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Abbreviations used

AD: Atopic dermatitis

a-gal: Galactose-a-1,3-galactose

AGS: a-gal syndrome

BAT: Basophil activation test

CCD: Cross-reactive carbohydrate determinant

CM: Cow’s milk

DC: Dendritic cell

FA: Food allergy

FLG: Filaggrin

FPIES: Food protein–induced enterocolitis syndrome

GOS: Galacto-oligosaccharide

LTP: Lipid transfer protein

NSAID: Nonsteroidal anti-inflammatory drug

OFC: Oral food challenge

PA: Peanut allergy

PFAS: Pollen-food allergy syndrome

ses-IgE: Sequential epitope-specific IgE

sIgE: Specific IgE

SPT: Skin prick test

Treg: Regulatory T

TRP: Transient receptor potential

WDEIA: Wheat-dependent exercise-induced anaphylaxis
In the last century, food allergy has become recognized as an
increasingly prevalent and heterogeneous condition. Advances
in biomedical technology have revealed complex genetic,
environmental, immune, and metabolic pathways underlying
the pathogenesis of food-allergic disorders. These findings
permit classification of distinct food allergy endotypes with
unique pathophysiologic features. In this review, we suggest that
these endotypes of food-allergic disorders should be defined on
the basis of (1) whether or not the allergic antibody IgE plays an
essential role in disease pathogenesis, (2) the molecular features
of the allergen (protein vs carbohydrate), and (3) the molecular
markers associated with prognosis, severity, or clinical
presentation. Beyond these broad categories, additional
subtypes with unique mechanistic characteristics are discussed.
(J Allergy Clin Immunol 2025;nnn:nnn-nnn.)
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The National Institute of Allergy and Infectious Diseases
expert panel defined food allergy (FA) as ‘‘an adverse health effect
arising from a specific immune response that occurs reproducibly
on exposure to a given food.’’1 This definition broadly captures
the mechanism and manifestation of allergic disorders to food.
However, clinicians treating food-allergic patients recognize the
tremendous heterogeneity of the ways in which FA develops
and presents. Modern technology has yielded significant insights
into the complex genetic, environmental, immune, and metabolic
pathways underlying the pathogenesis of allergic disorders. As
such, a recent position paper by the European Academy of
Allergy and Clinical Immunology proposed that the current
nomenclature and classification systems are antiquated and thus
suggested updates.2
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In this review, we propose and describe endotypes of FA,
focusing on the mechanisms underlying the development and
natural course of FA (Fig 1). Classification by endotype involves
distinguishing disease states on the basis of their underlying path-
ophysiologic mechanisms, such as characteristic immune signa-
tures and/or biomarkers. This contrasts with phenotypes, which
are identified on the basis of observable features, such as specific
signs or symptoms (Box 1). We propose to broadly classify endo-
types of food-allergic disorders on the basis of (1) the role of IgE
(IgE-mediated, non–IgE-mediated, or mixed); (2) the type of
allergen (protein vs carbohydrate) driving sensitization; and (3)
themolecular markers associatedwith prognosis, severity, or clin-
ical presentation, with additional subtypes described.
ENDOTYPE OF IGE-MEDIATED FA
IgE-mediated FA (IgE-FA) is a type I or immediate hypersen-

sitivity reaction and the most common food-allergic disorder.3

Patients with IgE-FA present with classic allergic symptoms
that develop quickly following allergen exposure, with the most
severe manifestation being systemic, life-threatening anaphy-
laxis.4 The central role of food-specific IgE (sIgE) in immediate
allergic reactions was demonstrated in the early 20th century
through passive sensitization experiments.5 Fish-tolerant volun-
teers were injected intradermally with fish-allergic patient and
control sera. Approximately 24 hours later, they were fed fish.
Awheal and flare reaction developed at the sensitized site within
several minutes to 1 hour in more than 90% of subjects, but no
reaction occurred at the control site.
1
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FIG 1. Classification of FA endotypes. For IgE-FAs, endotypes are defined on the type of sensitizing allergen

and route of sensitization. For FPIES, endotypes are proposed on the basis of our understanding of putative

pathophysiologic mechanisms. T21, Trisomy 21.

Box 1. Definitions of terms used in the review

Endotype: A subtype of a disease defined by distinct functional or

pathophysiologic mechanisms.

Phenotype: Observable characteristics of an organism resulting from

the interaction of its genotype and environment.

Epitope: The region of an allergen recognized by specific IgE or T cells.

Sequential/linear epitope: Epitope consisting of a continuous sequence

of amino acid residues.

Conformational epitope: Epitope is formed by the 3-dimensional

conformation adopted by the interaction of contiguous or

discontiguous amino acid residues.

Molecular spreading: The expansion of an immune response from a

singular primary sensitizing protein to other partially homologous or

cross-reactive proteins across different allergenic families within a

food.

Epitope spreading: The immune system’s diversification from targeting

an initial epitope to additional epitopes, either within the same

allergen or across different allergens. This term is used more broadly

in the scientific community, in various immunologic conditions

(eg, autoimmunity and cancer).
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Genetics plays a critical role in IgE-FA susceptibility, influ-
encing both epithelial barrier integrity and immune responses.6

Immune-antigen interactions at the epithelial barrier play a cen-
tral role in sensitization.6-8 Mutations in the filaggrin (FLG)
gene impair epithelial barrier function, increasing allergen pene-
tration and sensitization.9,10 Polymorphisms in immune signaling
genes such as IL-4RA, IL-13, and STAT6 drive TH2-skewed im-
munity by enhancing IL-4 and IL-13 signaling and promoting
allergen-sIgE production.11,12 Genome-wide association studies
have identified loci associated with peanut allergy (PA), such as
11q13.5, implicating genes such as LRRC32 involved in T-cell
regulation.13,14 Epigenetic modifications, includingDNAmethyl-
ation of immune-related genes, further modulate allergic pheno-
types.6 Gene-environment interactions, such as allergen
exposure during critical windows, amplify these genetic effects.9

Fig 2 presents a schematic of endotypes of IgE-FA. Under the
umbrella of IgE-FA, distinct endotypes are identified on the basis
of the nature of the sensitizing allergen. Within the endotype of
IgE-FA to carbohydrates, the major antigens of clinical relevance
are galactose-a-1,3-galactose (a-gal), short-chain galacto-oligo-
saccharides (GOSs), and cross-reactive carbohydrate determinants
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FIG 2. Classification of FA endotypes based on IgE involvement and the type of sensitizing allergen.

