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Purpose of review

Critically ill children admitted to the intensive care unit frequently need respiratory care to support the
lung function. Mechanical ventilation is a complex field with multiples parameters to set. The
development of precision medicine will allow clinicians to personalize respiratory care and improve
patients’ outcomes.

Recent findings

Lung and diaphragmatic ultrasound, electrical impedance tomography, neurally adjusted ventilatory assist
ventilation, as well as the use of monitoring data in machine learning models are increasingly used to tailor
care. Each modality offers insights into different aspects of the patient’s respiratory system function and
enables the adjustment of treatment to better support the patient’s physiology. Precision medicine in
respiratory care has been associated with decreased ventilation time, increased extubation and ventilation
wean success and increased ability to identify phenotypes to guide treatment and predict outcomes. This
review will focus on the use of precision medicine in the setting of pediatric acute respiratory distress
syndrome, asthma, bronchiolitis, extubation readiness trials and ventilation weaning, ventilation acquired
pneumonia and other respiratory tract infections.

Summary

Precision medicine is revolutionizing respiratory care and will decrease complications associated with
ventilation. More research is needed to standardize its use and better evaluate its impact on patient
outcomes.
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INTRODUCTION

Pathological processes affecting the lung’s function
are frequent in the pediatric intensive care unit
(PICU) [1]. Patients are diagnosed using clinical,
biochemical and radiological data and are treated
following the same standardized clinical guidelines
or evidence-based practices. However, the wide
range of ages in pediatric practice combined with
the diversity of complex and heterogeneous path-
ologies makes this approach unsuitable for every
individual patient.

With the increased use of new bedside imaging
modalities [2,3,4

&

,5,6], monitoring devices and
electronic medical records giving access to larger
amount of data per patient, we are seeing a shift
towards tailoring the treatment specifically based
on the patient’s characteristics [7,8,9

&&

,10
&&

]. This
approach is referred to as precision or personalized
rs Kluwer Health, Inc. All rights rese
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medicine [11]. This review will focus on the use of
precision medicine to improve respiratory care in
the PICU in the setting of pediatric acute respiratory
distress syndrome (PARDS), severe asthma, bron-
chiolitis, extubation readiness trials and ventilation
weaning, ventilation acquired pneumonia (VAP)
and other respiratory tract infections. Technologies
presented in this review, their advantages, their
drawbacks and the important parameters are dis-
played in Tables 1 and 2, respectively.
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KEY POINTS

� Lung and diaphragmatic ultrasound, electrical
impedance tomography (EIT) and neurally adjusted
ventilatory assist (NAVA) are improving ventilation and
weaning strategies and have a positive impact on
patient outcomes.

� Machine learning models and CDSS will optimize
diagnosis, the adherence to treatment guidelines and
lung-diaphragmatic protective ventilation strategies in
the PICU.

� The diagnosis and management of respiratory muscle
weakness can be personalized to accelerate weaning
and extubation and improve long-term respiratory
function in critically ill children.

� Racial bias in pulse oximetry readings underscores the
need for careful interpretation in diverse patient
populations and highlights the importance of skin tone
in machine learning models.

Emergency and critical care medicine
ACUTE RESPIRATORY DISTRESS
SYNDROME

PARDS is a heterogeneous and severe disease process
that is still associated with high morbidity and
mortality [12–14]. The most recent pediatric guide-
lines (PALICC 2023) [14] recommend adjusting the
positive end-expiratory pressure (PEEP) according to
the fraction of inspired oxygen (FiO2) using the table
from the ARDS Network as it has been associated
with reduced mortality. However, clinicians tend to
use lower than recommended pressures because
elevated ventilatory pressures can be detrimental
to the lung and diaphragm function [15,16]. Preci-
sion medicine tools allow clinicians to collect per-
sonalized data on patients and tailor treatment and
ventilation strategies to optimize care while limiting
adverse events.
Esophageal pressure, mechanical power,
driving pressure and alveolar dead-space
fraction

