 1.0).
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primarily focused on radiologic and pathologic imaging. Of 
these 24 Kaggle-hosted datasets, only nine reported any demo-
graphics (Fig 2).

Although reporting demographics in medical imaging 
datasets is critical for the proper evaluation of biases in AI 
models, it is equally important to determine which specific de-
mographics should be reported. Real-world health disparities 
have been well documented in several diseases across numerous 
demographic groups, including age, sex, race, ethnicity, and 
socioeconomic status (44–47), frequently disadvantaging un-
derrepresented minority groups. Similar disparities have been 
confirmed when using AI in radiology, with minority groups 
frequently having worse performance compared with majority 
groups for tasks ranging from chest radiograph disease clas-
sification (9,10,42,48) to cardiac MRI anatomy segmentation 
(49). Because these biases span multiple demographic groups, 
medical imaging datasets should ideally report a comprehen-
sive set of demographic characteristics. Unfortunately, the 
status quo for demographic reporting has been suboptimal. A 
review of 23 public chest radiograph datasets (12) found that 
the datasets frequently reported age and sex (83% and 78% of 
datasets, respectively), but far fewer reported race or ethnicity 
(13% of datasets) or health insurance (4%)—a proxy for socio-
economic status. Similar findings were reported by Garin et al 
(43) in their review of Kaggle medical imaging datasets, which 
found that nine of 24 datasets reported demographic informa-
tion; of these, five reported age and sex, two reported sex only, 
one reported age only, and one reported age, sex, race, and eth-
nicity (Fig 2). Although these findings highlight pitfalls in pre-
existing imaging datasets, they may reflect the fact that medical 
journals do not necessarily mandate specific demographic 

reporting beyond age and sex (50), although the reporting of 
other relevant variables, such as race and ethnicity, are encour-
aged (51). This notion is corroborated by work showing that 
AI research articles in radiology journals frequently do not re-
port sociodemographic variables, including race or ethnicity 
(52). An important consideration for answering the question 
of what demographic variables should be reported is how these 
variables should be defined, which will be covered in the sub-
sequent section.

Because medical imaging datasets are frequently obtained as 
a convenience sample (20) (eg, consecutive series of patients pre-
senting to a hospital), they will likely have some degree of imbal-
ance in the representation of demographic groups that reflects 
the underlying population and/or pre-existing health inequities 
in access to care (46,47,53). For example, a study evaluating ra-
cial bias of a cardiac MRI anatomy segmentation DL tool used a 
dataset of 5903 cardiac MRI scans from the UK Biobank, which 
consisted of 81% White patients; this percentage mirrors the rep-
resentation of White patients in England and Wales from which 
the UK Biobank data are drawn (54). Ideally, medical imaging 
datasets would balance demographic representation by design 
whenever possible. In a similar vein, potential confounding non-
demographic variables may be present in medical imaging datas-
ets that reflect underlying differences in health outcomes or access 
to health care between different demographic groups. These po-
tential confounders can include scanner brand and model (55), 
department where the image was obtained (eg, inpatient vs out-
patient) (55), radiographic views (56), hospital where the imag-
ing was performed (57), and disease prevalence (57). Strikingly, 
these variables can be predicted by DL models based on medical 
images alone through uncanny mechanisms. DL models are able 

Figure 2: Figure illustrates demographic reporting practices of medical imaging datasets on Kaggle platform (https://www.kaggle.com) stratified by body part, imaging type, 
and types of demographic metadata reported. The majority of datasets did not report any demographics and those that did, reported age and/or sex only with the exception of one 
that reported age, sex, and race. Data are from Garin et al (43). Image courtesy of Sean P. Garin.



Radiology: Volume 315: Number 2—May 2025 ■ radiology.rsna.org 4

Evaluation of AI Algorithmic Biases in Radiology Yi et al

to identify the hospital or site at which a radiograph was obtained 
by using laterality markers (57), image annotations indicating 
the side of the body being viewed (right vs left). These lateral-
ity markers can be used as shortcuts (57–60) to make the right 
diagnoses for the wrong reasons (ie, learning to make a diagnosis 
based on spurious correlation [eg, laterality marker], rather than 
the disease or condition itself ) (Fig 3). Evaluations for biases in 
AI models should account for known confounding factors to en-
sure that conclusions about fairness of AI models are rigorously 
established (61).