*Sensitization to serum albumins in mammalian meat, milk, and egg yolk might occur via ingestion or sec-

ondary to inhalation of the cross-reactive serum albumins in animal dander (cat or dog), leading to pork-cat

syndrome. Sensitization to crustacean tropomyosin might occur via ingestion or secondary to inhalation of

the cross-reactive tropomyosin in arthropod aeroallergens from dust mites and cockroach.
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(CCDs). Protein antigens are typically classified as class 1, that is,
stable, food-derived proteins, or class 2, that is, labile proteins that
cause reactions because of cross-reactivity after sensitization to
aeroallergens. Table I provides the phenotypic features of the endo-
types of IgE-FA discussed in this review.15-45
Mechanisms of IgE-FA development
Allergic sensitization and elicitation. IgE-FA develops

when there is a breakdown of oral tolerance leading to TH2-
allergic sensitization and secretion of allergen-sIgE. After eating,
food antigens cross mucosal barriers in the gastrointestinal tract.
In a state of tolerance, these antigens are processed by dendritic
cells (DCs) without immune activation. Tolerogenic cytokines
such as IL-10 are released, leading to differentiation of naive
T cells into regulatory T (Treg) cells and a humoral response char-
acterized by robust IgA and IgG4 and low IgE production.
Allergic sensitization to food might occur through the skin, oral
mucosa, gastrointestinal tract, or respiratory tract.27 During sensi-
tization, epithelium that is damaged or inflamed triggers release
of proinflammatory cytokines including IL-25, IL-33, and thymic
stromal lymphopoietin.3,4 These cytokines promote TH2 polariza-
tion by stimulating innate lymphoid cell secretion of IL-4 to sup-
press Treg cells and upregulation of OX40 ligand by activated
DCs, which primes T cells for a TH2 immune response. TH2 lym-
phocytes and their associated cytokines drive B cells to proliferate
and class-switch to IgE. Following sensitization, a pool of
allergen-sIgE–secreting plasmocytes and memory B cells is
established in tissues and circulation and contributes to the
long-lasting immunologic memory characteristic of persistent
IgE-FA.28,29 On subsequent allergen exposures, sIgE binds to
high-affinity FcεRI receptors on mast cells and basophils.
Cross-linking of these receptors triggers the release of preformed
mediators such as histamine and newly synthesized cytokines,
leukotrienes, and prostaglandins.4 Food-sIgE can be quantified
in serum and monitored over time to assess tolerance. Functional
IgE-cross-linking may be assessed via in vitro basophil activation
test (BAT), which has potential as a biomarker reflecting the like-
lihood of allergic reaction on ingestion.30

Epitope recognition and spreading. The nature of the
epitope recognized by sIgE has implications for prognosis and the
strength of the immune response. sIgE may be specific for a
continuous sequence of amino acids, termed a linear epitope, or
amino acids in their 3-dimensional structure, termed a confor-
mational epitope.31-33 Detection of sIgE directed against sequen-
tial epitopes is associated with persistent IgE-FA, whereas
immune responses targeting 3-dimensional conformational epi-
topes, such as those in cow’s milk (CM) and hen’s egg white
that change shape when heated, are associated with tolerance of
baked milk/egg and a milder allergic phenotype (Fig 3). This is
discussed in detail in later sections on persistent and transient
IgE-FA.

Epitope spreading. Epitope spreading describes the diver-
sification of immune responses from an initial dominant protein
epitope to additional epitopes either within the same molecule or
among structurally related proteins of the same allergen. This
has been best described in autoimmunity,34 but given that aller-
gens are proteins, epitope spreading is expected to similarly



TABLE I. Endotypes of FA and their phenotypic and mechanistic features

IgE-FA Phenotypic (clinical) features Endotypic features

Classic IgE-FA: Protein epitopes

Persistent IgE-FA d More common for peanut, tree nuts, sesame,

shellfish, and fish

d Less common for milk or egg, although associated

with inability to tolerate baked forms

d Associated with early-onset or severe AD, severe

anaphylaxis, multiple FA, and high initial or rising

food-sIgE levels15

d Increased B-cell and T-cell epitope diversity16,17

d Predominant ses-IgE and ses-IgE expansion18

d High affinity IgE binding16

Transient IgE-FA d More common for milk, egg, soy, and wheat allergy

d Associated with low initial IgE levels, tolerance of

baked forms of milk/egg, and high threshold of

reactivity19

d Predominant sensitization to conformational epitopes

d Changes associated with tolerance development:

declining sIgE levels, increased IgG4 and IgA, and

lower IgE-binding affinity20

FA and AD d Early-onset AD21
d Skin tape stripping profile: reduced FLG, distinct lipid

and protein expression profiles, higher S aureus, and

increased TH2 immune response22,23

Severe FA d Difficult to predict patients at higher risk of severe

reactions from phenotypic features24
d Sensitization to Pru p 3 (peach) and 2S albumins

(tree nuts)25,26

d Monosensitization to Ana o 3 (cashew)27

d Monosensitization to single LTP28

d Sensitization to higher number of sequential epitopes on

CM casein29

Sensitization through inhaled food

proteins

d Adults with occupational exposure—baker’s asthma

(wheat), seafood-processing facilities (shellfish)

d Predominantly respiratory presentation, may tolerate

ingestion

d Baker’s asthma: predominant sensitization to a-amylase

inhibitor30

Sensitization to food proteins

homologous with aeroallergens

(PFAS, pork-cat syndrome,

tropomyosin syndrome, and

bird-egg syndrome)

d PFAS symptoms are generally limited to the

oropharynx (pruritus, tingling, angioedema, and

perioral urticaria) with rare progression to systemic

symptoms31,32

d Patients with PFAS often tolerate cooked or

processed foods as they are sensitized to heat-labile

proteins; CRD is helpful for diagnosis

d Allergic rhinoconjunctivitis typically precedes PFAS;

rarely aeroallergen sensitization may be

asymptomatic

d Pork-cat syndrome involves reactions to pork after

sensitization to cat aeroallergen35

d Tropomyosin syndrome describes reactions to

shellfish after sensitization to dust mite36,37

d Bird-egg syndrome begins with sensitization to bird,

with later reactions to egg yolk38,39

d Sensitization to class 2 allergens such as PR-10 proteins

or profilins33

d Sensitization to LTP, in particular Pru p 3, or

monosensitization to LTP without cosensitization to

PR-10 or profilins is associated with increased severity

or systemic reactions34

d In pork-cat syndrome, sensitization to cat serum albumin

(Fel d 2) results in reactivity to porcine albumin and

allergic reactions on ingestion of pork35

d In tropomyosin syndrome, sensitization to tropomyosin

in house dust mite is thought to cause cross-reactivity

with tropomyosin in shellfish36,37

d In bird-egg syndrome, people sensitized to bird

aeroallergens react to egg yolk; this appears to be

due to cross-reactivity between avian and egg a-livetin

(Gal d 5)38,39

Cofactor-dependent IgE-FA

(eg, FDEIA and WDEIA)

d Presence of cofactor (exercise, NSAIDs, or alcohol)

is necessary for clinical reaction; food ingestion

without the cofactor is tolerated15

d v-5-Gliadin sensitization highly associated with wheat

FDEIA40

Carbohydrate epitopes

AGS d Delayed urticaria or anaphylaxis 2-6 h after

mammalian meat consumption41
d a-Gal sensitization through tick bites42

d Antigen is thought to enter the circulation 2-3 h after

ingestion with lipid metabolism

GOS d Immediate allergy on first consumption of formula

enriched with short-chain GOSs43
d Sensitization is thought to be related to local dust mites44

