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Abstract: Despite the emerging evidence of the role of transcriptional regulators in
schizophrenia as key molecular effectors responsible for the dysregulation of multiple
biological processes, limited information is available for brain areas that control higher cog-
nitive functions, such as the cerebellum. To identify transcription factors that could control
a wide panel of altered proteins in the cerebellar cortex in schizophrenia, we analyzed a
dataset obtained using one-shot liquid chromatography–tandem mass spectrometry on the
postmortem human cerebellar cortex in chronic schizophrenia (PXD024937 identifier in the
ProteomeXchange repository). Our analysis revealed a panel of 11 enriched transcription
factors (SP1, KLF7, SP4, EGR1, HNF4A, CTCF, GABPA, NRF1, NFYA, YY1, and MEF2A)
that could be controlling 250 altered proteins. The top three significantly enriched tran-
scription factors were SP1, YY1, and EGR1, and the transcription factors with the largest
number of targets were SP1, KLF7, and SP4 which belong to the Krüppel superfamily. An
enrichment in vesicle-mediated transport was found for SP1, KLF7, EGR1, HNF4A, CTCF,
and MEF2A targets, while pathways related to signaling, inflammation/immune responses,
apoptosis, and energy were found for SP1 and KLF7 targets. EGR1 targets were enriched
in RNA processing, and GABPA and YY1 targets were mainly involved in organelle orga-
nization and assembly. This study provides a reduced panel of transcriptional regulators
that could impact multiple pathways through the control of a number of targets in the
cerebellum in chronic schizophrenia. These findings suggest that this panel of transcription
factors could represent key targets for pharmacological interventions in schizophrenia.

Keywords: schizophrenia; cerebellum; transcription factors

1. Introduction
Schizophrenia (SZ) is a polygenetic psychiatric disorder with heritability of up to

80% [1]. The mechanisms underlying this disorder are complex and are not completely
understood. However, hypotheses such as neurodevelopmental and cognitive dysmetria
have been proposed as a framework for the understanding of this psychiatric disorder. The
neurodevelopment hypothesis argues that genetic predisposition and possible alterations
during intrauterine life could lead to the altered development of the central nervous system
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(CNS), which could manifest during adolescence [2–4]. In recent decades, it has been
suggested that the cerebellum is implicated in this pathophysiology through the cognitive
dysmetria hypothesis [5]. This hypothesis states that dysfunction of the cortico-thalamo-
cerebellar circuit (CCTC) contributes to symptom emergence in SZ [6–8]. In the context of
CCTC, the cerebellum innervates through the thalamus to the prefrontal and parietal cortex,
areas involved in cognitive functions and altered in SZ [9]. The cerebellum is a highly
organized tissue, consisting of a homogeneous neuronal population, with granular cells
making up approximately 90% [10]. This feature makes the cerebellum a useful model for
proteomic study, allowing us to find molecular alterations that could alter internal circuits.

Transcription factors (TFs) control gene networks that are required for the processes of
regionalization and neuronal precursor migrations during cerebellar development [11]. In
the context of SZ, it is known that several signaling pathways are dysregulated; therefore,
it is necessary to identify the transcriptional programs that regulate the differentially
expressed genes involved in the altered pathways. In this context, studies have associated
the altered expression of several TFs such as TCF4 with a high risk of SZ [12]. This
relationship could be likely explained by the fact that during development, TCF4 is essential
for neuronal migration during cortex cerebellar development [13]. Also, it is known that
dendritic organization could be affected in SZ. The altered expression in the postmortem
cerebellum of some members of the SP/KLF protein superfamily, known as Specificity
Proteins (SPs), has been related to altered dendritic organization and neuronal growth
in SZ [14,15], as well as Krüppel-like factors (KLFs) in neuronal morphogenesis [16,17].
In addition, the transcriptional dysregulation of NKX2-1 and EGR1 has been correlated
with altered GABAergic neurotransmission in SZ [18], which could lead to altered synaptic
processes and the poor cognitive function described in SZ. Thus, the accumulative effect
of the altered expression of these TFs could cause the dysregulation of transcriptional
networks, which could compromise the neuronal structure and synaptic efficiency and
lead to the dysfunction of signaling pathways seen in SZ. However, the identification of
transcriptional factors that could modulate large networks of altered genes in the cerebellum
in SZ and how these transcription factors impact specific pathways and biological functions
has not yet been studied in depth.

