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Primary atopic disorders: inborn errors of immunity 
causing severe allergic disease 
Maryam Vaseghi-Shanjani1,2, Simran Samra1,2, Pariya Yousefi1,  
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Allergic diseases, including asthma, allergic rhinitis, atopic 
dermatitis, and food allergies, are driven by dysregulated 
immune responses, often involving IgE-mediated mast cell and 
basophil activation, Th2 inflammation, and epithelial 
dysfunction. While environmental factors are well-known 
contributors, the genetic components underpinning these 
conditions are increasingly understood. Traditionally viewed as 
polygenic multifactorial disorders, allergic diseases can also be 
caused by single-gene defects affecting the immune system 
and skin epithelial barrier, leading to profoundly dysregulated 
allergic responses. These monogenic allergic disorders are 
collectively referred to as primary atopic disorders or PADs. To 
date, over 48 single-gene defects have been established to 
cause PADs. This review highlights (i) the significance of PADs, 
(ii) the biological pathways involved in the pathogenesis of 
PADs, (iii) clinical strategies to differentiate PADs from their 
much more common polygenic counterparts, and (iv) diagnostic 
strategies for PADs. 
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Single-gene defects as the cause of allergic 
disease 
While the vast majority of people with allergies have a 
polygenic multifactorial disorder caused by the interac-
tion of multiple genes with environmental exposures, we 

have come to appreciate that allergic diseases can also be 
caused by single-gene defects. These monogenic dis-
orders that affect the development, function, and reg-
ulation of the immune system and the skin epithelial 
barrier lead to dysregulated pathogenic allergic effector 
responses [1–3]. 

Collectively referred to as ‘monogenic allergic diseases’ 
or ‘primary atopic disorders’ (PADs), these Mendelian 
disorders are clinically and genetically heterogeneous 
with over 48 known genetic causes identified to date 
(Table 1) [4–6]. PADs represent a subset of the larger 
group of monogenic immune disorders collectively 
known as inborn errors of immunity or IEIs. Some PADs 
result from damaging variants1 in genes that encode 
components of the immune system and the skin epi-
thelial barrier, such as cytokines, receptors, structural 
proteins, and enzymes. Other PADs are caused by var-
iants that disrupt genes involved in immune system 
development, activation, or differentiation, such as 
transcription factors and signaling molecules (see  
Table 1) [5]. 

The clinical and molecular heterogeneity of PADs un-
derscores their complexity and emphasizes the need to 
understand the mechanisms involved in their patho-
genesis. This understanding is crucial to develop tar-
geted therapeutics that can effectively address the 
underlying molecular causes of these conditions. This 
review aims to highlight the significance of PADs, the 
disrupted biological pathways involved in their patho-
genesis, and the central role clinical genetic sequencing 
plays in advancing affected patients to diagnosis and 
treatment. 

Categorizing the disrupted cellular and 
molecular pathways that cause primary 
atopic disorders 
PADs are driven by genetic variants that interfere with 
the normal development and function of the immune 
system, the integrity of epithelial barriers, or cellular 
signaling [1]. Variants in these genes impact an array of 
cellular mechanisms that lead to the disruption of normal 

]]]] 
]]]]]] 

1 Throughout this Review, we will use the term ‘damaging variant’ 
to describe a disease-causing genetic change, rather than ‘mutation’ 
which has potentially pejorative connotations. 
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immune cell functions and/or skin integrity, ultimately 
resulting in unchecked allergic inflammation [1,3]. 
These genetic variants can cause disease through the full 
range of genetic mechanisms, including gain-of-function 
(GOF), loss-of-function (LOF), and dominant-negative 
(DN) effects, each contributing to disease pathology 
through distinct modes of inheritance, including auto-
somal dominant, autosomal recessive, X-linked, and de 
novo disease. In the following paragraphs, we will group 
the individual PADs into mechanistic categories, and a 
more comprehensive list of currently well-characterized 
PADs is presented in Table 1. Recognizing the pleio-
tropic nature of many genes, some PAD genes are listed 
under more than one category: for example, biallelic 
disruption of TBX21 causes deficiency of the transcrip-
tion factor T-bet, affecting both the development of T 
cells (and many other immune cells) while also causing 
allergic inflammation due to excessive T helper 2 (Th2) 
cytokine production by adaptive CD4+ αβ T lympho-
cytes [7–9]. 