Technical Solutions to Mitigate or Augment 
Imperfect Datasets
Although these pitfalls related to datasets stem from clinical 
realities and challenges, recent technical advances may provide 
solutions to mitigate their negative impact on the development 
of biased AI models and to evaluate for AI biases in the absence 
of demographic information (Fig 4). When demographic vari-
ables are not reported, the use of pseudolabels for demographic 
variables provided by DL models previously trained to predict 
demographics (14,15,62,64) is a promising approach to provide 
estimates of potential bias in AI models (Fig 4A). Pseudolabels, 
or predictive labels, are labels assigned to unlabeled data from 
the outputs of a trained AI algorithm. These pseudolabels can 
be applied to statistical methods for providing mathematically 
provable guarantees on the degree of disparities between demo-
graphic groups (62) (Fig 4B). However, even in the best case, 
where demographics and confounding variables are reported, 
achieving equal performance of a predictive algorithm for all 
demographic groups and all possible confounding variables will 
be generally impossible.

Generative AI may be able to help. Generative AI is a set of ma-
chine learning techniques that are able to sample—or generate—
new data from a specific distribution, including images, text, and 
video. Generative AI approaches to image synthesis (65) provide the 
potential to create synthetic imaging datasets with more balanced 
representation of these demographic and confounding variables. 
Recent work by Ktena et al (63) demonstrated that using genera-
tive AI diffusion image synthesis models to augment medical im-
aging datasets with demographic imbalances, disease prevalence, 

and other potential confounding features resulted in better down-
stream DL models. These models were more robust and had smaller  
demographic-based performance disparities compared with DL 
models trained on the real images alone (Fig 4B). Although these 
technical approaches are early in their development, they indicate 
promise for the use of advanced AI and statistical methods to over-
come pitfalls related to measurement of AI biases in the setting of 
imperfect datasets.

Avoiding Pitfalls Related to Medical Imaging 
Datasets: Best Practices and Future Directions
Best practices and future directions to avoid the pitfalls related to 
medical imaging datasets are summarized in Table 1. These best 
practices include collecting and reporting as many demographic 
variables and common confounding features as possible and col-
lecting and sharing raw imaging data without institution-specific 
postprocessing, whenever feasible. Future directions are also pre-
sented to guide future research and curation of medical imaging 
datasets.

Pitfalls Related to Demographic Definitions
Although demographic variables are a standard reporting ele-
ment for datasets and research studies in radiology (50,66), het-
erogeneity in how these variables are defined are an important 
and insidious pitfall for the evaluation of AI biases in radiology  
(Fig 5). Many demographic categories such as gender and 
race are not biologic variables (51,67) but are self-identified 
characteristics informed by many factors, including society 
and lived experiences. They are nonetheless how biases and 
health disparities are measured and acted upon, for example, 
by allocating more health care resources toward underrepre-
sented groups.

Sex and Gender
The terminologies used for demographic concepts in radiology 
AI research can be imprecise and/or confusing. For example, 
the terms sex (biologic) and gender are often used interchange-
ably, despite representing two different concepts (67) (Fig 5A). 
Sex is a biologic category defined by a person’s genetic chromo-
somal makeup (eg, XX or XY chromosome for male and female, 

Figure 3:  (A) Images from a deep learning (DL) model in radiology that can learn to identify confounding features related to bias and unfair predictions, including laterality 
markers (image annotations indicate the side of the body being viewed [right vs left]) to identify the hospital at which a chest radiograph was obtained. Images adapted and reprinted 
from reference 57, an open-source article, published under the Creative Commons license (CC BY 4.0). (B) Image from a DL model that can make a diagnosis of radiographic 
abnormality on extremity radiographs, also known as shortcut learning. Reprinted, with permission, from reference 59.
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respectively), while gender is an individual’s self-identification as 
male, female, or nonbinary (67); accordingly, an individual’s sex 
can be biologically male but their gender can be female. Nev-
ertheless, the terms sex and gender have been used interchange-
ably in AI radiology research. A landmark study by Larrazabal 
et al (10) used the Stanford CheXpert dataset to conclude that 