Our aim was to identify possible transcriptional regulators in the cerebellum that
could be responsible for altered levels of different proteins. In addition, we further in-
vestigated the biological processes and signaling pathways controlled by transcription
factor-dependent altered programs.

2. Results
We analyzed a previous dataset of 250 altered proteins in the human cerebellum cortex

in chronic SZ, obtained from a proteomic study using one-shot liquid chromatography–
tandem mass spectrometry [19] (see Table S1 for more details). The dataset for the proteomic
profile of the cerebellum was deposited in the ProteomeXchange repository with PXD024937
as an identifier.

To carry out the study, we performed an experimental design, shown in Figure 1,
where the 250 altered proteins were used to search for transcription factors that could be
controlling them. To find the biological processes and pathways that could be regulating
these transcription factors, we performed gene ontology analysis with the protein groups
regulated by each transcription factor.
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Figure 1. Experimental design to identify enriched transcription factors and their dependently altered
biological processes and pathways in the cerebellum in schizophrenia.

2.1. Putative Transcriptional Programs Responsible for Changes in the Proteomic Profile in
the Cerebellum

To investigate the transcriptional program that could control the 250 altered proteins
in SZ, we performed an enrichment analysis on TFs. Our enrichment analysis for the
transcription factor targets showed 40 significant TFs (p-value < 0.05) (Supplementary
Dataset S1). We generated a list of 11 potential TFs that could be controlling the 250 altered
proteins according to the following criteria: the TFs would regulate more than 15% of the
target proteins (Figure 2). These TFs were SP1, KLF7, SP4, EGR1, HNF4A, CTCF, GABPA,
NRF1, NFYA, YY1, and MEF2A. This analysis revealed that the top three most significant
TFs were SP1, EGR1, and YY1, with 125, 60, and 37 targets, respectively (Supplementary
Dataset S2). Furthermore, the analysis showed that the TFs with the largest percentage of
target proteins were SP1 (125 targets), KLF7 (76 targets), and SP4 (66 targets), all of which
belong to the Krüppel superfamily.
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Figure 2. Potential transcription factors involved in the regulation of the altered proteins in the
cerebellum of chronic schizophrenia patients. The X-axes show the −log10 enrichment p-value. The
Y-axes show the percentage of target genes for each transcription factor. The size of each bubble
indicates the number of protein targets.

2.2. Altered Biological Processes Controlled by Transcriptional Programs in the Cerebellum in
Chronic Schizophrenia

Our gene ontology analysis of target genes revealed that 10 out of 11 TFs had enriched
biological processes (FDR < 0.05). The most significant biological processes were regulated
by SP1, KLF7, EGR1, and GABPA (Figure 3). In this analysis, the SP1 and KLF7 target
proteins were enriched in functions related to cytoskeleton organization development,
cellular and organelle organization, and inflammation/immune responses. KLF7 target
proteins showed significantly enriched processes related to neutrophil-mediated immunity
and granulocyte activation. EGR1 targets were enriched in cytoskeleton organization de-
velopment and RNA processing, such as mRNA metabolism and RNA catabolic processes.
GABPA and YY1 targets were mainly involved in cellular and organelle organization
and assembly. The biological processes involved in synaptic functions were enriched for
the target proteins MEF2A, SP1, and KLF7. The MEF2A and SP1 target proteins were
enriched in the regulation of vesicle-mediated transport, while KLF7 proteins, together
with those of SP1, were also enriched in the regulation of intracellular transport. SP4 target
proteins were enriched in some biological processes, mainly associated with cellular and
organelle organization and assembly functions. In contrast, NRA2A was implicated only in
assembly functions.
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Figure 3. Non-redundant enriched biological process categories for altered targets of transcription
factors. The enrichment analysis was performed using Webgestalt, and the heat map visualization of
enriched biological process was created using Perseus software.
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2.3. Altered Pathway Analysis Controlled by Transcriptional Programs in the Cerebellum in
Chronic Schizophrenia