Disruption of skin barrier function 
LOF variants in proteins that maintain the integrity of 
the epithelial barrier are a well-established cause of 
PADs. The integrity of the epithelial barrier is main-
tained by structural proteins like filaggrin (encoded by 
FLG), protease inhibitors such as serine peptidase in-
hibitor Kazal type 5 (SPINK5), and proteins involved in 
intercellular adhesion including corneodesmosin 
(CDSN), desmoglein 1 (DSG1), and desmoplakin (DSP). 
Germline LOF variants in these proteins impair skin 
barrier function resulting in enhanced exposure of an-
tigen-presenting cells to environmental antigens, pene-
tration of microbiota, and water loss [1,10]. These lead to 
the secretion of alarmins, such as interleukin (IL)-25, 
IL-33, and thymic stromal lymphopoietin, which are key 
regulators of type 2 immunity and trigger an allergic 
response [11]. Allergic inflammation persists because of 
downstream type 2 cytokines, such as IL-4 and IL-13  
[12]. Although here we discuss the genes that are im-
plicated in skin barrier function, it is also important to 
note that barrier disruption in the pathogenesis of atopy 

may not be limited to skin — the disruption of the gas-
trointestinal tract or even respiratory mucosa could 
conceivably contribute [13]. For instance, in a recent 
study, Laky et al. demonstrated that intrinsic defects in 
transforming growth factor beta (TGF-β) receptor sig-
naling within the gut epithelium can independently 
drive eosinophilic esophagitis, highlighting the role of 
epithelial cells not only as a physical barrier but also as 
key regulators of local immune responses through al-
tered differentiation and alarmin production [14]. 

Granulocyte dysregulation 
Dysregulation of granulocytes, encompassing basophils, 
eosinophils, mast cells, and neutrophils, is another me-
chanism leading to heightened type 2 inflammation and 
development of PADs [15]. In healthy individuals, 
granulocytes (classically mast cells) release proin-
flammatory mediators after sensing an allergen through 
their high-affinity immunoglobulin E (IgE) receptors. 
However, dysregulation of granulocytes through a 
variety of GOF mechanisms results in PADs. For ex-
ample, variants in KIT result in mastocytosis due to 
uncontrolled mast cell proliferation. Beyond prolifera-
tion defects, abnormal mast cell degranulation can cause 
urticaria in these conditions [16]. Additionally, PLCG2 
variants implicated in cold-induced urticaria lead to 
constitutive activation of PLCγ2 at lower temperatures, 
triggering mast cell degranulation and histamine release  
[17]. Also, vibratory urticaria caused by variants in 
ADGRE2 results from mechanical stimuli disrupting re-
ceptor subunit interactions, leading to mast cell activa-
tion and urticaria (or hives) [18]. 

Abnormal actin cytoskeleton remodeling 
As key components of the adaptive immune system, 
lymphocytes also play a pivotal role in the development 
and progression of allergic inflammation in PADs. The 
actin cytoskeleton is critical to lymphocyte function, 
playing a key role in T cell receptor (TCR) signaling, 
clonal expansion, and regulatory T cell (Treg) function. 
The actin cytoskeleton facilitates the movement and 
organization of signaling molecules at the immunological 

Table 1 

Pathogenic mechanisms and an illustrative list of genes implicated in monogenic allergic diseases.    

Pathogenic mechanism Genes  

Disruption of skin barrier function FLG, SPINK5, CDSN, DSG1, DSP, CARD14 
Granulocyte dysregulation KIT, PLCG2, ADGRE2 
Abnormal actin cytoskeleton remodeling WAS, WIPF1, ARPC1B, DOCK8, NCKAP1L, CARMIL2, STK4, MSN 
Attenuated antigen receptor signaling CARD11, CARD14, MALT1, CARMIL2, RFXANK 
Abnormal T cell development and/or Restriction of the 
T cell receptor repertoire 

LIG4, DCLRE1C, RAG1, RAG2, ADA, IL7RA, IL2RG, ZAP70, CHD7, TBX1, 22q11.2 
deletion syndrome, FOXP3, TBX21, IKZF1GOF 