Transpulmonary pressure evaluated by esophageal
pressure [17,18,19

&

], driving pressure [20–22,23
&

],
mechanical power [24,25

&

] and alveolar dead-space
fraction [26,27] are all parameters that affect out-
comes in ARDS populations. Esophageal pressure
can give information on the pressure-time product
(PTP) and pressure-rate product (PRP) which can be
used to help determine the optimal level of venti-
latory support [28–30] and predict the risk of extu-
bation failure [31]. PTP is a measure of the effort of
breathing, and it is calculated by integrating the
pressure generated by respiratory muscles over the
224 www.co-pediatrics.com
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inspiratory time. PRP is the product of the respira-
tory rate and the change in esophageal pressure
during a respiratory cycle. Transpulmonary pressure
guided ventilation has been linked to increased
oxygenation in a pediatric population with moder-
ate to severe ARDS [19

&

]. In adults, transpulmonary
pressure guided ventilation is associated with
reduced mortality and mechanical ventilation days
when compared to traditional lung protective strat-
egies [18,32,33].

Getting all these parameters at the bedside will
allow to optimize oxygenation and limit ventilator-
induced injury, patient-induced injury, atelectasis
and overdistension.
Data science and clinical decision support
systems

Diagnosing PARDS requires meeting various clinical
and radiological criteria which can lead to delays in
identification and worse outcomes [34,35]. The
widespread use of electronic medical records and
the development of databases are allowing for the
creation of machine learning models that facilitate
timely diagnosis and the creation of clinical deci-
sion support systems (CDSS) to guide ventilation
and to ensure adherence to guidelines [10

&&

]. Adult
studies have shown that automated ARDS diagnos-
tic tools are more efficient and have a higher spe-
cificity and sensitivity than clinicians [36,37]. To
our knowledge, there are no similar pediatric studies
on this topic to date.

A multinational study demonstrated that only
40% of patients with PARDS had an arterial gas
when diagnostic criteria were met [12]. When no
arterial samples are available, guidelines recom-
mend the use of pulse oximetry (SpO2) to estimate
the hypoxemia severity using the oxygenation sat-
uration index (OSI) or the saturation index (SF)
depending on the context [14]. A pediatric equation
has been developed to convert SpO2 to PaO2 to infer
the oxygen index (OI) and the PF ratio with a higher
accuracy than the OSI or SF ratios [38,39]. Pulse
oximetry is a way to continuously monitor for
hypoxemia and expedite diagnosis or assess the
impact of ventilatory changes on oxygenation.

Other teams have focused their work on the
radiological criteria for the diagnosis. A web-based
platform was developed using artificial intelligence
on patients’ chest radiography for ARDS diagnosis
with a recall rate of 95% and precision of 88% [40].
The use of machine learning tools on chest radiog-
raphy is important as a meta-analysis of adult stud-
ies found an association between the radiological
findings and the alveolar recruitment potential
[41].
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Table 1. Advantages and drawbacks of technologies used in respiratory precision medicine

Technique Description Advantages Drawbacks

Clinical decision
support systems
(CDSS)

-Advance information systems
using algorithms, patient
data and a medical
knowledge base to assist in
clinical decisions

-These systems can provide
real-time, evidence-based
recommendations, alerts to
help diagnosis and to
identify complications or
high-risk patients, help
monitor patient progress,
etc.

- Enhances decision-making;
provides evidence-based
recommendations

- Enables personalized care by
analyzing patient-specific data
trends

- Facilitates standardized care
across providers

- Improves efficiency, timely
diagnosis and management

- Can reduce cognitive load and
allow clinician to have more
time with patients

- Reliance on data quality and volume
- High initial costs for implementation and
training

- Risk of over-reliance; potentially reducing
clinical intuition

- Data security and privacy concerns
- Limited flexibility
- Needs explainability and clinical studies to
ensure appropriate clinical management

-Requires medical knowledge base updates
with ever changing literature

Machine
learning
models

-Computational algorithms
designed to identify
patterns, make predictions
or provide insights based
on data

-These models train on
available patient data and
database to provide
predictions on new unseen
data

-Can analyze large amounts of
different types of data (lab
results, imaging, text, etc.)