CCDs d Generally asymptomatic45 d Sensitization to glycan moieties on plant and insect

glycoproteins45

d Absence of clinical reactivity is attributed to sIgE

lacking the spatial configuration or valency to activate

effector cells45; IgG4 blocking antibodies may also

contribute

CRD, Component-resolved diagnostics.
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occur in allergic responses. This phenomenon encompasses
both intra-allergen and inter-allergen mechanisms, leading
the immune system to recognize and react to multiple epitopes
within a single allergen or its homologs.35,36 In CM allergy,
initial sensitization to an epitope on aS1-casein may expand
to additional epitopes on the same protein or to other milk pro-
teins (eg, b-casein).35 This process reflects enhanced antigen
processing and presentation, with T-cell help, driving B-cell



FIG 3. Humoral immune changes associated with endotypes of persistent and transient IgE-FA. Persistent

IgE-FA is associated with increasing levels of food-sIgE, increasing IgE diversity with expanding repertoire

of recognized proteins, high-affinity IgE binding, and the expansion of ses-IgE. In contrast, transient IgE-FA

is associated with decreasing sIgE levels, increased food-specific IgG4 and IgA, and shift to lower-affinity

epitopes, correlating with reduced clinical reactivity. Adapted from Hemmings et al.43
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IgE diversification.34 Intra-allergen epitope spreading can
intensify the allergic response by broadening IgE reactivity,
perpetuating TH2-driven inflammation, and reducing the likeli-
hood of natural tolerance development (Fig 3).

Molecular spreading. In contrast, molecular spreading
refers to the broadening of the immune response from recognizing
a singular primary sensitizing protein to other partially homolo-
gous or cross-reactive proteins across different allergenic families
within a food.37 This phenomenon represents a cross-reactive
mechanism, because it involves the recognition of conserved epi-
topes shared among unrelated proteins. For example, although
direct evidence is limited, in PA, sensitization is thought to begin
with Ara h 2 (a 2S albumin) but then extends to vicilin and legu-
min proteins Ara h 1 and Ara h 3 through molecular spreading.16

Molecular spreading may also drive cross-reactivity to seemingly
unrelated allergens because of structural similarities between
shared protein families. For instance, sensitization to house dust
mite tropomyosin can lead to IgE reactivity against tropomyosins
in shrimp, crab, and lobster.17 Similarly, in birch pollen allergy,
sensitization to Bet v 1 frequently results in cross-reactivity to
food PR-10 proteins, such asMal d 1 (apple) or Ara h 8 (peanut).37

This cross-reactive spreading amplifies sIgE responses, increases
basophil reactivity, and enhances the severity and persistence
of allergic disease.17 Advanced diagnostics, such as peptide mi-
croarrays, have further elucidated the patterns of molecular
spreading and their clinical implications.38
Monosensitization versus polysensitization
Within the same allergen.Monosensitization involves IgE

targeting a single epitope, whereas polysensitization targets
multiple epitopes within the same allergen. In PA, polysensitiza-
tion to multiple Ara h 2 epitopes correlates with increased
basophil activation and more severe clinical outcomes.17

Within the same allergenic food source. Polysensitiza-
tion can occur within the same allergenic source, as exemplified
by the peanut storage proteins Ara h 1, Ara h 2, and Ara h 3.
Among these, Ara h 2 is the most clinically significant, with
strong predictive value for systemic allergic reactions.39 Ara h 1
and Ara h 3, although less potent individually, contribute to the
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overall immunogenic profile of PA when sensitization occurs to
multiple peanut proteins. This phenomenon is attributed to the
structural conservation and shared IgE-binding epitopes among
these storage proteins, which amplify allergic responses.17,39

Across different foods. Some proteins, such as vicilins and
2S albumins, are conserved across various food groups such as
fruits, vegetables, nuts, and seeds.40 Although this does not al-
ways result in clinical reactivity, it may in some cases. For
example, patients exquisitely sensitive to cashew/pistachio may
experience allergic reactions to citrus seeds, with sIgE apparently
directed against citrin.41 Citrin andAna o 2 are both 11S globulins
belonging to the cupin superfamily, and so the significant homol-
ogy between these proteins is thought to underlie the coreactivity.

Subclinical sensitization. Sensitization does not always
lead to clinical reactivity, and clinical evaluation is critical to
assess the actual risk of reaction.42 Subclinical sensitization re-
fers to the production of sIgE without corresponding allergic
symptoms. Various mechanisms have been proposed to explain
this observation, including low sIgE affinity, targeting of non-
clinically relevant epitopes, and poor effector activation,
perhaps because the sIgE targets conformational regions that
fail to cross-link FcεRI on mast cells and basophils.43 This
phenomenon is supported by findings that low-affinity IgE
often arises in the absence of key signals, such as IL-13
from TfH13 cells, which are required for the production of
high-affinity IgE capable of driving severe allergic responses
and anaphylaxis.44
FA and atopic dermatitis
Atopic dermatitis (AD) is an important risk factor for IgE-

FA.45 The dual allergen hypothesis posits that early contact
with food through a disrupted, inflamed cutaneous epithelial
barrier in the absence of ingestion promotes a TH2-skewed
immunologic response and IgE-FA.46 However, only one-
third of children with AD develop IgE-FA, and children
with early-onset AD and IgE-FA may represent a unique endo-
type.21 Studies of children with AD and IgE-FA using nonin-
vasive skin-stripping techniques have revealed distinct features
including increased transepidermal water loss related to lower
levels of FLG and sphingosine ceramide, increased gene
expression related to DCs and TH2 immune pathways, and
higher levels of Staphylococcus aureus.22,23 These characteris-
tics set them apart from food-allergic children without AD as
well as from nonallergic children.

FLG is a stratum corneum protein that plays a crucial role in
skin barrier integrity by aggregating keratin filaments.47 When
hydrolyzed, FLG breakdown products contribute to the produc-
tion of essential components that maintain pH balance, retain
moisture, and influence the skin microbiome.48,49 FLG loss-of-
function mutations are associated with increased FA.50 Many in-
dividuals with PA but no AD also demonstrate decreased FLG
breakdown products despite having normal transepidermal water
loss, suggesting an important role of FLG in the development of
IgE-FA, even in the absence of AD.51 In Japanese and European
birth cohorts, FLG loss-of-function mutations were associated
with persistent egg sensitization in both cohorts, with this associ-
ation independent of AD in the Japanese cohort. Further studies
are necessary to clarify the pathophysiology and characterize
patients with IgE-FA and impaired FLG function in the absence
of AD.
Endotypes of severe FA
Food-allergic reactions range from mild to severe.52 Mild

symptoms include transient oral pruritus or a few urticarial
lesions, whereas severe reactions can affect the respiratory, car-
diovascular, or neurologic system, requiring epinephrine or hos-
pitalization. Various grading scales classify severity, an
example of which is the updated Consortium for Food Allergy
Research anaphylaxis scale (grades 1-5).53 Grade 1 reactions
involve mild mucocutaneous, respiratory, or gastrointestinal
symptoms. The grade increases with increasing reaction severity,
with grade 3 symptoms sufficient to limit activity. Grade 4 in-
cludes life-threatening cardiovascular, neurologic, or lower respi-
ratory tract symptoms, and grade 5 denotes fatal reactions.