Figure 4: Technical approaches to 
addressing pitfalls in dataset limitations 
for the evaluation of artificial intelligence 
(AI) bias in radiology. (A) Deep learn-
ing models trained to identify patient-
reported demographics on medical 
images can be used to “recover” pseu-
dolabels for demographics, which allow 
for estimates of dataset diversity and 
potential biases. The neural network 
graphic (middle graphic) was modified 
under Creative Commons license (CC0 
1.0) and the chest radiograph graphics 
(right and left graphics) were created by 
Jmarchn from Wikimedia Commons, un-
der Creative Commons license (CC BY-
SA 3.0). (B) These pseudolabels (labels 
assigned to unlabeled data from the 
outputs of AI algorithms trained to pre-
dict that label) can be used in conjunc-
tion with advanced statistical methods 
to predict upper bounds for the degree 
of fairness violations and performance 
disparities for an AI model tested on a 
dataset even in the absence of demo-
graphic labels. Graph on the left is a free 
image from Rawpixel, licensed under a 
Creative Commons license (CC0 1.0) 
(https://www.rawpixel.com/). Chart 
on the right is adapted and reprinted 
from reference 62, an open-source ar-
ticle, published under the Creative Com-
mons license (CC BY 4.0). B = worst-
case fairness violation of TPR, TPR = true-
positive rate. (C) Generative AI models 
(AI trained to generate new data, includ-
ing images, text, and video) can be used 
to create synthetic medical images to 
augment datasets, which can be used 
to train subsequent disease classification 
AI models that have decreased fairness 
disparities. Reprinted from reference 63, 
an open-access article, published under 
Creative Commons license (CC BY 4.0).

gender-imbalanced datasets lead to biased DL chest radiograph 
disease classifiers, despite the fact that CheXpert defines the male 
and female variable as biologic sex (68). MIMIC, a widely-used 
public multimodal medical dataset (69), which includes chest ra-
diographs (34), defines its demographic variable gender as “the 
genotypical sex of the patient” (70). Recognizing the importance 
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of gender inclusivity for society and for radiology research and 
practice (71,72), it is critical that AI researchers and radiologists 
evaluating AI models for biases use the proper terminology to 
refer to sex and gender.

Race and Ethnicity
Similar to sex and gender, race and ethnicity are frequently con-
flated as being the same category (9) (Fig 5B), despite their being 
two separate social constructs that have meant different things 
at different times, and which continue to evolve (73). Broadly 
speaking, race refers to broad categories generally based on ances-
try and physical characteristics, whereas ethnicity refers to one’s 
cultural identity based on things such as language, customs, and 
religion (51,74). It is important to understand that concepts of 
race and ethnicity do not necessarily translate outside of a specific 
society (51); unless otherwise stated, the discussions of race and 
ethnicity in this article will be based on the U.S. concepts of these 
demographic categories for illustrative purposes.

The U.S. Census categorizes race into six groups (75): White, 
Black, American Indian or Alaska Native, Asian, Native Hawaiian 
or Other Pacific Islander, and Some Other Race (for people who 
do not identify with a single race), noting that individuals can also 
select more than one racial group (eg, for people who identify as 
biracial); and ethnicity into two categories: Hispanic or Latino or 
Not Hispanic or Latino. Despite this well-defined distinction be-
tween race and ethnicity, AI biases have been evaluated in radiol-
ogy research by combining race and ethnicity into a single group 
(eg, considering Hispanic or Latino ethnicity as a single race/
ethnicity category [7,9,42] or a single ethnicity category [15]). 
Of note, prior studies have used the provided race/ethnicity la-
bels already present in widely used public datasets (34,76), which 
underscores the importance of addressing the proper collection 
of demographic data at the dataset curation stage. In addition to 
respecting the racial and ethnic self-identities of people, ensuring 
accurate measurements of race- and/or ethnicity-based biases in 
AI models is important to allow for apples-to-apples comparison 
of bias evaluations, and also because these serve as recommenda-
tions upon which health policy decisions are made. If conclusions 

about the presence and degree of race- or ethnicity-based biases 
are erroneously made because of variable conceptualizations of 
these demographics, then the resultant health policies could be 
made in error, potentially perpetuating pre-existing inequities.