- Enables personalized care by
analyzing patient-specific data
trends

-Can predict diseases and patient
deterioration and lead to
proactive interventions

-Can automate repetitive tasks

-Highly dependent on data quality: if data is
incomplete, biased or not diverse, the model
may produce inaccurate or biased
predictions

-Lack of transparency of certain models if no
explainability behind predictions

-Data privacy and security –Integration of such
models can be complex and expensive

Ultrasound -Imaging technique that uses
high-frequency sound
waves to produce real-time
images and evaluate the
pleura, lung parenchyma,
and diaphragm

-Portable, available at bedside
- Quick and accessible
- No radiation, noninvasive
- Provides immediate and real
time information; can assess
dynamic processes

- Operator dependency
- Requires specialized training to use
effectively and expertise to interpret images
accurately

- Limited availability
- Expensive technology
- Physical and environmental challenges
- Artifact generation from implanted devices;
can complicate accurate image
interpretation

Electrical
impedance
tomography
(EIT)

-Noninvasive imaging
technique that reconstructs
tomographic images of a
body region by measuring
its electrical conductivity,
permittivity, and impedance
through surface electrodes

- Individualized assessment
leading to personalized care

- Portable, available at bedside
- No radiation; noninvasive
- Provides immediate and real
time information; can assess
dynamic processes

- Minimal patient discomfort
- Allows for advance respiratory
monitoring

- Low spatial resolution
- Sensitive to noise and patient movement; can
lead to artifacts. Requires precise electrode
placement for accurate results

- Limited to specific applications
- Requires specialized training to use
effectively

- Variability in measurements due to individual
anatomy and physiology

- Limited availability
- Relatively new technology with limited
research

Neurally
Adjusted
Ventilatory
Assist (NAVA)

-Ventilation mode that uses the
patient’s diaphragm
electrical activity to
generate synchronized and
adjusted breaths in both
invasive and noninvasive
ventilation.

-Technology can be used to
evaluate diaphragmatic
activity for ventilation
weaning

- Improved synchrony between
patient and respirator;
enhance comfort

-Minimally invasive
- Provides an objective measure
of respiratory effort

- Allows for personalized, self-
adjusting ventilation

- Requires specialized equipment, expensive
technology

- Set up may be more complex (i.e. nasogastric
tube)

- Requires trained staff for usage
- Risk of technical problems with electrode
performance or signal disruption; requires
close monitoring

-Noise by cardiac activity can complexify its
use

Phenotypes and
biomarkers

- Measurable characteristics
or biological markers used
to classify patients into
different groups
(phenotypes)

- Enables personalized care; can
guide therapy selection

- Facilitates risk stratification
- Advances understanding of
pathophysiology; advancing
research

- Provides objective data;
complements clinical
assessments

- Limited availability
- High cost
- Requires advanced lab equipment and
training

- False negative and false positive could lead
to inaccurate interventions

- Time consuming
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Table 2. Key parameters and bedside applications of technologies

Technology Parameters Bedside applications

Lung Ultrasound Lung-ultrasound score: A score done by scanning up to 6
zones per hemithorax. Adapted scores exist with fewer
zones for critically ill supine patients.

Score 0: A-lines or presence of rare (� 2 B-lines)
Score 1: Presence of scattered B-lines
Score 2: Presence of coalescent B-lines
Score 3: Lung consolidation

Guide PEEP selection and recruitment
maneuvers

Estimation of extravascular lung water
Diagnosis: Pneumonia, pleural effusion,
pneumothorax, bronchiolitis

Predicting outcomes and invasive ventilation in
bronchiolitis patients and ventilation wean
failure

Diaphragm Ultrasound DE: Distance representing movement of the diaphragm
between its position during end-expiration and end-
inspiration

DT: Perpendicular distance between the pleural and
peritoneal layers of the diaphragm. Must be acquired in
end-expiration and end-inspiration.

DTF:
100 x ((End-inspiratory DT – End-expiratory DT)/ End-

expiratory DT)

Guide a diaphragm-protective ventilation, help
limiting ventilation diaphragmatic injuries

Diagnosis: Diaphragm paralysis, diaphragmatic
weakness

Help in predicting severity and outcomes in
bronchiolitis and asthmatic patients.