Our results revealed pathways significantly enriched (FDR < 0.05) in altered targets
of five TFs: SP1, KLF7, EGR1, HNF4A, and CTCF (Figure 4). The enriched pathways
were mainly detected in targets regulated by Krüppel superfamily TFs, such as SP1 and
KLF7, with 28 and 13 pathways, respectively. SP1 targets showed enrichment in all path-
ways. The vesicle-mediated transport pathway was under the control of targets of five
TFs. EGR1-altered targets were enriched in pathways involved in transport and signal-
ing. HNF4A-altered targets were only enriched in pathways related to vesicle-mediated
transport and membrane trafficking pathways. CTCF targets were enriched in pathways
involved in transport and processes associated with the Golgi complex. Moreover, SP1-
and KLF7-altered targets showed an enrichment in pathways related to signaling, inflam-
mation/immune response, apoptosis, and energy (mitochondrial processes and glucose
transport mediated by the translocation of SLC2A4 (GLUT4) to the plasma membrane).
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Figure 4. Non-redundant enriched pathways for altered targets of transcription factors. We used the
Reactome database for enrichment pathway analysis, and the results are displayed as a heat map
created using Perseus software.

3. Discussion
Our study identified 11 potential TFs enriched in the cerebellum in chronic SZ

that could control the expression of the 250 significantly altered proteins, contributing
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to the dysregulation of several biological processes and pathways in SZ. Several stud-
ies have implicated 10 out of these 11 TFs in SZ: SP1 [20–22], KLF7 and SP4 [23–28],
EGR1 [29–31], HNF4A [32], CTCF [33–35], GABPA [33], NRF1 [36,37], NFYA [38], YY1 [34],
and MEF2A [39]. Indeed, altered expression in the cerebellum, hippocampus, and pre-
frontal cortex in SZ has been reported for SP1 and SP4 [15,24]. EGR1 and NRF1 mRNA
levels have also been shown to be decreased in PFC and cortical tissue, respectively, in
SZ [36,40,41]. Together, these results suggest that the alterations in these transcriptional
programs are not restricted to the cerebellum and may be present in other brain regions
in SZ.

3.1. Transcription Factor-Dependently Enriched Biological Processes
3.1.1. Cytoskeleton and Organelle Organization

The enrichment analysis showed that SP1, KLF7, and SP4, which belong to the SP/KLF
superfamily, had the greatest number of target genes. The SP/KLF superfamily is charac-
terized by its binding to GC boxes in promoter regions with almost identical affinity due to
the high homology in their DNA-binding domains [42]. Our results identified biological
processes such as cytoskeleton organization/development, cellular/organelle organiza-
tion, and pathways related to signaling as the most enriched categories for SP1, SP4, and
KLF7. The cytoskeleton mediates a large variety of cellular functions, including supporting
cellular morphology and cellular activities such as vesicle trafficking, neuronal migration,
and neurite outgrowth [43]. SP1 in astrocytes has been implicated in neurite outgrowth
and synaptogenesis [44], while SP4 has been associated with dendritic arborization in the
cerebellum [14,45]. KLF7 has been implicated in the enhancement of axon growth [46,47],
the formation of dendritic branching in the hippocampus, and altered axon projection
in several brain regions [46]. Moreover, KLF7 has been reported to be involved in the
maturation of granular neurons in the cerebellum during early postnatal development [46].
In addition, studies performed on the postmortem cerebellum have shown altered levels of
SP1 and SP4 proteins linked to negative symptoms in chronic SZ. Altered levels of both
transcription factors were also found in the hippocampus in these subjects [15] and in the
prefrontal cortex; only SP1 protein levels were reduced in these subjects [24], suggesting
the region-specific dysregulation of these TFs in SZ. These reports together with our results
point to the possible dysregulation of KLF7 in SZ, leading to the alteration of the maturation
of granular cells and axon growth, while the altered expression of SP1 and SP4 could be
related to the altered formation of neurites and dendritic arborization patterns. All these
processes could eventually lead to altered cell–cell communication in the inner cerebellar
circuits and the connection of the cerebellum with other brain regions.