The real-world impact of algorithmic bias evaluation is il-
lustrated in work by Obermeyer et al performed in 2019 (77), 
which identified racial bias in a health risk prediction algorithm 
used to allocate health insurance resources. This algorithm sys-
tematically disadvantaged Black patients compared with White 
patients; specifically, for the same algorithmic risk score, Black 
patients were much sicker than White patients (77). These biases 
were determined to result from the algorithm predicting health 
care costs as a proxy for illness (77). These findings underscore 
the reality that structural biases are frequently hidden in datasets, 
which are reflective of societal disparities; for example, disparities 
due to unequal access to imaging centers between demographic 
groups (53,78,79) or differences in disease prevalence or severity 
(46,57). This work led to real-world change through the health 
insurance company whose algorithm was audited as the company 
worked with the study authors to retrain this algorithm to be 
less biased (77). Real-world change also resulted from influencing 
lawmakers (80) and regulators (81) to hold health care insurance 
companies and hospitals accountable by using commercial health 
care prediction tools in ways that are safe and equitable.

Although they may seem like static concepts, demographic 
categories are fluid, having had different meanings in different so-
cieties and times in history (51), and they continue to evolve. In 
2023, motivated by the recognition of the inadequacies of current 
coarse race categories to represent the diversity in the U.S. popula-
tion (82), the Biden administration proposed major changes to 
the demographic conceptions of race and ethnicity with the addi-
tions of new race categories to include Middle Eastern or North 
African—separating this group from the historical White cat-
egory—and listing Hispanic or Latino as a new race category (73). 
Moving toward more granular concepts of race and ethnicity is a 
goal that is not only socially conscious and beneficial, but one that 
has important health care implications in evaluations of bias in 
AI. Although race labels such as those used by the U.S. Census are 

Table 1: Best Practices and Future Directions for Avoiding Pitfalls Related to Medical Imaging Datasets for Evaluation of 
Fairness of AI in Radiology

Best Practice Recommendations Future Directions (Open Questions)
When assembling medical imaging datasets, intentionally collect  

and report demographic information as allowed within patient  
privacy regulations, such as the Health Insurance Portability  
and Accountability Act, or HIPAA.

Collect as many demographic variables as possible, with a  
suggested minimum set including age, sex and/or gender,  
race, and ethnicity.

Collect common confounding features in medical imaging  
datasets, such as imaging view, hospital site, inpatient versus 
outpatient imaging, and scanner brand and model.

Whenever possible, collect and report raw imaging data,  
without location and/or institution-specific postprocessing.

What is the best way to standardize reporting of demographics in  
medical imaging datasets, especially considering that demographic  
categorizations can differ between societies?

How useful and accurate are AI-generated demographic pseudolabels*  
to provide estimates of diversity in datasets that do not have  
demographic information reported for use cases beyond chest  
radiographs (62)?

How useful and reliable are generative AI† tools to augment datasets  
with synthetic images to balance unavoidable demographic  
imbalances?

How should we identify and account for nondemographic confounding  
features to prevent shortcut learning and downstream bias in  
AI models in radiology?