Identifying patients at higher risk of severe reactions is an
important unmet clinical need.24 Young children are most likely
to be evaluated in the emergency department/hospital.54 Howev-
er, infants and toddlers usually develop cutaneous and/or gastro-
intestinal symptoms and are generally thought to have lower risk
for severe reaction.24,55 The risk of severe reaction, including fatal
and near-fatal anaphylaxis, appears to be the highest in adoles-
cence and young adulthood.24,56-59 This might be in part attribut-
able to the age-related transition to allergy self-care as well as
risk-taking behavior with regard to food choices, cross-contact
precautions, and carrying epinephrine. However, these behavioral
considerations are most applicable in the teenage years, and data
from the United Kingdom suggest that the increased risk of fatal
anaphylaxis may persist into the fourth decade of life.24 As such,
biologic factorsmay be at play, although because of rarity of food-
allergic reactions of this severity, mechanisms are yet to be eluci-
dated.59 A recent meta-analysis found that a higher sIgE level,
larger skin prick test (SPT) wheal size, BAT, previous history of
anaphylaxis, and concomitant asthmawere not predictors of reac-
tion severity.24 However, cofactors may play a role in reaction
severity, as discussed later.

Certain molecular features may correlate with reaction
severity. Sensitization to specific major allergens is associated
with a higher risk of anaphylaxis.25,60,61 Notable examples of this
include 2S albumins (eg, Ara h 2 in peanut and Ana o 3 in cashew)
and lipid transfer proteins (LTPs) such as Pru p 3 in peach.62 In
addition, the molecular nature of the epitope appears to affect
the potency of the allergic response; in PA, IgE specific to
linear/sequential epitopes and higher epitope diversity have
been associated with increased reaction severity.18,63,64
Transient FA: Development of tolerance in

childhood
Most children with milk, egg, soy, and wheat allergy have a

transient IgE-FA phenotype and develop tolerance naturally.65-69

Clinical predictors include tolerance of baked milk/egg, lower
sIgE levels and smaller SPT wheal sizes at presentation,
decreasing sIgE levels and SPTwheal size over time, and absence
of AD, allergic rhinitis, or asthma.19,70 Lower levels of sIgE to the
heat-stable proteins casein and ovomucoid in milk and egg,
respectively, are associated with tolerance of baked milk/
egg.71,72 Most milk- and egg-allergic children who tolerate baked
milk/egg are primarily sensitized to conformational epitopes, as
previously described.73

On a molecular level, natural resolution of FA is characterized
by declining sIgE levels, less epitope diversity, lower IgE-binding
affinity, increased allergen-specific IgG4, increased Treg cells,
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higher levels of inhibitory cytokines, and possibly elevated
allergen-specific serum IgA.20,74-76 This has been best studied
in CM allergy, in which patients who tolerated baked milk and/
or outgrew their allergy demonstrated lower IgE affinity and
less epitope diversity. IgG4 is thought to compete with IgE for
allergen binding, blocking effector cell activation, whereas IgA
reinforces epithelial barrier integrity and prevents allergen
absorption.77-79
Persistent IgE-FA
Peanut, tree nut, sesame, and seafood allergies typically

persist.15 Natural history data are most robust for peanut and
tree nuts, with an estimated resolution rate of 20% to 30% for
PA69,80 and just 10% to 15% for tree nut allergy.81,82 Resolution
typically occurs within the first 6 years of life, with the likelihood
of naturally outgrowing these allergies decreasing after early
childhood. Phenotypic features associated with persistent IgE-
FA include early-onset, severe AD, severe anaphylactic reactions,
multiple FAs, and high initial, peak, or rising sIgE levels.15

Increased diversity of sequential epitope-specific IgE (ses-IgE)
is associated with more severe reactions and appears to be a
biomarker of persistent allergy.18,63,64 This is best studied in PA,
in which epitope-binding maturation and epitope-spreading pat-
terns have shed light on the development of persistent PA. Data
from the Learning Early About Peanut study suggest that children
in both the avoidance and consumer groups initially developed
sIgE to conformational epitopes.83 Subsequent development of
ses-IgE represented a key event in the evolution of persistent
PA, which occurred primarily after age 2.5 years and appeared
to be mitigated by early oral introduction of peanut. Children in
the avoidance arm who developed PA had higher levels of peanut
ses-IgE, and peanut ses-IgE repertoire expansion was found
exclusively in children who developed PA. In contrast, ses-IgG4
expansion was seen in all children but was delayed and reduced
in children who avoided peanut, suggesting that early oral intro-
duction induces ses-IgG4 expansion. Although egg allergy gener-
ally has a favorable prognosis, studies have similarly noted
ses-IgE development and epitope diversity to predict persistent
egg allergy.84,85

The replenishment of allergen-sIgE plays a crucial role in
sustaining reservoirs of short-lived IgE-expressing cells, contrib-
uting to persistent allergy. Populations of TH2-polarized memory
B cells expressing IgG1 or IgG4, CD23, and germline immuno-
globulin heavy epsilon with highly mutated B-cell receptors
have been found to be increased in children and adults with persis-
tent PA.86,87 These cells serve as precursors to high-affinity, path-
ogenic IgE-producing cells, which likely drive the long-term
persistence of IgE-FA.88
IgE-FA with primary sensitization to proteins
Food antigens that can trigger IgE sensitization are mainly

proteins.89 The allergenic potential of food proteins may be influ-
enced by factors such as their stability during food processing and
digestion, glycosylation, their ability to bind lipids that protect
them from degradation and aid in absorption in the gastrointes-
tinal tract, or their capacity to activate innate immune responses
and cause primary sensitization.90 In contrast, secondary sensiti-
zation begins with respiratory exposure to a homologous protein,
followed by cross-reactivity with food proteins.91,92
Class 1 allergens are the major food allergens implicated in
IgE-FA, including anaphylaxis.89 They are typically water-
soluble glycoproteins with molecular masses between 10 and
70 kDa and a high degree of stability during digestion with resis-
tance to heat, acid, and proteases. Class 1 allergens are found in
CM (caseins and whey proteins), egg white (ovalbumin and ovo-
mucoid), meat (bovine serum albumin), seafood (tropomyosin in
crustaceans and parvalbumin in finned fish), as well as plants,
including peanut, legumes, tree nuts, seeds, grains, and fruits/
vegetables.
Endotype of IgE-FA to inhaled food proteins as

primary sensitizers
Beyond the typical sensitization via skin contact or ingestion,

primary sensitization to aerosolized food antigens has been
described in adults with occupational exposure. The classic
example is baker’s asthma, with work-related wheat exposure
causing asthma and rhinitis.93 Unlike classic wheat allergy, pa-
tients with baker’s asthma are primarily sensitized to a-amylase
inhibitor.94 Despite positive bronchial challenge and IgE sensiti-
zation, many patients with baker’s asthma continue to tolerate
ingestion of wheat, perhaps because of lack of sensitization to
gliadin/glutenin proteins or continued regular ingestion of bread
inducing persistent tolerogenic mechanisms. In others, a breach
in oral tolerance occurs and symptoms develop on wheat inges-
tion.95 Occupational asthma and allergy due to aerosolized shell-
fish and fish allergens have also been documented in 4% to 36% of
workers in seafood-processing facilities.96
Endotype of IgE-FA secondary to sensitization to

homologous airborne allergens
Pollen-food allergy syndrome (PFAS) represents a distinct IgE-