3.1.2. mRNA Processing and Splicing

Our analysis reports that a protein set involved in biological processes related to
mRNA processing could be under the transcriptional control of SP1, EGR1, and KLF7,
with SP1 target genes being the only ones enriched in splicing. It has recently been
shown that alternative splicing could play a role in SZ [48,49]. Many of the archetypal
genes associated with SZ, for example, DISC1 [50] and ERBB4 [51], are aberrantly spliced
transcripts. However, the molecular mechanism underpinning this aberrant splicing is
unknown. A study in mice showed that Sp1 enhanced the transcription of the splicing factor
Slu7, while the depletion of Sp1 repressed Slu7 expression, thereby affecting alternative
splicing processes [52]. Thus, further studies will be needed to explore the possibility that
SP1-dependent altered splicing may mediate the generation of aberrant alternative splicing
forms in key genes in SZ physiopathology, such as DISC1 and ERBB4.
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3.1.3. Synaptic Function

In our study, the most significant enriched process from synaptic function was vesicle
transport linked to MEF2A target genes. MEF2A is a transcription factor expressed in
adults and implicated in neuronal development and the formation of postsynaptic granule
neuron dendritic claws [53,54]. Moreover, the study of Crisafulli et al. found that at
least seven single-nucleotide polymorphisms in MEF2A could be related to SZ [55,56].
Also, MEF2A has been identified as a negative regulator in AMPA receptor expression,
which participates in memory processes [57], suggesting that this transcription factor could
be involved in cognitive decline in SZ. Therefore, the dysregulation of MEF2A could be
responsible for altered synaptic morphology not only in cerebellar granule neurons but
also in neurotransmitter vesicle transport to the active presynaptic zone in these neurons
in SZ.

In our study, EGR1 target genes were significantly enriched in membrane docking
linked to synaptic function but also to signaling processes related to RHO GTPase ef-
fectors, which are involved in cytoskeleton organization during vesicle trafficking [58].
Interestingly, different GABA receptor subunits are transcriptional target genes of EGR1 in
the hippocampus, which suggest that this transcription factor has a major role in GABA
receptor composition, controlling synaptic strength [59]. Indeed, EGR1 has also been
widely reported to be a major regulator of synaptic plasticity in different neurons and brain
regions, including the cerebellum, in physiological and pathological conditions such as
schizophrenia (reviewed in [60]). Thus, our results provide more evidence for the alteration
of EGR1 in a pathological context, providing a possible dysregulation of its transcriptional
programs involved in synaptic function in SZ in the cerebellum.

3.2. Transcription Factor-Dependently Enriched Pathways
3.2.1. Transport and Golgi Complex

Pathways related to transport and the Golgi complex, such as vesicle-mediated and
membrane trafficking, were the pathways found to be most enriched for the target proteins
of SP1, EGR1, HNF4A, and CTCF. All these pathways are involved in the functioning
of the Golgi apparatus. Protein transport from the endoplasmic reticulum to the Golgi
complex requires transport vesicles [61]. Recently, it has been proposed that the Golgi
phosphoprotein 3 (GOLPH3), which participates in protein trafficking, receptor recycling,
and glycosylation in the Golgi, can regulate the transcription of proinflammatory cytokines
such as TNF-α; this regulation could be mediated by the EGR1/ERK pathway [62]. This
evidence raises the question of whether EGR1 could also be implicated in inflammatory
processes in SZ. Moreover, all the TFs involved in the transport and the Golgi complex,
such as SP1 [15,24], EGR1 [63], HNF4A [32], and CTCF [33], have been previously reported
to be altered in SZ [63]. However, the role of these TFs in anterograde transport or functions
associated with the Golgi apparatus in the context of SZ is unknown.