Note.—AI = artificial intelligence.
* Pseudolabels are labels assigned to unlabeled data from the outputs of AI algorithms trained to predict that label.
† Generative AI is AI trained to generate new data, including images, text, and video.
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the coarse Asian category (8). Similar findings have been con-
firmed for clinical risk prediction models using tabular data 
(83). These findings highlight the importance of evaluating for 

Figure 5: Demographic definitions are often used 
imprecisely but have specific semantic distinctions and 
meanings that are critical for the evaluation of artificial 
intelligence (AI) bias in radiology. (A) Male, female, 
and other related categories can fall under sex and/or 
gender, which are two separate categories. (B) Similarly, 
race and ethnicity are often conflated, but represent two 
distinct concepts and categories. Using granular ethnicity 
labels (eg, Korean or Indian) can help identify clinically 
meaningful performance disparities in AI models in radi-
ology that can go hidden when measuring such biases 
using coarse race labels (eg, Asian). (C) Forest plots show 
granular underdiagnosis rates. In this example, there are 
several hidden underdiagnosis disparities identified within 
each coarse racial group when evaluating granular 
ethnicity labels that often exceed the variation between 
coarse racial groups. Granular groups labeled with an 
asterisk are the patients who only reported a coarse race 
or ethnicity. FPR = false-positive rate. Reprinted, with per-
mission, from reference 8.

a convenient way to categorize people 
loosely based on supposed area of genetic 
ancestry, they are imperfect and coarse as 
they broadly categorize large swaths of 
people with considerable diversity. For 
example, the race group Asian encom-
passes an entire continent with ethnic 
subgroups, such as Indian, Chinese, and 
Korean (8,83). Importantly, these coarse 
racial labels can mask clinically meaning-
ful medical differences, such as diabetes 
being nearly twice as common in U.S. 
adults of Indian descent compared with 
those of Chinese descent (84).

When evaluating for AI biases in 
radiology, similar masking of clinically 
meaningful performance disparities 
can occur if the differences between 
more granular ethnic groupings are 
not considered. Bachina et  al (8) pre-
viously evaluated whether coarse race 
labels mask underdiagnosis disparities 
that exist between more granular eth-
nicity labels for state-of-the-art DL 
chest radiograph disease classification 
models. They first confirmed previ-
ous findings that DL models trained 
on two large U.S. datasets had higher 
underdiagnosis rates in non-White pa-
tients compared with White patients 
(9). They then showed that coarse race 
labels masked real underdiagnosis dis-
parities between granular ethnic groups 
(Fig 5C). Moreover, these variations in 
underdiagnosis bias within a coarse ra-
cial group frequently exceeded those 
between coarse labels. For example, a DL model trained on the 
CheXpert dataset (32) had underdiagnosis rates ranging from 
23.1% (Korean) to 33.2% (Indian) compared with 23.5% for 
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Figure 6: Statistical evaluations of artificial intelligence (AI) bias in radiology have several pitfalls and considerations to ensure clinically relevant conclusions 
are drawn. These include (A) recognizing the paradox of the incompatibility of fairness metrics, where different fairness metrics cannot be fulfilled simultaneously, 
analogous to how a receiver operating characteristic curve requires choice of threshold points that have trade-offs between sensitivity and specificity, and (B) distin-
guishing between statistical and clinical significance when evaluating measured biases. The neural network graphic created by Loxaxs from Wikimedia Commons 
was modified under Creative Commons license (CC0 1.0).

Table 2: Best Practices and Future Directions for Avoiding Pitfalls Related to Demographic Definitions for Evaluation of 
Fairness of AI in Radiology

Best Practice Recommendations Future Directions (Open Questions)
Be specific and precise in the terminologies used for defining  

demographic groups (eg, sex and gender are not the same thing).
Do not conflate separate but related demographic categories (eg, race  

and ethnicity). Ensure that conventions used are consistent with  
those appropriate for a specific society, time, and place, with 
considerations for both individual lived experiences and  
conventions used to inform health policy.

Be aware of changing societal norms for demographic identification 
and adapt evaluations of bias in AI in radiology with current 
categorizations.

How do we best measure biases reflective of potential differences  
in genetic ancestry when using coarse labels of race and more  
granular, yet still coarse, labels of ethnicity (8)?

How do we compare results of studies or evaluations of AI in 
radiology claiming conclusions about bias in the setting of 
heterogeneous categorizations used for various demographics?

What is most important for assessing bias in AI–individual’s  
identities, which inform people’s lived experiences, or  
government-defined categorizations, which may inform health  
policy and regulation?