FA endotype in which primary sensitization occurs to aeroaller-
gens with subsequent reaction to homologous or cross-reactive
food proteins, referred to as class 2 food allergens.91,92 PFAS is
also known as oral allergy syndrome because symptoms are
largely limited to the oropharynx, including pruritus, tingling, an-
gioedema, and perioral urticaria elicited by contact with food;
systemic symptoms are rare (up to 3%).97 Patients report previ-
ously tolerating raw plant foods only to suddenly experience
symptoms later in childhood or as an adult. They frequently report
seasonal allergic rhinoconjunctivitis preceding PFAS onset,
although there is no clear correlation between severity of rhino-
conjunctivitis and PFAS. Rarely, patients report no seasonal
symptoms, yet they have evidence of pollen sensitization. Despite
pollen sensitization being the primary event, pollen-specific
immunotherapy does not consistently ameliorate PFAS symp-
toms, is currently not recommended for the sole indication of
PFAS, and has rarely been reported to induce PFAS.92,98,99

The pattern of PFAS foods varies with local aeroallergens.
Classic associations include birch pollen allergy with reactions to
apple, almond, hazelnut, and peanut; grass allergy with celery,
melon, and tomato; mugwort allergy with celery, carrot, parsley,
fennel, and peach; and ragweed allergy with melons and
banana.92 Many patients with PFAS tolerate cooked or processed
forms of their PFAS triggers because the culprit proteins are labile
and readily degraded by heat or digestion.92 Because of
their lability, commercial SPTs have decreased sensitivity, and
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prick-prick tests to the fresh foods and/or component-resolved di-
agnostics are important tools in PFAS diagnosis.

Most PFAS allergens belong to the pathogenesis-related (PR-
10), profilin, and LTP families. PR-10 proteins include Bet v 1
(birch), the best-studied PFAS protein. Bet v 1 homologs, which
includeMal d 1 (apple), Pru av 1 (cherry), Pru ar 1 (apricot), Pyr c
1 (pear), Cor a 1 (hazelnut), and Ara h 8 (peanut), are labile and
easily denatured with cooking, processing, and digestion; thus,
systemic reactions are rare. Profilins are similarly sensitive to
gastric digestion, and so profilin sensitization carries low risk of
systemic symptoms. Profilins share significant homology, with
sensitization to profilins associated with multiple pollen-
associated FAs.100,101 LTPs are pan-allergens with better heat
and digestion stability and significant ability to bind lipids, which
may protect them from degradation. Among the LTPs, Pru p 3
(peach) has been associated with most (68%) cases of LTP-
associated anaphylaxis in an Italian study.102 It has been sug-
gested that Pru p 3 is a primary sensitizer leading to subsequent
polysensitization to other LTPs.103 Sensitization to LTPs without
cosensitization to PR-10 or profilin proteins is associated with
greater reaction severity.102

PFAS to peanut and tree nuts can develop in older children and
adults. In contrast to other plant foods, it is more challenging
clinically because monosensitization to PR-10 (eg, Ara h 8 and
Cor a 1) is uncommon.104 Patients are usually sensitized to both
pollen cross-reactive and non–cross-reactive allergens (eg, vici-
lins and 2S albumins).105 Component-resolved testing is helpful
in evaluating sensitization patterns, but an oral food challenge
(OFC)may be necessary to assess the risk of systemic reaction.106

Monosensitization to nut PR-10 or profilins is not a risk factor for
systemic reactions, unless large doses of nuts are ingested on
empty stomach and/or cofactors are present.92,104

Tropomyosin syndrome has been suggested as a subtype of oral
allergy syndrome.107,108 Tropomyosin is a heat-stable, highly
conserved arthropod pan-allergen, and it is hypothesized that
one endotype of shellfish allergy involves primary aeroallergen
sensitization to house dust mite tropomyosin leading to cross-
reactivity with shellfish. This appears to be characterized by a
high threshold and limited oral symptoms. However, this has
not been definitively established.

Pork-cat syndrome is a phenomenon in which patients
experience allergic reactions to pork after sensitization to cat,
usually in adolescence or adulthood.109 Unlike a-gal syndrome
(AGS), these patients experience fairly immediate symptoms,
including oral pruritus at the time of ingestion.Well-cooked prep-
arations of pork appear less likely to elicit a reaction. Cat serum
albumin (Fel d 2) appears to be the index antigen, which later
causes reactions to porcine albumin (82% homologous). It is
thought that sensitization occurs slowly over time, explaining
why reactions develop later in life. A study of 76 cat-allergic peo-
ple found that the frequency of sensitization to cat serum albumin
was 14% to 23%, whereas 3% to 10% were sensitized to porcine
albumin.110 It is thought that about one-third of these patients may
be at risk for symptoms. Similarly, cosensitization to bovine albu-
min has been reported, mostly associated with exposure through
medical tissue adhesives.111,112
Endotype of IgE-FA to carbohydrate allergens
Although protein epitopes dominate any discussion about

mechanisms of FA, there is precedent to recognize
oligosaccharides as immunogenic. The ABO blood type in-
compatibility serves as one of the most clinically significant
examples, but carbohydrate antigens have increasing relevance
in FA.113 Herein, we describe the endotype of FA characterized
by food-sIgE to carbohydrate epitopes. Within this endotype,
the major antigens of clinical relevance are a-gal, short-chain
GOSs, and CCDs.

a-Gal syndrome. At the turn of the 21st century, a series of
seemingly unrelated observations led to a discovery of AGS,
which serves as perhaps the most elegant example of why FAmay
best be classified by endotype rather than phenotype.114,115 Pa-
tients with AGS are sensitized to a-gal, an oligosaccharide found
in the tissues of nonprimate mammals that is similar to the B an-
tigen in the ABOblood-typing system.116 The quintessential AGS
presentation is urticaria or anaphylaxis 2 to 6 hours after
consuming mammalian meat; select patients may react to foods
with lesser a-gal content, such as dairy and gelatin.117 Unlike
typical IgE-FA, symptoms are inconsistent, occurring after
some ingestions but not others. It is thought that fattier prepara-
tions of dairy and meat may be more allergenic, and alcohol ap-
pears to be a significant cofactor.116,118 The most distinctive
clinical feature that distinguishes AGS from classic IgE-FA is
that symptoms are typically delayed, occurring hours rather
than minutes after eating.117 The ‘‘glycolipid hypothesis’’ has
been proposed as a possible explanation. This hypothesis harmo-
nizes the time course of symptoms with what is known about lipid
digestion; lipids are packaged into chylomicrons in the intestine,
transported into the circulation via the thoracic duct starting about
2 to 3 hours after eating, and then broken down into smaller lipo-
protein particles capable of passing through endothelial walls and
entering tissues, where theymay encounter sIgE-boundmast cells
and cause symptoms. Successful desensitization to red meat has
been reported for a small series of adult patients119 and a single
child,120 with related decreases in a-gal–sIgE.