Help in predicting ventilation wean failure or
guide ventilation wean

Help guide respiratory muscle training and
identifying patient who would benefit from
such treatments

NAVA ventilation EADI: Maximal diaphragmatic electrical activity measured
with esophageal catheter.

Tonic EADI: Minimal diaphragmatic electrical activity
measured with esophageal catheter.

Can optimize the level of support, detection of
over and under assistance

Limit ventilator-patient asynchrony
Help in weaning patient from ventilatory
support

Thoracic EIT EELI: Lung impedance measured by EIT at end-expiration.
EELV: Lung volume estimated by EIT at end-expiration.
Overdistension and collapse curves: During ventilator

pressure change, based on impedance and compliance
measurements, curves showing degree of both
overdistension and collapse are plotted. Optimal PEEP
is thought to be at the intersection of the curves or
where collapse is � 5%.

D Z: Variation overtime of the sum of all pixels in a region
of interest. Represents the tidal volume.

GI index: Index comparing the difference in impedance of
each pixel between end-inspiratory and end-expiratory
to its surroundings. It is a measure of heterogeneity.

Can optimize the level of support, personalized
PEEP titration

Detection of atelectasis and overdistension
Identification of patients who could benefit
from: recruitment postsuctioning, recruitment
maneuvers, prone positioning, etc.

Guide ventilation wean and help predict
weaning failure

DZ, delta impedance; DE, diaphragm excursion; DT, diaphragm thickness; DTF, diaphragm thickening fraction; EADI, electrical activity of the diaphragm; EELI,
end-expiratory lung impedance; EELV, end-expiratory lung volume; EIT, electrical impedance tomography; GI, global inhomogeneity; NAVA, neurally adjusted
ventilation assist; PEEP, positive end-expiratory pressure.

Emergency and critical care medicine
Machine learning models are also used for mor-
tality prediction and for significant risk factors iden-
tification, such severe hypoxemia, a history of cancer
or hematopoietic stem cell transplant [42]. This
can help guide discussions with parents and guide
ventilation strategies or high-risk interventions like
the use of extracorporeal membrane oxygenation.

Finally, CDSS have been developed to improve
adherence to best practices. Most CDSS have been
studied in adult populations and focus on low tidal
volume ventilation strategy compliance [43–
45,46

&

]. It is yet to be determined if such CDSS will
impact pediatric patients’ outcomes or even if the
model recommendations will influence ventilation
management at the bedside as the agreement with
models can be low [47]. However, a phase-1 clinical
226 www.co-pediatrics.com
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trial conducted on children with ARDS evaluated a
CDSS prioritizing a lung and diaphragm protective
ventilation strategy and compared the outcomes
with an historical cohort. Patients ventilated with
the CDSS guidance received lower delta pressure,
lower tidal volumes, higher PEEP in hypoxemic
patients and had more ventilator-free days and
fewer days on mechanical ventilation [48].
Ultrasound

Ultrasound guided ventilator parameter changes
have been more extensively studied in the adult
and neonatal populations. Lung ultrasound (LUS)
is correlated with respiratory system compliance in
both infants and adults [49]. Observational studies
Volume 37 � Number 3 � June 2025
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in adults showed a significant correlation between
pressure-volume loops and LUS [50–52] and a meta-
analysis in adults demonstrated that a high LUS
score in ARDS was associated with higher mortality
[53

&

]. The study PEGASUS, an international random-
ized controlled trial, is currently enrolling patients
to compare ultrasound-guided management to
standard of care in adult patients with moderate
to severe ARDS [54].

There are reports of the use of LUS to guide
alveolar recruitment and PEEP selection in ARDS
[55,56

&&

,57]. The technique requires the identifica-
tion of lung consolidation and B-lines and the
increase of PEEP in a stepwise manner until the
apparition of A-lines, which suggests that the lung
tissue is reaerated. However, studies in adults are
inconsistent for the use of LUS to guide recruitment
[51,57–59]. One limitation is that it is difficult to
assess lung overdistension with ultrasound, but
experimental studies are showing promising results
by using the quantification of lung sliding [60,61]
and lung strain to assess overdistension [62].