Altered cytokine signaling JAK1GOF, STAT1GOF, STAT3DN, STAT3GOF, STAT5BLOF, STAT5BGOF, STAT6GOF, 
IL2RALOF, IL4RAGOF, TGFBR1, TGFBR2, ERBB2IP, IL6ST, IL6R, ZNF341, FOXP3, TBX21 

Altered cellular metabolism PGM3, CARD11, MALT1 

NB: due to their pleiotropic functions, some genes are listed under multiple pathogenic mechanisms.  
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synapse, allowing effective TCR signaling and activa-
tion. Additionally, actin dynamics are crucial for the 
proliferation and differentiation of T cells during clonal 
expansion, which is necessary for mounting an effective 
immune response. Tregs, which help maintain immune 
tolerance and prevent excessive immune responses, also 
depend on the actin cytoskeleton for their suppressive 
functions. LOF variants in proteins that regulate actin 
polymerization, such as those encoded by WAS, WIPF1, 
ARPC1B, DOCK8, NCKAP1L, CARMIL2, STK4, and 
MSN characteristically lead to severe allergic inflamma-
tion, recurrent infections, and loss of immune tolerance 
to allergens and self-antigens [19–24]. The exact me-
chanisms by which each of these variants drives allergic 
inflammation are not entirely understood; nonetheless, 
several key insights have emerged. For instance, 
DOCK8 deficiency skews CD4+ cells towards a Th2 and 
away from a Th1 bias, indicating a T cell–intrinsic me-
chanism [25]. Additionally, these variants are linked to 
Treg cell dysfunction, further contributing to skewed 
Th2 responses that go unchecked and the concomitant 
autoimmunity observed in these disorders [26]. 

Attenuated antigen receptor signaling 
Attenuated signaling through the TCR has also been 
linked to the development of Th2 inflammation in 
PADs [9]. Low-avidity interactions between a TCR and 
an antigen-derived peptide presented on a major histo-
compatibility complex (MHC) molecule promote naïve 
T cells to differentiate into Th2 cells [27]. Low-avidity 
interactions can be caused by variants in proteins that 
regulate the expression of MHC class II molecules 
(RFXANK) [28] or facilitate TCR signal transduction 
(CARD11, MALT1, and ZAP70; see Table 1 for a com-
plete list). CARD11 and MALT1 are components of the 
CBM signalosome complex, and together they regulate 
the activation of the nuclear factor kappa-light-chain- 
enhancer of activated B cells (NF-κB) signaling pathway 
following TCR activation, which results in the induction 
of proinflammatory genes. Impairment in NF-κB sig-
naling skews the cytokine milieu towards a Th2 phe-
notype, upregulating Th2 signaling and inflammation 
through several mechanisms [29]. Normally, NF-κB ac-
tivation promotes the secretion of proinflammatory cy-
tokines such as IL-12, which support Th1 responses. 
Disruption of NF-κB reduces IL-12, favoring Th2 dif-
ferentiation. Additionally, impaired NF-κB signaling 
increases Th2 cytokines (IL-4, IL-5, and IL-13) crucial 
for Th2 responses. NF-κB is also essential for Treg 
function and its impairment leads to Treg dysfunction, 
reducing suppression of Th2 cells and promoting un-
checked Th2 responses. Moreover, NF-κB regulates 
GATA3, a key Th2 differentiation factor, and its dys-
regulation further enhances Th2 polarization. These 
combined effects ultimately favor Th2 differentiation 
and allergic inflammation [29]. 