AGS is also distinct from classic IgE-FA with regard to the
mechanism of sensitization, which follows lone star tick
bite.121,122 Samples collected pre– and post–tick bite revealed a
20-fold increase in a-gal IgE after tick bites and a correlation be-
tween sIgE to a-gal and lone star ticks.122 Other species of ticks
have been associated with mammalian meat allergy abroad,
including Ixodes ricinus in Europe and Ixodes holocyclus in
Australia. The surge in AGS cases in the United States has been
attributed to increased movement of tick-carrying deer popula-
tions into suburban areas after a decrease in hunters and enact-
ment of leash laws for dogs. The mechanism for how allergic
sensitization to a-gal develops after tick bites remains elusive,
but 3 theories have been proposed, attributing the immune
response to (1) a-gal intrinsic to the tick saliva, (2) mammalian
glycoproteins or glycolipids from the tick’s previous blood
meal, or (3) a commensal organism in the tick (similar to how
tick-borne illnesses are spread).121 Recent studies have confirmed
the presence of a-gal in the saliva and salivary gland extracts of
the lone star tick.123,124 In addition, a-gal knockout mice demon-
strated an increase in sIgE to a-gal and apparent symptoms of
AGS after repeated exposure to tick salivary gland extract125 or
tick bites.126

AGS has implications beyond FA. The chemotherapeutic
cetuximab has an a-gal moiety on the heavy chain of the Fab
portion and was noted to cause a disproportionate rate of
anaphylaxis in clinical trials conducted in the southeastern United
States.114 AGS has also been associated with increased incidence
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of myocardial infarction,117 and studies showed a higher risk of
atherosclerotic plaques, including those with unstable fea-
tures.127,128 In addition, there is a risk of exposure to a-gal in
the perioperative setting.129 Heparin is porcine-derived, and
although it does not typically contain significant quantities of
a-gal, there may be impurities, and high-dose intravenous admin-
istration used in cardiopulmonary bypass may be sufficient to
elicit a reaction.130 In addition, porcine or bovine valves have
caused perioperative hypersensitivity reactions in patients with
AGS,131 and AGS has been hypothesized as a cause of premature
valve degeneration.132

GOS allergy. In 2012, 2 case series were published
describing CM-tolerant patients from southeast Asia who expe-
rienced allergic reactions after ingesting CM-based for-
mula.133,134 One case was confirmed by OFC, which resulted in
anaphylaxis. Other patients were evaluated with SPTs and
BATs, which revealed positive results to CM formula prepara-
tions containing short-chain GOSs. GOSs are carbohydrate mol-
ecules consisting of 1 to 7 galactose units bonded to glucose, and
they are added to CM-based formulas as prebiotics.135

Reactions occurred on first formula consumption, indicating
previous sensitization.136 Given the geographic restriction, it was
hypothesized that the sensitizing antigen must be isolated to that
region. All GOS-allergic patients were found to be sensitized to
dust mites, including Blomia tropicalis, compared with 79% to
83% atopic controls not allergic to GOS. The addition of B tropi-
calis extract strongly inhibited GOS-sIgE in vitro; deglycosylated
extract reduced its inhibitory effect. On the basis of these studies,
the localization ofB tropicalis to tropical climates explainingwhy
this phenomenon is not observed in other regions, and knowledge
that dust mite allergens may be glycosylated, B tropicalis was
identified as the likely primary sensitizer in GOS allergy.

Cross-reactive carbohydrate determinants. CCDs are
glycan moieties on plant and insect glycoproteins that cause
allergen-sIgE responses but rarely cause clinical symptoms.137

These glycans, typically containing a-1,3-fucose and b-1,2-
xylose residues, bind IgE but are generally incapable of effec-
tively cross-linking FcεRI-bound IgE on mast cells and basophils
to induce degranulation. This is thought to be because CCD-sIgE
often lacks the spatial configuration or valency needed for robust
effector cell activation.137 High-affinity IgG4 antibodies specific
to CCDs may act as blocking antibodies, further inhibiting IgE-
mediated responses. Advances in diagnostic assays that incorpo-
rate CCD inhibitors (eg, bromelain glycopeptides) have reduced
false-positive results in sensitized but nonreactive individuals,
enhancing the accuracy of IgE testing for true allergens.138
Special considerations in IgE-FA—Potential new

endotypes?
Cofactor-dependent IgE-FA. Cofactor-dependent IgE-FA

is a distinct endotype whereby a cofactor is necessary to elicit a
reaction.15 Beyond this endotype, cofactors are also known as
augmentation or eliciting factors because they generally lower
one’s reaction threshold, making someone more likely to react to
smaller allergen exposures, even if they are not required to elicit
a reaction. Common cofactors include exercise, alcohol, illness,
nonsteroidal anti-inflammatory drugs (NSAIDs), heat, menstrua-
tion, and sleep deprivation.139 The prototypic example is
food-dependent exercise-induced anaphylaxis, which occurs
when people experience anaphylaxis only when certain foods are
eaten around the time of exercise; in the absence of physical
exertion, these foods are tolerated.140 Wheat is the classic
exercise-induced food trigger, but shellfish, dairy, tomato, cel-
ery, and others have been reported.141 Cofactors are thought
to modulate the pathophysiology of allergic reactions by
altering immune activation thresholds, barrier function,
allergen absorption, and mediator release. Exercise increases
intestinal permeability through shear stress and ischemia-
induced tight junction disruption, allowing undigested
allergens to enter circulation.142-144 This process is exacer-
bated by the redistribution of blood flow from the gut to
skeletal muscles, promoting systemic allergen dissemination
and interaction with sensitized mast cells and basophils.
Hyperosmolality and dehydration during physical activity
further potentiate basophil histamine release, creating a proin-
flammatory microenvironment.145,146 Alcohol and NSAIDs
synergistically enhance these effects by inhibiting prosta-
glandin E2, a critical modulator of mast cell stabilization,
and impairing epithelial integrity.143,147-149 NSAIDs, in
particular, inhibit cyclooxygenase pathways, tipping the
balance toward leukotriene production, which amplifies
inflammation and histamine release.150 Environmental factors,
such as high humidity or extreme temperatures, and hormonal
fluctuations, including those during the menstrual cycle,
exacerbate allergic responses by modulating immune cell
activity and barrier integrity. Sleep deprivation has been
proposed to decrease the threshold for allergic reaction by
triggering a stress response affecting the immune and gastro-
intestinal systems, possibly increasing gastrointestinal perme-
ability and enhancing allergen absorption, similar to other
mechanisms.139

In wheat-dependent exercise-induced anaphylaxis (WDEIA),
tissue transglutaminase activation during exercise, driven by IL-6
elevation, enhances gliadin cross-linking, leading to mast cell
activation and mediator release.151,152 v-5-Gliadin (Tri a 19)
sensitization is present in 80% of patients with WDEIA, whereas
sensitization to other wheat proteins, such as globulin (Tri a 20)
and glutenin (Tri a 26), is linked to wheat anaphylaxis unrelated
to exercise.153 Epitope-specific profiling has revealed distinct
patterns, with v-5-gliadin and high-molecular-weight glutenin
epitopes recognized by 97% of patients with WDEIA but not
wheat-sensitized individuals with AD.154 Soy-dependent exerci-
se-induced anaphylaxis has been linked to sensitization to storage
proteins (Gly m 5 and Gly m 6) or aeroallergen cross-reactivity,
highlighting the complexity of the food-dependent exercise-
induced anaphylaxis endotype.155,156
ENDOTYPE OF NON–IGE-FA
The mechanisms of non–IgE-FA remain poorly delineated in

comparison with IgE-FA.157 This stems from the lack of systemic
biomarkers and localization of symptoms to the gastrointestinal
tract, where tissue is not easily accessible for analysis. Non–
IgE-FAs are thought to involve T-cell–mediated immune
responses without direct involvement of IgE. Distinct clinical
phenotypes have been identified, including food protein–
induced enterocolitis syndrome (FPIES), food protein–induced
allergic proctocolitis, and food protein–induced enteropathy. In
this review, we focus on FPIES, which has been more extensively
examined in the recent years, with new insights into the mecha-
nisms of acute reactions.