The evaluation of pulmonary hypertension and
right ventricle (RV) dysfunction has also been
studied in PARDS [63,64]. New or persistent right
systolic dysfunction was associated with greater
number of ICU days, less ventilator-free days and
higher ICU mortality [64]. Nonsurvivors in this
study did not improve their RV function overtime
in comparison to the survivors. Moreover, a pedia-
tric prospective study showed that the LUS score was
correlated with the dynamic compliance, the OI and
that the score was higher in children requiring
continuous renal replacement therapy while
decreasing overtime with fluid removal [65].
Electrical impedance tomography

Thoracic electrical impedance tomography (EIT)
utilizes thoracic electrodes to measure conductivity
variations, capitalizing on the differing electrical
conductivities of air and water. Thoracic EIT allows
for a live bedside evaluation of ventilation distribu-
tion and the balance between overdistension and
atelectasis. The use of EIT is useful to increase com-
pliance, reduce mechanical power, lower driving
pressure and it has been associated with more ven-
tilator-free days and lower mortality [65–69,70

&

,71].
Pediatric cases have been reportedwhere EITwas

used to find optimal PEEP while limiting overdis-
tension and driving pressures [72–74]. This technol-
ogy can also identify patients in which recruitment
maneuvers could be beneficial. Effectively, patients
with more atelectasis in dependent areas were more
likely to have a positive answer to stepwise recruit-
ment maneuvers [75]. EIT measurements were also
1531-698X Copyright © 2025 Wolters Kluwer Health, Inc. All rights rese
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proportional to esophageal pressure in one pediatric
study [76].
Phenotypes and biomarkers

There are distinct phenotypes in ARDS, each with
different characteristics and outcomes [77,78,79

&&

,
80,81]. A subtype is characterized by elevated pro-
inflammatory biomarkers, more frequent concomi-
tant sepsis diagnosis and increased vasoactive
requirements. This group is associated with longer
ventilation duration and higher mortality [80]. Sur-
vivors and nonsurvivors have different biomarkers
trajectories [81]. Finally, Yehya et al. [82

&&

] analyzed
genes expression in a cohort of pediatric patients and
found three distinct transcriptomic subtypes with a
significant difference in hypoxemia evolution, bio-
logical signature, underlying diagnosis andmortality
rate. The development of rapid phenotype classifica-
tion and biomarkers analysis will enable the study of
the impactofventilationstrategies andspecific thera-
pies, allowing for treatment to be tailored to the
patient’s characteristics.
SEVERE ASTHMA

There is very limited evidence on the use of preci-
sion medicine for severe asthma. Ultrasound dia-
phragm thickening (DT) and diaphragm thickening
fraction (DTF) have both been correlated with
asthma severity [83]. Additionally, EIT-based flow-
volume curves showed strong correlation with spi-
rometry values in noncritical pediatric patients [84].
There are case reports in adults that describe the use
of EIT to determine optimal PEEP based on the
intrinsic PEEP to avoid air trapping and air leak
syndromes [85]. Finally, phenotype study can tailor
patient’s management with new biologic therapeu-
tic agents for severe asthma [86,87].
BRONCHIOLITIS

Bronchiolitis diagnosis is based on medical history
and physical examination as the disease lacks path-
ognomonic radiological pattern. Chest X-rays pro-
vide limited diagnostic value, often leading to
unnecessary antibiotic use. The use of precision
medicine tools to tailor ventilation and manage-
ment remains limited.
Ultrasound

A systematic review suggests that LUS may aid in
diagnosis and anticipating the need for PICU admis-
sion, and respiratory support requirements [88].
Specifically, predictive findings include posterior
rved. www.co-pediatrics.com 227
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Emergency and critical care medicine
or paravertebral consolidation >1 cm or lung dere-
cruitment assessment using different LUS scores.
The recent clinical practice guidelines on manage-
ment of severe bronchiolitis suggest that LUS could
be an alternative to chest radiography for descriptive
purposes [89]. Moreover, LUS has shown promise in
differentiating bacterial pneumonia from viral bron-
chiolitis, potentially aiding in the timely identifica-
tion of patients who may benefit from antibiotic
therapy [90]. The DTF has also been used success-
fully to identify patients with moderate to severe
bronchiolitis that needed ventilatory support or
invasive mechanical ventilation [91–93]. Further
prospective studies are essential to validate the use
of LUS, define its role in managing children with
bronchiolitis, and establish standardized scores.
Neurally adjusted ventilation assist