Abnormal T cell development and/or restriction of the T 
cell receptor repertoire 
Limited TCR repertoire is also another mechanism that 
leads to Th2 skewing and allergic inflammation. Several 
genes involved in TCR repertoire selection and T cell 
development are implicated in PADs including RAG1, 
RAG2, DCLRE1C, ADA, IL2RG, IL7RA, CHD7, LIG4, 
ZAP70, TBX1, as well as 22q11.2 deletion syndrome. A 
powerful illustrative example is RAG1 and RAG2, which 
are essential for V(D)J recombination and generating 
diverse TCRs necessary for a robust immune response  
[30]. Hypomorphic LOF variants in these RAG genes 
lead to restricted TCR diversity causing Omenn syn-
drome, characterized by Th2-skewed inflammation, ec-
zema, elevated IgE, and eosinophilia [30]. The 
mechanism by which limited TCR repertoire can lead to 
atopy is not entirely clear. It has been previously pos-
tulated that reduced TCR diversity can create gaps in 
Treg repertoires, which limits their ability to control 
effector T cell responses [31,32]. Additionally, the ab-
sence of higher-affinity antigen-specific TCRs during 
naive T cell priming allows lower-affinity CD4+ clones 
to expand noncompetitively and differentiate into Th2 
effectors [33]. 

Altered cytokine signaling 
Proallergic Th2 skewing can also be caused by variants 
that disrupt cytokine signaling. These damaging var-
iants function through GOF, LOF, or DN mechanisms 
and to date have been found to cause PADs by dis-
rupting each of the key steps in cytokine signaling, 
including cell-surface receptors (encoded by IL2RA, 
IL4RA, TGFBR1, TGFBR2, IL6ST, and IL6R), in-
tracellular signaling molecules (encoded by JAK1 and 
ERBB2IP), and transcription factors (encoded by 
STAT1, STAT3, STAT5B, STAT6, ZNF341, FOXP3, 
and TBX21). A recently described example is STAT6- 
GOF disease, which is caused by GOF variants in 
STAT6 and results in enhanced IL-4 and IL-13 sig-
naling through sustained STAT6 phosphorylation and 
increased STAT6 target gene expression [34,35]. This 
promotes Th2 cell differentiation and a skewing to-
wards Th2 immune responses, amplifying allergic 
phenotypes such as atopic dermatitis, asthma, and 
elevated serum IgE levels. Additionally, many of these 
cytokine-related variants also impair Treg develop-
ment and function, which is crucial for maintaining 
immune tolerance and preventing excessive allergic 
inflammation. Variants in IL2RA, STAT5B, and 
FOXP3, for instance, are well-documented to com-
promise Treg differentiation, survival, or suppressive 
capacity, thereby exacerbating Th2-driven inflamma-
tion [1,3]. Thus, Treg failure represents a key im-
munological consequence of cytokine signaling 
defects in PADs, further amplifying dysregulated im-
mune responses. 
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Altered cellular metabolism 
Finally, disruption of cellular metabolism is an emerging 
mechanism leading to the development of PADs. For 
example, LOF and DN variants in CARD11 result in 
Th2 skewing through the disruption of the mechanistic 
target of rapamycin (mTOR) pathway, which is crucial 
for cell growth, proliferation, and metabolism [36]. 
Specifically, CARD11 variants impair mTOR signaling 
by disrupting the expression of the amino acid trans-
porter ASCT2, leading to decreased cellular glutamine 
uptake. This reduction in glutamine uptake impairs 
mTORC1 activation, subsequently reducing tri-
carboxylic acid cycle activity and glycolysis [36]. Th2 
cells rely less on glycolysis than Th1 and Th17 cells; as 
such, disruptions in metabolic pathways that impact 

glycolysis can preferentially support Th2 cell survival 
and proliferation, supporting a milieu conducive to al-
lergic inflammation. 

Clinical features of primary atopic disorders 
Although differentiating PADs from common polygenic 
allergic diseases poses a challenge for clinicians, the 
nature and severity of symptoms can provide a clue 
(Figure 1). Common allergic diseases typically present 
with isolated conditions such as atopic dermatitis, 
asthma, and allergic rhinitis, or may follow the classic 
childhood chronological progression referred to as the 
‘atopic march’ that begins with atopic dermatitis [37]. 
Polygenic versions of atopic disease typically begin in 
early childhood but can develop at any age, often follow 