3.2.2. Immune Response and Inflammatory Processes

Although the neurodevelopmental hypothesis is well accepted, the inflammation and
dysregulation of immune mechanisms and degenerative views have also been suggested as
hypotheses, which has generated significant debate in the field [64–72]. An imbalance in the
levels of proinflammatory and anti-inflammatory cytokines has been related to symptoms
and cognitive decline in SZ [73,74]. In our study, biological processes and pathways related
to the immune response were found to be enriched, linked to specific transcriptional
programs. The transcriptional control of the targets involved in inflammatory events
could be regulated by some members of the Krüppel-like factor family, such as SP1 and
KLF7. KLF7 has been related to increases in the levels of IL-6, which play a role in both
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inflammatory and anti-inflammatory responses [75]. KLF7 could promote an increase in
IL-6 through PKCζ/NF-κB [76] and TLR4/NF-κB/IL-6 signaling [77]. In addition, studies
have reported high levels of IL-6 in SZ subjects [78,79]. A study reported that KLF7 could
induce macrophage activation [76,77]. Moreover, several members of the Krüppel-like
factor family, such as KLF2, KLF4, and KLF6, have been reported to be involved in the
immune system and inflammation [80–82], which is in line with our results. Thus, taken
together, these findings suggest that KLF7 could have a relevant role in inflammatory
processes in SZ.

Another member of the Krüppel-like factor family is SP1. SP1 has been associated with
the activation of interleukin 21 receptors in T cells [83,84], which mediate the activation
of several cell types involved in the immune response [85]. Furthermore, SP1 has been
implicated in interleukin 12 (IL-12) expression [86]. IL-12 induces the differentiation of
T-helper 1 cells [87] during the adaptive immune response. In this sense, altered IL-12 levels
have been reported in the plasma of SZ subjects [88,89]. Also, SP1 induces the activation of
macrophage inflammatory protein-2 (MIP-2), which is involved in recruiting neutrophils
to inflammatory regions [90]. In addition, SP1 has also been implicated in the crosstalk
between the interferon regulatory factors and NFκB pathways, thereby contributing to
the TLR-dependent antiviral response [91]. In SZ, it has been reported that SP1 could
interact with the TLR4-MyD88-IκBα-NFκB pathway, which mediates its interaction with
NFκB [92]. Thus, SP1 could be an activator of the immune response. The dysregulation
of IL-12 expression due to the altered function of SP1 could lead to the dysfunctional
differentiation of T-helper cells and an altered adaptive immune response in SZ. Thus, our
study suggests the possible participation of SP1 in inflammatory processes in SZ subjects.

3.2.3. Apoptotic Events

Disseminated apoptotic events in the CNS throughout the developmental period and
later phases impact the emergence of SZ and the progression of the disease [93,94]. These
apoptotic processes support the neurodegenerative hypothesis proposed for SZ [95,96].
However, the transcriptional program involved in this process is unknown. Our analysis
revealed that SP1 and KLF7 could participate in mitochondrial apoptosis. While some stud-
ies have demonstrated that the overexpression of SP1 could induce apoptosis, others have
reported that the depletion of SP1 increases the sensitivity of cells to DNA damage [97–99]
and eventually leads to apoptosis. Thus, SP1 could have a dual function in apoptosis.
Moreover, it has been reported that the depletion of KLF7 increases cell apoptosis in an-
imal models [100]. Although KLF6 has been reported to be a regulator of mitochondrial
function during apoptosis [101,102], no information is available for KLF7 regarding this
function. However, it has recently been proposed that KLF7 could inhibit inflammatory
and apoptotic processes in cell lines via NRF1/KLF7 [103]. Thus, in the context of SZ, the
altered expression of SP1 and KLF7 could activate apoptotic signaling pathways in the CNS
and contribute to the disseminated apoptosis described in SZ [104].