Neurally Adjusted Ventilation Assist (NAVA) is a
technology able to capture electrical activity of
the diaphragm to improve ventilator support. The
use of NAVA is associated with improved patient-
ventilator synchrony and a decrease in respiratory
effort [94,95,96

&

]. A study demonstrated that
elevated tonic diaphragmatic activity, representing
a sustained contraction of the diaphragm muscle
during expiration, is frequent in patients with
bronchiolitis [97

&

]. There is a possibility that this
represents an effort to maintain a certain level of
end-expiratory lung volume and that it could guide
the PEEP selection in this population.
VENTILATOR ASSOCIATED PNEUMONIA
AND OTHER RESPIRATORY TRACT
INFECTIONS

A machine learning model has been used to predict
VAP in a PICU population with a sensitivity of
79.7% and a specificity of 72.7% using the PEEP
and the variation of the PEEP level, oxygenation
markers, the variation of pulmonary compliance,
minute ventilation, and ventilatory median pres-
sures from a high-resolution database. [98]. This is
useful as delayed antimicrobial treatment is associ-
ated with worse outcomes [99,100]. Another team
developed a multivariable model to predict pro-
longed hypoxemia in pediatric influenza patients,
using oxygenation markers, blood gas data, venti-
lation pressures, demographic data and mortality
score components [101]. Early identification of
these patients is crucial, as prolonged hypoxemia
is linked to longer ICU stay and higher mortality
[102,103]. Implementing these predictive models in
clinical practice can enhance patient management
and improve overall outcomes [9

&&

].
228 www.co-pediatrics.com
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VENTILATION WEANING AND
EXTUBATION READINESS

In adults, the use of weaning protocols has been
shown to reduce the duration of mechanical ventila-
tion, weaning duration, and ICU length of stay [104].
In pediatric populations, similar benefits have been
observed.A study inPARDSdemonstrated that imple-
menting a ventilator-weaning pathway reduced the
median duration of invasive ventilation by 3.6days
without increasing reintubation rates [105]. Another
randomized clinical trial in PICU found that sedation
and ventilator liberation protocols reduced the time
to first successful extubation by a median of 6.1h
compared to usual care [106]. However, other studies
in both populations showed no significant change in
extubation failure rates, weaning duration and dura-
tion of mechanical ventilation, suggesting that a
personalized approach may be more beneficial than
a standardized protocol [107–109].
Data science and clinical decision support
systems

A review and meta-analysis comparing automated
weaning protocols to standard of care or nonauto-
mated weaning protocols in adults and children
showed that automatic systems reduced weaning
duration by 30% [110], ventilation time by 10%
and ICU length of stay (LOS) by 8% [111].

Another team predicted respiratory support
escalation or re-intubation following extubation
[112]. The variables predicting extubation failure
included nonminimal ventilatory parameters dur-
ing the spontaneous breathing trial (SBT), >3 ven-
tilator days, an occlusion pressure (P0.1) �9 cmH2O
at 30 min and � 8ml/kg of exhaled tidal volume at
120 min.
Ultrasound

Mechanical ventilation can cause respiratorymuscle
weakness and diaphragm atrophy [113]. LUS enables
clinicians to observe the effects of mechanical ven-
tilation on the diaphragm size and function and to
study the impact of these changes on extubation
and ventilation weaning outcomes [114]. In a study
of 47 children, diaphragm atrophy during mechan-
ical ventilation was associated with prolonged non-
invasive ventilation following extubation [115].
Diaphragm measurements are also added to other
variables like expiratory tidal volumes or hypoxemia
severity to improve extubation readiness prediction
[116]. The most studied measurements are DTF and
diaphragmatic excursion (DE), both associated with
extubation failure in pediatric studies (Table 3).
Even if there is variability in the threshold values,
Volume 37 � Number 3 � June 2025
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Table 3. Diaphragmatic ultrasound to predict weaning

failure

Study
Threshold
values

Ability to predict
weaning failure

Xue et al. (2019) [120] DTF: 21% AUROC: 0.89

Abdel Rahman
et al. (2020) [117]