Note.—AI = artificial intelligence.

biases in AI using demographic categories that best represent 
the identities of individuals, as well as their potential unique 
risks for disease that may be related to their underlying genetic 
ancestry. As demographic concepts evolve in society, radiolo-
gists—and regulatory entities—evaluating AI for biases will also 
need to adapt their evaluations accordingly.

Avoiding Pitfalls Related to Demographic 
Definitions: Best Practices and Future Directions
Best practices and future directions to avoid these pitfalls re-
lated to demographic definitions and conventions are summa-
rized in Table 2. These include being specific with demographic 
terminologies used, avoiding conflation of separate but related 

demographic categories such as race and ethnicity, and applying 
these categories in accordance with societal norms. Future direc-
tions are presented to guide specific and precise evaluations of 
demographic bias in AI in radiology.

Pitfalls Related to Statistical Evaluations of Bias
Evaluating for demographic bias in AI models in radiology is crit-
ically important to promote the safe and equitable use of these 
technologies in clinical care. At the same time, the difficulty in 
measuring these biases is increased by an existing gap between 
technical and/or statistical and clinical domains (Fig 6). Al-
though definitions of bias and fairness have been well-established 
and accepted for years by the statistics and machine learning 
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communities (17–19), these are typically general notions that 
were not conceptualized with radiology or medicine in mind. 
Even the terminologies used for statistical concepts that radiolo-
gists take for granted can be different. In fact, the term bias can 
have different meanings. In statistics, bias refers to a discrepancy 
between the expected value of an estimated parameter and its true 
value (20,21,23). In the context of statistical learning, bias toward 
a certain type or class of solutions, or predictors, is necessary for 
any learning task. However, in this article, the term bias is used in 
the context of demographic fairness, which reflects differences in 
metrics between different demographic groups (7–9).

Evaluating for biases or disparities in health care outcomes 
between different demographic groups is not unique to AI but 
is a standard part of all clinical research, whereby two or more 
groups are compared for a specific outcome in relation to a sin-
gle intervention, event, or risk factor of interest. For example, 
an evaluation of racial and ethnic disparities in COVID-19 dis-
ease severity on chest radiographs statistically compared chest 
radiograph severity scores between Black and White patients 
(46). Applied to AI models, evaluations for biases are performed 
via subanalyses according to the demographic group for an AI 
model of interest (7–9,11,42,85). For instance, an evaluation of 
race-based biases of a commercial AI product for digital breast 
tomosynthesis cancer screening compared false-positive rates 
between different race groups (11). This notion of bias is also 
well accepted by the statistics and machine learning communi-
ties (comparing one AI model on different test sets consisting 
of demographic groups of interest) (17). Despite this notion of 
clinical AI bias as evaluations of differences in model perfor-
mance between demographic groups, a major pitfall is using a 
different notion of bias.

A seminal article by Larrazabal et al (10) published in 2020 
systematically evaluated the impact of male-to-female imbalance 
in training datasets on the development of biased chest radio-
graph DL disease classifiers. However, the notion of bias used in 
this study is different from standard notions of bias. Rather than 
comparing the performance of DL models trained on datasets 
with varying degrees of male-to-female imbalance on test sets of 
men versus women, this study compared the performance of two 

DL models (trained with different levels of representation) on 
one test set at a time (men or women). Conclusions about dis-
parities in the performances of these models do not necessarily in-
dicate bias in the notions defined previously, because they might 
simply indicate that one model outperforms the other in general 
(regardless of the sex of the individuals in the test set).

The more precise way to evaluate for bias would be to evaluate 
differences in performance of a single AI model tested on im-
ages from men versus women (9,42,85). This is a standard notion 
of demographic fairness that allows for the auditing of a model 
for disparities in performance for different demographic groups. 
Ensuring that standard notions of bias are used when evaluating 
AI in radiology is critical because the conclusions reached may 
be different depending on the specific comparisons performed, 
with implications for downstream health policy and local hospi-
tal AI deployment decisions. Moreover, while the notions of bias 
used by Larrazabal et al (10) are difficult—if even possible—to 
mitigate, definitions of demographic bias based on performance 
metrics of a given model when tested on different demographic 
groups are easier to correct and alleviate by means of statistical 
tools that are much better understood (18,19,62).