TABLE II. Hypothesis-driven classification of selected FPIES endotypes and corresponding phenotypes

Hypothesis Endotype evidence and gaps Phenotype clinical manifestations

Acute FPIES

Acute FPIES is associated with

exuberant but transient innate

immune activation and local

intestinal inflammation with

adaptive cellular immunity

providing antigen specificity via

intestinal tissue-resident memory

T cells; serotonin released from

the intestinal enterochromaffin

cells activates the vagus nerve

Sampling of peripheral blood 4-6 h from the onset of

acute FPIES symptoms during OFC:

d Innate immune activation, with rapid recruitment

and activation of neutrophils, monocytes,

eosinophils, and NK cells

d Peripheral neutrophilia often observed on

complete blood cell count with differential,

peaking at 4-6 h after onset

d Cytokine profiling during acute reactions: elevated

levels of IL-6, IL-10, IL-22, and oncostatin M

d Increased expression of CD69 (gd T cells) and strong

TH17 responses with elevated levels of IL-17A,

IL-22, and TARC in peripheral blood

d Untargetedmetabolomics: elevated levels of inosine

and urate and reduced expression of the purine

receptors P2RX7 and P2RY10 and the

ectonucleotidase CD73

d Adenosine, a purine metabolite, induced serotonin

release from gastric and duodenal biopsy speci-

mens from donors without FPIES

d Serotonin metabolite 5-hydroxyindoleacetate was

significantly elevated after reaction

d Typical onset in infancy, following several ingestions

of the offending food, rarely on first exposure

d Rapid-onset gastrointestinal symptoms, including

repetitive emesis, lethargy, pallor, and hypotension,

occurring 1-4 h (up to 6 h in adults) after ingestion of

a triggering food

d Symptoms resolve within hours; patient

asymptomatic and thriving in between the acute

episodes

d Cutaneous and respiratory symptoms are absent

d Trigger foods differ from IgE-FA: cereal grains

(eg, oat, rice, and barley), vegetables (eg, carrot,

sweet potato, and green bean), fruits (eg, avocado,

banana, and apple), and egg yolk; however, typical

allergens such as CM, egg, peanut, tree nuts, and

seafood also are reported

d Response to serotonin receptor antagonist

ondansetron

d Favorable natural history

Chronic FPIES

Chronic FPIES is associated with

prolonged antigenic stimulation

leading to adaptive immune

dysregulation with sustained

activation of the tissue-resident T

cells in the gastrointestinal mucosa

Biopsy:

d Flattened villi and edema

d Increased number of lymphocytes, eosinophils,

and mast cells in jejunal biopsies

d Lower expression of type 1 TGF-b receptor

and higher expression of TNF-a on epithelial and

lamina propria cells associated with villous

atrophy

d Ongoing ingestion of high doses of food

allergen over days to weeks leads to progressively

worsening diarrhea, vomiting, malnutrition,

dehydration, failure to thrive, anemia, metabolic

acidosis, hypoproteinemia, and in severe cases shock

d Classically seen in infants fed CM or soy formula;

isolated reports in adults

d Reexposure to trigger foods after period of

elimination leads to an acute FPIES reaction

Atypical (IgE-positive) FPIES

Proinflammatory state of gut

immunity and allergen avoidance

leads to generation of food-sIgE

antibodies that do not contribute to

the mechanism of FPIES reactions

d Low-grade food-sIgE sensitization detectable

systemically in a minor subset of patients

d The mechanism of restricting FPIES reactions to the

gut in the presence of systemic food-sIgE is unknown

d Patients with atypical FPIES are usually atopic,

with associated IgE-FA to another food or AD

d Most patients with atypical FPIES continue to

manifest typical delayed gastrointestinal symptoms

d A small subset has been reported to ‘‘transition’’

to more immediate symptoms (eg, hives, rashes,

itching, or anaphylaxis); usually associated with

higher food-sIgE levels

FPIES in infants with trisomy 21

Immune dysregulation associated

with trisomy 21 can lead to

exaggerated inflammatory

responses and more severe

phenotype of FPIES

d Human chromosome 21q22.11 houses genes

that encode a and b subunits of the IFN-a receptor,

the second subunit of the IFN-g receptor, and the

b subunit of the IL-10 receptor

d Overexpression of chromosome 21 gene products in

patients with trisomy 21 results in increased TNF-a

and IFN-g levels and decreased IL-10 in plasma that

contribute to severe intestinal inflammation92

d 10- to 20-fold increased FPIES risk in infants with

trisomy 21 compared with general population

(0.51%-0.7% vs 11.6%).86

d Severe chronic FPIES

d Reported food triggers: CM and wheat

Adult-onset FPIES

Breach in oral tolerance, possibly

because of gut dysbiosis or

hormonal changes

d Unknown, presumably similar as acute

infantile-onset FPIES

d Strong predominance of female patients (70%-80%)

d Delayed, up to 6 h after ingestion; severe, debilitating

abdominal pain, nausea, vomiting, and diarrhea

d Previous documented tolerance to the trigger foods

d Common triggers of acute adult-onset FPIES:

shellfish and fin fish

d Reported triggers of chronic adult-onset FPIES: fish,

CM, dairy, and wheat

d Guarded natural history; low rates of resolution

NK, Natural killer; TARC, thymus and activation-regulated chemokine.
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FIG 4. Model of the pathophysiology of acute FPIES. Food antigen is absorbed and activates tissue-resident

T cells to make cytokines, including IL-2, IL-17, and IL-22. OSM and IL-6 are also produced, but the source

may also include tissue macrophages. IL-22, OSM, and IL-6 activate STAT3, which is observed in multiple

innate immune cell types. ATP can be released by activated immune cells and damaged epithelial cells, and

its metabolite adenosine acts on enterochromaffin cells to drive serotonin release, linking inflammation to

the vomiting, pallor, and lethargy. OSM, Oncostatin M; STAT3, signal transducer and activator of transcrip-

tion 3. Reprinted with permission from Nowak-Wegrzyn.158
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Food protein–induced enterocolitis syndrome
FPIES represents a highly distinct endotype of non–IgE-FA,

characterized by immune dysregulation localized to the gastro-
intestinal tract.158 Unlike IgE-FA, FPIES involves innate and
adaptive immune mechanisms without detectable IgE involve-
ment, leading to delayed, often severe, gastrointestinal symptoms
triggered by specific foods.159 The lack of systemic biomarkers
and the challenges in accessing gastrointestinal tissues for anal-
ysis have historically limited understanding of its pathophysi-
ology. However, recent insights have shed light on the
immunologic underpinnings of acute and chronic FPIES
(Table II).
Acute versus chronic FPIES: An endotype perspec-

tive. Acute and chronic forms of FPIES represent phenotypically
and mechanistically distinct subtypes within this non–IgE-
mediated endotype. These forms are defined by differences in
immune activation, clinical presentation, and progression.