Figure 1  

Current Opinion in Immunology

Differentiating factors between polygenic and monogenic allergy. This figure illustrates the clinical and diagnostic distinctions between common 
polygenic allergic disease and monogenic allergic disease (also known as primary atopic disorders). Individuals with polygenic allergy generally 
present with a disease that is limited to allergic manifestations and that follows a typical childhood progression known as the ‘atopic march’. Primary 
atopic disorders frequently involve additional nonatopic features, such as increased susceptibility to infections, autoimmunity, malignancy, growth 
impairment, and connective tissue disease. Atopic manifestations often develop early in life, are severe, and are resistant to conventional treatments. 
The figure was created using Biorender (www.biorender.com). 
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a waxing and waning disease course, and generally re-
spond well to conventional therapies. In contrast, PADs 
manifest with more severe, persistent symptoms that 
typically emerge in the first months or year of life and 
often show an inadequate response to first-line therapies 
that are effective for common polygenic disease. Another 
key warning sign for PADs is the finding of additional 
nonatopic disease manifestations, such as increased 
susceptibility to infections, autoimmunity, and systemic 
features including failure to thrive, connective tissue 
abnormalities, and gastrointestinal inflammation [4]. 

Certain clinical features can provide insight into the spe-
cific PAD that may be underlying a patient’s condition. For 
example, variants in genes responsible for skin barrier 
function, such as DSG1, CDSN, DSP, and SPINK5, result in 
conditions with severe skin involvement, including severe 
dermatitis, erythroderma, ichthyosis, and pruritus [5]. In 
contrast, connective tissue anomalies are a hallmark of 
TGF-ß pathway disorders, whether caused by damaging 
genetic changes in STAT3 or by affecting key signaling 
components in the STAT3 pathway such as ZNF341, 
DOCK8, IL6ST, IL6R, or ERBIN. However, PADs have 
many overlapping features making it very challenging to 
assign a probable gene or probable impacted pathway to 
individual patients in the clinical setting. For this reason, 
we strongly advocate for comprehensive gene sequencing 
using broadly inclusive gene panels, exome, or genome 
sequencing as the most efficient first-line strategy for di-
agnosing PADs. 

Diagnosis of primary atopic disorders 
The classic clinical approach of history taking and physical 
examination, followed by the judicious use of laboratory 
evaluation, should be followed when seeing a patient with 
a possible PAD (Figure 1). In addition to the history of 
very early-onset severe disease, family history can be most 
informative. Common polygenic allergic diseases often 
show a family history of atopic conditions like asthma, 
atopic dermatitis, and allergic rhinitis without a clear pat-
tern of inheritance. In contrast, PADs may follow a clear 
inheritance pattern such as autosomal dominant, autosomal 
recessive, or X-linked inheritance. However, it is important 
to note that spontaneously occurring de novo variants can 
also be a cause of PADs, so a PAD should not be dismissed 
in the absence of a family history or a clear Mendelian 
pattern of inheritance. History and physical examination 
should also focus on ruling out the possibility of underlying 
malignancy or infection as a possible explanation for the 
complex allergic presentation. 

Laboratory tests are also often used in the diagnosis and 
workup of PADs and in distinguishing them from common 
allergic conditions. The biomarkers of allergic disease, 
namely peripheral blood eosinophil counts and serum IgE 
levels, are typically elevated in both polygenic and PADs. 

However, it is not possible to define an IgE or eosinophil 
cutoff above which every patient must have a PADs 
workup, so clinical acumen is essential. In addition to IgE 
and eosinophil levels, more advanced diagnostic modalities 
to interrogate immune function may be informative, in-
cluding serum immunoglobulin levels, assessing antibody 
production following immunization, flow cytometry to 
quantify cell types, as well as in vitro functional immune 
assays [38,39]. 