Pitfalls Related to Statistical Evaluations  
of Fairness of AI
Once standard notions of bias are established, additional pitfalls 
exist for the statistical evaluations of AI biases. Chief among these 
is the concept of the incompatibility of fairness metrics (17,19,86). 
This is the observation that different notions of fairness are fre-
quently incompatible and cannot be satisfied simultaneously; 
therefore, there is no universal fairness metric that can be applied 
to all use cases and problems (19). There are several different 
fairness metrics that emphasize different statistical performance 
metrics, which have been previously described in detail (20); for 
example, demographic parity (18,87) evaluates whether the pre-
dictions made by an AI model are independent of a sensitive (eg, 
demographic) attribute, whereas equalized odds (18,88) evaluates 
whether true-positive rates and false-positive rates are equal be-
tween different groups. Because specific fairness metrics empha-
size different characteristics of a diagnostic test, an AI model that 

Table 3: Best Practices and Future Directions for Avoiding Pitfalls Related to Statistical Evaluations of Bias and Fairness of 
AI in Radiology

Best Practice Recommendations Future Directions (Open Questions)
Use standard and well-accepted notions of demographic bias  

evaluation based on clinically relevant comparisons of AI model  
performance between different demographic groups.

Choose fairness metrics that are specific and most relevant to the clinical 
use case and deployment setting of interest.

Be mindful that different operating points of a predictive model  
will result in different performance, and thus potentially different  
demographic biases. Ensure that such operating points and  
thresholdings are documented in research and by vendors  
providing commercial AI products.

Do not conflate statistical significance with clinical significance.  
Ensure that any conclusions about bias are placed into clinical  
context (ie, how will the differences or disparities identified  
translate into clinical impact?).

How will conclusions reached in research evaluations of bias in  
AI models impact or be used to inform health policy locally  
(eg, at a hospital level), nationally (eg, U.S. Food and Drug  
Administration), and internationally? Accordingly, how should  
these evaluations be performed, and by whom?

How should standards for statistical evaluation of AI bias in  
radiology be operationalized in a way that achieves consensus  
between the technical and clinical communities?

Given that metrics of demographic bias are in general incompatible,  
how can clinicians and computer scientists alike be best guided  
to choose the right metric for the right clinical context?

How do we best define clinically relevant metrics and model  
downstream clinical impact of biased AI in radiology?

Note.—AI = artificial intelligence.
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is fair under one definition of fairness may not be fair simultane-
ously under another definition of fairness (except under stringent 
special cases). For example, if an AI model has equal sensitivity 
between old and young patients and is, therefore, fair and un-
biased based on sensitivity, it may not necessarily be fair when 
comparing specificity (Fig 6A). This is a reality of the well-known 
tradeoffs of sensitivity and specificity of any diagnostic or predic-
tive tool, which can be illustrated by the ubiquitous area under 
the receiver operating characteristic curve (89,90). Furthermore, 
because predictive models must choose an operating point, or 
threshold, on the receiver operating characteristic curve, differ-
ent operating points used to emphasize or optimize certain diag-
nostic measures (eg, optimizing for specificity for a confirmation 
examination) may result in different conclusions about bias or 
fairness in the same AI model. Conclusions about whether an AI 
model is biased or not should also consider the impact of differ-
ent thresholds.

These statistical considerations must ultimately be made with 
the clinical context and use case in mind, with the goal of prevent-
ing harms while maximizing benefits (17). In addition to consider-
ing the statistical performance metrics that are most desirable in an 
AI tool (eg, sensitivity for a screening examination), radiologists 
evaluating AI must consider the clinical relevance of specific metrics 
beyond mere statistical significance in the appropriate clinical and 
societal context. A special remark is also warranted regarding dif-
ferences between statistical and clinical significance (91). Indeed, a 
difference in predictive performance among different groups, even 
if statistically significant, might not imply a change in the clinical 
outcome or the patient’s treatment (Fig 6B).