DTF: 23.175%
DE: 6.2 mm
LUS score: 12

AUROC: 0.932
AUROC: 0.876
AUROC: 0.934

Arslan et al.
(2022) [118]

DTF: 40.5%
DE: 12.15mm

AUROC: 0.962
AUROC: 0.880

Subhash
et al. (2023) [119]

DTF: 20% AUROC: 0.77

AUROC, area under receiver operator characteristic; DE, diaphragm
excursion; DTF, diaphragm thickening fraction; LUS, lung ultrasound.

Tailoring ventilation and respiratory management in pediatric critical care Beauchamp et al.
both DTF and DE are promising tool to evaluate
weaning readiness, extubation readiness and to pre-
dict noninvasive ventilation needs following extu-
bation.
Neurally adjusted ventilation assist

NAVA ventilation has been linked to better
decreased sedation requirements and reduced ven-
tilation time. There is growing evidence that dia-
phragmatic activity can be monitored as a good
weaning predictor. A study showed that children
who failed extubation had higher diaphragm activ-
ity measured both pre and postextubation [121].
The advantages of NAVA during ventilation wean
were further illustrated in difficult to wean PARDS
patients and was associated with better synchrony
and significant improvement in oxygenation com-
pared to pressure support ventilation [122].
Electrical impedance tomography

In adults, studies have shown that EIT can be a
valuable tool to monitor regional ventilation distri-
bution and to predict the success of SBTs. Bicken-
bach et al. [123] demonstrated that EIT could help
deciding if a SBT will be beneficial for difficult to
wean patients on prolonged invasive ventilation
courses. Similarly, Wisse et al. [124

&

] found that a
high lung inhomogeneity was associated with SBT
failure. A pediatric case is described in a review
where tidal volume changes were monitored follow-
ing a ventilation pressure wean to assess the
patient’s readiness [125].
RESPIRATORY MUSCLE WEAKNESS AND
WORK OF BREATHING

Respiratory muscle weakness can be acquired due to
prolonged mechanical ventilation or ICU stay, or
1531-698X Copyright © 2025 Wolters Kluwer Health, Inc. All rights rese
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duetoacongenitalneuromusculardisease.Advanced
breathing monitoring with 3D cameras has been
investigated in a PICU [126]. It allowed for the precise
estimation of tidal volumes and the continuous eval-
uation of thework of breathing. Ultrasound has been
used not only to detect diaphragm weakness and
paralysis, but also to evaluate the impact of assistance
devices such as a pneumatic abdominal-diaphrag-
matic belt on DE or mechanical insufflation-exsuf-
flation for airway clearance [127–129].

Prompt diagnosis of respiratory muscle weak-
ness enables early inspiratorymuscle training which
can lead to earlier successful weaning [130,131].
Long-term inspiratory muscle training after dia-
phragmatic hernia surgery was associated with
increased exercise capacity, improvement in respi-
ratory function and better quality of life [132].
SpO2 AND SKIN COLOR

A systematic review examined how skin tone influ-
ences the accuracy of pulse oximetry in estimating
arterial oxygen saturation (SaO2) [133]. The review
found that pulse oximeters tend to overestimate
SaO2 in patients with darker skin tones, especially
at lower oxygen saturation levels. This overestima-
tion could lead to undetected hypoxemia and
delayed interventions. It emphasizes the impor-
tance of considering skin tone when interpreting
pulse oximetry readings andwhen using this param-
eter in machine learning models and CDSS to limit
racial bias.
CONCLUSION

Precision medicine is set to revolutionize pediatric
critical care by providing a more individualized
approach to respiratory management. By incorpo-
rating advanced monitoring tools, machine learn-
ing models and the personalization of specific
parameters, clinicians can optimize ventilation
strategies, reduce complications associated with
mechanical ventilation and improve patient out-
comes. Further studies are necessary to refine these
approaches and validate their impact on long-
term outcomes.
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