While symptoms, family history, and diagnostic laboratory 
tests provide essential insights, they are often not enough 
for definitively diagnosing PADs due to the variability in 
clinical presentation, the presence of overlapping symp-
toms with common allergic diseases, and the potential for 
atypical presentations. Genetic sequencing has become an 
essential tool in the diagnosis and management of PADs. 
Technologies such as targeted gene panels, exome se-
quencing, and genome sequencing should now be used 
early in the diagnostic workup to identify genetic variants 
responsible for these conditions. Over the past decade, 
next-generation sequencing (NGS) techniques have fa-
cilitated the evaluation of many patients, identifying both 
known and novel disease-causing genes. While there are 
no studies systematically defining the diagnostic yield of 
NGS for PADs, the results for monogenic IEIs are com-
pelling. For example, an exome sequencing study of 303 
IEI patients in Türkiye reported a 41.1% diagnostic yield, 
identifying 52 novel variants and underscoring the effec-
tiveness of genomic approaches in uncovering new disease- 
associated genes [40]. However, diagnostic yield varies 
across cohorts and methodologies. A study by Posey et al. 
reported a 28.2% diagnostic rate for exome sequencing in a 
broader cohort of individuals with suspected genetic dis-
orders, including IEIs [41], while Similuk et al. found 
32.7% diagnostic yield specifically in US-based IEI cohorts  
[42]. These differences may reflect heterogeneity in pa-
tient selection, sequencing depth, and analytical pipelines. 
Despite variability in yield, NGS remains a powerful tool 
for genetic diagnosis in IEIs, particularly for patients with 
well-characterized PADs or those with suggestive clinical 
phenotypes. Beyond improving diagnostic rates, molecular 
testing has significant implications for clinical decision- 
making and patient outcomes. Molecularly defined diag-
noses for patients with IEIs have been reported to alter 
therapeutic options in 34% of the 254 cases included in this 
study, significantly impacting patient care by enabling 
early diagnosis, personalized treatment strategies, and ac-
curate genetic counseling and prognostic assessments [43]. 

Discussion and conclusion 
PADs are emerging as conditions that are more prevalent 
than one might imagine for conditions traditionally 
considered to be extremely rare. Although the pre-
valence of these diseases has not been formally assessed, 
PADs are part of the broader category of IEIs, which are 
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estimated to affect between 1 in 1000 and 1 in 5000 
individuals globally [44]. Given this higher-than-ex-
pected prevalence, clinicians should be aware of the 
signs and appropriate workup and diagnostic methods 
for PADs, as accurate genetic diagnosis can have im-
portant implications for management and patient out-
comes. 

Genetic sequencing has revolutionized the diagnosis 
and management of PADs. Techniques such as tar-
geted gene panels, exome sequencing, and genome 
sequencing have been effective in identifying both 
known and novel genetic variants responsible for these 
conditions [40]. Furthermore, molecularly defined di-
agnoses have significantly altered therapeutic options 
in a substantial proportion of cases [38,39]. Beyond 
their impact on patient management and outcomes, 
the discovery and characterization of PADs have sig-
nificantly advanced our understanding of human im-
munology and the cellular and molecular mechanisms 
underlying allergic inflammation [4,45]. Furthermore, 
the study of the pathophysiology of these diseases has 
led to the development of precision therapeutics used 
to treat both monogenic and polygenic allergic dis-
eases [5]. In fact, there are many examples in the 
clinical literature showing that molecular diagnosis has 
been a powerful tool in guiding targeted therapy, 
transforming outcomes for patients with PADs by 
precisely identifying the affected pathways [5]. For 
example, in JAK1 GOF disease, hyperactive JAK- 
STAT signaling drove severe atopy, eosinophilia, and 
hepatosplenomegaly — treatment with ruxolitinib (a 
JAK1/2 inhibitor) has led to dramatic clinical im-
provement in the affected individuals, including re-
solution of dermatitis, eosinophilia, and failure to 
thrive [46,47]. Another striking disease is STAT6- 
GOF disease, where aberrant IL-4/IL-13 signaling 
drives systemic allergic inflammation — targeting IL- 
4Rα with dupilumab not only resolved eczema in the 
affected individuals but also significantly improved 
eosinophilia and growth [34,35]. Similarly, based upon 
the mechanistic demonstration of heightened IL-4Rα 
expression in patients with ERBIN deficiency, mole-
cularly informed treatment with dupilumab was highly 
effective in treating a patient with refractory severe 
atopy [48,49]. These clinical cases underscore how 
precise molecular diagnosis enables pathway-specific 
therapies, leading to transformative, personalized 
treatment approaches in rare immune disorders. 

In conclusion, as genetic sequencing becomes more af-
fordable, accessible, and commonly employed in the 
clinical setting, the number of diagnosed cases of PADs 
will rise. Maintaining a high index of suspicion for PADs 
and utilizing advanced diagnostic tools are crucial for the 
accurate and timely diagnosis of the conditions, leading 
to improved patient outcomes. 
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