For example, for pediatric bone age prediction, a significant 
error in predicted bone age may not necessarily result in any 
clinical difference in terms of the diagnosis rendered for normal, 
advanced, or delayed skeletal maturity (7). The converse is also 
possible. Beheshtian et  al (7) previously evaluated biases in an 
award-winning bone age DL model and found that although 
the differences in mean absolute difference of predicted bone age 
compared with the reference standard between men and women 
were not statistically significant, there were higher proportions 
of clinically significant errors (ie, those that would change the 

diagnosis of skeletal maturity as normal, advanced, or delayed) in 
women compared with men. This difference in conclusions about 
bias highlights the importance of the use of clinically relevant 
metrics to assess bias in AI models, since the clinical impact is the 
ultimate outcome of interest for AI models in radiology. Whether 
considering high-level notions of algorithmic bias, specific statis-
tical definitions and metrics, and clinically relevant metrics for 
use cases, it is critical that AI models be evaluated with the right 
metric for the right context.

Avoiding Pitfalls Related to Statistical  
Evaluation of Biases and Fairness:  
Best Practices and Future Directions
Best practices and future directions to avoid these pitfalls related 
to the statistical evaluation of AI biases and fairness in radiology 
are summarized in Table 3, including the use of standard statisti-
cal notions of demographic biases, choosing fairness metrics most 
relevant to a particular clinical use case, and not conflating statis-
tical significance with clinical significance.

Suggested courses of action to mitigate demographic biases 
and improve future statistical evaluations of AI bias in radiology 
are summarized in Table 4.

Conclusion
Despite the growing awareness of fairness problems of artificial 
intelligence (AI) in radiology, evaluation of algorithmic biases, 
or AI biases, remains challenging. To guide the evaluation of de-
mographic biases in AI in radiology, this article summarizes best 
practices to identify and mitigate potential pitfalls in evaluation of 
algorithmic biases related to medical imaging datasets, demographic 
definitions, and statistical evaluations of bias. This article also pro-
vides future directions with open questions for further research and 
suggested initial courses of action to mitigate demographic biases. 
These future directions include establishing standards for dataset 
demographic reporting and statistical evaluations of AI biases that 
are clinically relevant, as well as developing and validating techni-
cal methods for mitigating algorithmic biases; for example, using 
generative AI to improve dataset diversity and reconciling tensions 
that result from complexities that are technical (eg, incompatibility 

Table 4: Suggested Courses of Action to Mitigate Demographic Biases in AI in Radiology

Course of Action Problems Addressed
Form a consensus panel to define and continuously update standards for reporting  

demographics and other patient characteristics that can result in protected  
demographic groups in different contexts.

Improving dataset reporting of demographics.

Develop a standardized framework to identify and address potential nondemographic  
confounding features that could contribute to algorithmic biases, such as clinical  
site (eg, inpatient vs outpatient) and scanner type and/or model.

Improving dataset reporting of potential  
nondemographic contributors to biases in AI in  
radiology.

Develop a standard lexicon of terminology for concepts of fairness and AI bias  
in radiology.

Ensuring standardized terminology for research and  
discussion about demographic biases in AI in 
radiology.

Develop standardized statistical evaluation frameworks for evaluation of demographic  
bias of AI algorithms in radiology grounded in clinical contexts.

Standardizing the statistical evaluation of AI biases  
in radiology in clinically meaningful ways.

Create checklists for AI research manuscripts’ reporting of key elements relevant to  
evaluation and mitigation of demographic biases in AI in radiology, including  
reporting of demographic information, statistical definitions of algorithmic fairness  
and bias employed and their justification, and discussion of subgroup analyses.

Facilitating reproducible, transparent, and rigorous  
scientific manuscripts using AI in radiology with  
regards to demographic fairness.

Note.—AI = artificial intelligence.
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of fairness metrics), clinical (eg, how do we best define clinically 
relevant fairness metrics), and social (eg, which demographic cat-
egorizations should we use for a given society). Although AI bias in 
radiology is worrisome, by being aware of these pitfalls and ways to 
mitigate them, we will be better equipped to use these promising 
technologies for the benefit of all people.
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