Acute FPIES: Transient innate immune activation.

Acute FPIES is characterized by rapid-onset gastrointestinal
symptoms, including repetitive emesis, abdominal pain, lethargy,
pallor, and hypotension, occurring 1 to 4 hours (up to 6 hours in
adults) after ingestion of a triggering food.159,160 Acute FPIES is
dominated by innate immune activation, with rapid recruitment
and activation of neutrophils, monocytes, eosinophils, and natural
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killer cells.161 Peripheral blood neutrophilia is a hallmark feature,
peaking 4 to 6 hours after symptom onset and correlating with the
clinical severity of the reaction.162

Cytokine profiling during acute reactions has identified a strong
innate inflammatory signature, including elevated levels of IL-6,
IL-10, IL-22, and oncostatin M.161 These cytokines, released
downstream of innate immune activation, drive systemic inflam-
mation and amplify myeloid and lymphoid signaling via the
STAT3 pathway, as confirmed by mass cytometry and RNA
sequencing.163,164 Elevated levels of IFN-g–inducible protein
10 and IL-10 indicate both inflammatory and regulatory compo-
nents in the acute response.165 Antigen specificity of acute FPIES
suggests that innate immune activation is driven by an adaptive
component and is supported by activation of the TH17 pathway.

Hypothetical mechanism of acute FPIES. Recent me-
tabolomic analyses have implicated the purine signaling pathway
in acute FPIES.164 Elevated levels of inosine and adenosine, key
metabolites in purine metabolism, were detected during acute re-
actions. Adenosine has been shown to induce serotonin release
from enterochromaffin cells, triggering vagal nerve activation
and driving hallmark symptoms such as emesis and lethargy.
Increased blood levels of 5-hydroxyindoleacetate (serotonin
metabolite) during reactions further support this mechanism
(Fig 4). Reduced expression of purine receptors (such as
P2RX7 and P2RY10) and ectonucleotidases (such as CD73) in
symptomatic patients suggests that purine metabolism exacer-
bates inflammatory and gastrointestinal responses.

Chronic FPIES: Prolonged adaptive immune dysre-

gulation. Chronic FPIES arises from repeated ingestion of large
doses of triggering foods, such as CM or soy formula in infants,
leading to progressively worsening diarrhea, vomiting, and
malnutrition over days to weeks. Unlike the transient inflamma-
tion of acute FPIES, chronic FPIES is hypothesized to involve
adaptive immune responses, characterized by sustained activation
of the tissue-resident T cells in the gastrointestinal mucosa.

Histologic studies in chronic FPIES reveal villous atrophy,
epithelial edema, and increased infiltration of lymphocytes,
eosinophils, and mast cells.166 Elevated TNF-a expression in
the intestinal mucosa correlates with villous atrophy severity.
Chronic antigen exposure may drive TH-cell activation, particu-
larly TH17 responses. Levels of IL-17A, IL-22, and thymus and
activation-regulated chemokine are elevated in peripheral blood
following an isolated food allergen ingestion during OFC
and are likely to be further augmented during chronic
exposure.167-169

gd T cells, a nonconventional T-cell subset, are prominently
activated during acute reactions, as evidenced by increased
expression of CD69 in peripheral blood.170 However, the antigen
specificity of T-cell responses in FPIES remains elusive, without
clear evidence of antigen-specific proliferation in PBMCs, sug-
gesting a localized antigen-driven response in the gut. Reexpo-
sure to triggering foods after elimination results in acute FPIES
symptoms, highlighting the potential for tissue-resident memory
T-cell involvement in bridging acute and chronic forms. Adaptive
immune imprinting in chronic casesmay sensitize the gut to exag-
gerated innate responses on reexposure.

Triggers and humoral responses. FPIES triggers vary
with age and geography. Common triggers in children include
low-protein foods such as rice, oats, sweet potato, and banana,
whereas seafood is the predominant trigger in adults.160,171

Despite the term ‘‘food protein’’ in its name, it is possible that
components other than proteins may act because FPIES triggers
in foods with low protein content that are uncommon IgE-FA al-
lergens (eg, oat and sweet potato). Humoral immune responses
are minimal, with no significant allergen-specific IgA, IgG, or
IgE to food proteins (eg, casein and whey proteins) detected in
plasma.165,172 Children with atypical FPIES may show low-
level sIgE, but this is considered an epiphenomenon unrelated
to the core pathophysiology.
Neuroimmunology: Emerging importance in FA
Recent insights into FPIES pathophysiology highlight the

central role of neuroimmune interactions in FA, with crosstalk
between the immune and nervous systems in the gut linking
immune activation to the symptom of vomiting.158 However, the
relevance of neuroimmunology extends beyond FPIES. Enteric
neurons release neuropeptides such as substance P, calcitonin
gene-related peptide, and vasoactive intestinal peptide, which
amplify mast cell degranulation and the release of histamine
and other proinflammatory mediators.173,174 This cascade exacer-
bates TH2-driven inflammation, contributing to acute allergic
symptoms such as vomiting, abdominal pain, and diarrhea. In
addition, the vagus nerve, a key regulator of gut homeostasis, in-
fluences intestinal permeability and immune responses. In FA,
dysregulation of vagal signaling impairs mast cell stabilization,
promoting heightened inflammatory reactions and further dis-
rupting the intestinal barrier.

Emerging research highlights novel mechanisms by which
sensory neurons directly interact with allergens, such as through
transient receptor potential (TRP) ion channels.174,175 TRPV1, a
receptor involved in pain and inflammation, is hyperactivated in
allergic states, linking neuronal excitation to enhanced immune
responses. Chronic activation of these pathways may perpetuate
local inflammation, eosinophil recruitment, and tissue remodel-
ing. These findings underscore the potential of targeting neuroim-
mune pathways, including TRP channels and neuropeptide
signaling, as therapeutic strategies to reduce FA severity and
improve disease management.
Conclusions
Traditional classification of FA has recognized the fundamental

role of food-sIgE antibodies in immediate hypersensitivity
reactions, thus providing an initial endotypical framework. Major
progress has been made in characterizing the endotype of IgE-FA
with novel diagnostic tests on the basis of individual major
allergens, individual IgE-binding epitopes, and functional in vitro
assays. Therapies targeting IgE and signaling pathways in
effector cells have been developed. Ongoing investigations focus
on defining endotypes of severe food-induced anaphylaxis,
persistent versus transient FA, and responsiveness to immuno-
therapy. In contrast, non–IgE-FA remains poorly understood
and is an area of major unmet need regarding prevention, manage-
ment of acute reactions, and therapeutics.
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