3.2.4. Limitations of the Study

Several limitations are identified in this study based on the human postmortem brain
to understand the transcriptional programs altered in chronic schizophrenia. Firstly, pa-
tients with elderly chronic schizophrenia had been taking long-term and heterogeneous
antipsychotics medications. A study has shown that long-term haloperidol doses induce
the dysregulation of cytoskeleton proteins and spine-related proteins in dopaminergic
areas in the cortex cerebral, which could influence vesicular transport and synaptic activ-
ity [105]. Thus, advanced age, the long duration of the illness, and antipsychotics could
have influenced the transcriptional programs and the molecular pathways described in
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this study. Secondly, our study cohort constituted only men. Further studies are needed to
also explore these transcriptional programs in women.

4. Materials and Methods
4.1. Postmortem Human Brain Tissue

Tissue samples were from gray matter obtained from the cerebellar lateral cortex and
belonged to a cohort of subjects with chronic schizophrenia (n = 12) and healthy controls
(n = 14) previously described [19]. Briefly, these samples were obtained from the neurologic
tissue collection of the Parc Sanitari Sant Joan de Déu Brain Bank (Barcelona, Spain and the
Institute of Neuropathology of the Universitari de Bellvitge Hospital (Barcelona, Spain),
respectively. Clinical and tissue-related features are detailed in Table S1.

4.2. Bioinformatic Analysis

To identify transcription factor enrichment, we used FunRich Tool v.3.1.3. To represent
the results obtained with FunRich Tool, we used Graph Prism version 7.00 (GraphPad
Software, San Diego, CA, USA). To perform non-redundant enriched category analysis
for Gene Ontology and pathways, we used Webgestalt (WEB-based Gene SeT Analysis
Toolking) (https://2019.webgestalt.org/#, Data sources for WebGestalt 2019 was updated
on 14 January 2019) and the method of Over-Representation Analysis (ORA), supported
by Fisher’s exact test [106]. For pathway analysis, we used the Reactome database. The
enrichment analyses were set to FDR = 0.1. To represent the enrichment analysis, we
created a heat map with the Perseus software platform (version 1.6.1.3. https://maxquant.
net/perseus/, 8 April 2025).

5. Conclusions
The altered proteins in the cerebellum in schizophrenia include the target genes of

only 11 transcription factors: SP1, SP4, EGR1, KLF7, HNF4A, CTCF, MEF2A, GABPA,
NRF1, YY1, and NYFA. Our results show that transport-related pathways are enriched
for SP1-, KLF7-, EGR1-, HNF4A-, and CTCF-altered targets. Signaling-related pathways
are enriched for SP1-, KLF7-, and EGR1-altered targets. SP1 and KLF7 could contribute
to the signaling dysfunction induced by dendritic arborization alterations and to the loss
of the maturation of granular cells in the cerebellum, respectively. Pathways involving
inflammatory/immune responses and apoptosis are enriched with SP1- and KLF7-altered
targets. SP1 could participate in the immune response and induce the differentiation of T
helper cells, and KLF7 could induce macrophage activation. This suggests that SP1 and
KLF7 could play a prominent role in the cerebellum in chronic schizophrenia. Together, all
these findings suggest that the altered function of a limited number of transcription factors
could have an impact on disseminated pathways involved in different cellular functions.
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Abbreviations

SZ Schizophrenia
CB Cerebellum
CCTC Cortico-thalamo-cerebellar circuit
CNS Central nervous system
TFs Transcription factors
NKX2-1 Homeobox protein Nkx-2.1
SP1 Transcription factor Specificity Protein 1
SP4 Transcription factor Specificity Protein 4
KLF7 Krüppel-like factor 7
EGR1 Early growth response protein 1
HNF4A Hepatocyte nuclear factor 4-alpha
CTCF Transcriptional repressor CTCFL
GABPA GA-binding protein alpha chain
NRF1 Endoplasmic reticulum membrane sensor NFE2L1
NFYA Nuclear transcription factor Y subunit alpha
MEF2A Myocyte-specific enhancer factor 2A
YY1 Transcriptional repressor protein YY1
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