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The blood-brain barrier is a physiological barrier that can prevent both small and complex drugs from reaching the
brain to exert a pharmacological effect. For treatment of neurological diseases, drug concentrations at the target site
are a fundamental parameter for therapeutic effect; thus, the blood-brain barrier is a major obstacle to overcome.
Novel strategies have been developed to circumvent the blood-brain barrier, including CSF delivery, intracranial
delivery, ultrasound-based methods, membrane transporters, receptor-mediated transcytosis, and nanotherapeutics.
These approaches each have their advantages and disadvantages. CSF delivery and intracranial delivery are direct but
invasive techniques that have not yet shown efficacy in clinical trials, although development of novel delivery devices
might improve these approaches. Ultrasound-based disruption has shown some efficacy in clinical trials, but it can
require invasive procedures. Approaches using membrane transporters and receptor-mediated transcytosis are less
invasive than are other techniques, but they can have off-target effects. Nanotherapeutics have shown promise, but
these strategies are in early stages of development. Advancements in drug delivery across the blood-brain barrier will
require appropriately designed and powered clinical studies, with a focus on the timing of treatment, demographic
and genetic considerations, head-to-head comparison with other treatment strategies (rather than a placebo), and

relevant primary and secondary outcome measures.

Introduction

The blood-brain barrier is a protective semipermeable
border between the CNS and the circulatory system,
which prevents substances in the blood from reaching the
brain. The presence of this barrier poses a challenge for
the delivery of drugs to the brain for the treatment of
neurological disorders. Early strategies to transport drugs
across the blood-brain barrier included intrathecal or
intracranial injection, but over the past 5 years, approaches
have evolved to incorporate unique pharmacological
agents and innovative devices. Based on robust preclinical
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Figure 1: Structure of the blood-brain barrier neurovascular unit
ABC=ATP-binding cassette transporter. JAM=junction adhesion molecule. LAT1=L-type amino acid transporter 1.

246

data, drug-delivery strategies involving ultrasound, nano-
therapeutics, and pharmacological targeting of membrane
transporters and receptor-mediated transcytosis are now
being used in clinical trials.

In this Personal View, we discuss the difficulties
surrounding therapeutic delivery to the brain and the
challenges of developing new drugs for neurological
conditions, particularly brain tumours and neuro-
degenerative diseases. We describe novel strategies to
enhance penetration of the blood-brain barrier focused on
those that have been developed over the past 5 years and
have advanced into clinical trials. The order of strategies
presented is from the oldest first to the newest last. Finally,
we provide insights into the future implementation of
these innovative approaches into clinical practice. Some
potential strategies have been excluded due to a paucity of
clinical evidence, such as for intranasal delivery, which had
difficulties in clinical trials due to anatomical differences in
olfaction between mice and humans.

Structure of the blood-brain barrier and
challenges for treatment

The blood-brain barrier is postulated to prevent more
than 98% of small compound drugs and nearly 100% of
large molecule therapeutics from penetrating the brain
sufficiently to have a pharmacological effect.' Passive
diffusion of lipid-soluble drugs across the blood-brain
barrier is possible via a strict selective interface of tight
junctions along the basement membrane, which are
formed from non-fenestrated brain endothelial cells
(figure 1).* The tight junctions have various proteins to
provide structural stability and signalling, including
junctional adhesion molecules and membrane-spanning
occludin and claudin proteins. Membrane transporters
on brain endothelial cells—such as the ABCBI1
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transporter or the LAT1 amino acid transporter
(SLC7A5)—permit active or carrier-mediated movement
of selected molecules across the blood-brain barrier. The
presence of tight junctions, low permeability, and
expression of various transporters means that brain
endothelial cells are physiologically distinct from
peripheral endothelial cells. Pericytes, astrocytes,
microglia, and neurons interact at the the blood-brain
barrier, creating the neurovascular unit (figure 1).
Components of the neurovascular unit can help to
maintain the integrity and protective capacity of the
blood-brain barrier (eg, astrocytes and pericytes)"*** or
release factors to increase the permeability of the barrier
(microglia).”

The complex structure and selective nature of the
blood-brain barrier imposes clinical challenges for the
treatment of neurological and neurodegenerative
disorders. Moreover, the blood-brain barrier can be
affected in different ways depending on the neurological
disease (panel),*” such as alterations in permeability,
integrity, transporter expression, infiltration of
inflammatory cells, and vascular wall components.

Panel: Blood-brain barrier disruption in neurological disease

Alzheimer’s disease® ™

» Permeability of the blood-brain barrier is increased

+ Brain endothelial cells express genes associated with
Alzheimer’s disease susceptibility (eg, APOE4, CD2AP, CASS4,
USP6NL, INPP5D, and ACE)

+ Increased amyloid B impairs blood-brain barrier function
through disruption of tight junctions (thereby increasing
permeability) and promotes neoangiogenesis of abnormal
and leaky vessels

+ Inflammatory activation is increased

+ Neurovascular dysfunction is observed with downregulation
of the ABCB1 transporter in brain endothelial cells

Amyotrophic lateral sclerosis™*

+ The ARPC3 subunit of the actin-related protein complex is
downregulated in motor cortex brain endothelial cells,
leading to mislocalisation of tight junctions

+ Reduced HLA-E protein expression leads to blood-brain
barrier breakdown mediated by natural killer cells

» Permeability of the blood-brain barrier is increased

Brain metastasis'*

+ Proteins associated with vascular permeability are enriched
(eg, CD200, LGALS9, and TDO2)

+ Astrocytes open gap junctions in the presence of tumour
cells, facilitating disease progression

Glioblastoma™*

+ Expression of transporters is deregulated (eg, upregulation
of solute carrier family transporters, such as SLC4A3,
SLC4A8, and SLCYAS)

+ The blood-brain barrier has heterogeneous areas of
permeability
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Changes in the blood-brain barrier during disease
progression are neither well understood nor well
characterised and could alter the effectiveness of
therapies at different stages of disease. Some therapeutic
agents (eg, antibodies) can have very low concentrations
in the brain (0-01-0-1% of circulating concentrations),
which limits pharmacological effects. Understanding
the cellular architecture, transport mechanisms, and
potential off-target interactions at the blood-brain
barrier is required to attempt novel drug design and
delivery.

Strategies to overcome the blood-brain barrier

The heterogeneity of blood-brain barrier permeability,
particularly changes to endothelial cells across different
neurological disorders, highlights the challenges of drug
delivery to the CNS. Over the past 5 years, advances in
therapeutic strategies to cross the blood-brain barrier
have been made (table 1). These strategies can be
categorised into CSF delivery, intracranial delivery,
ultrasound-based methods, membrane transporters,
receptor-mediated transcytosis, and nanotherapeutics.

+ Expression is upregulated of laminins, collagens, nidogens,
and integrins, as well as genes encoding collagen in blood
vessels surrounding the tumour (eg, LOXL2)

Various subtypes of brain endothelial cells show activation
or breakdown due to abnormal angiogenesis, resulting in
blood-brain barrier impairment and dysregulation

Multiple sclerosis®®

+ Damage to the blood-brain barrier is caused by
inflammation and immune cell infiltration
Dysfunction of brain endothelial cells reduces surface
expression of tight junction proteins

+ Integrity of the blood-brain barrier is reduced

Parkinson’s disease*

+ High K"™™ values (ie, volume transfer constant) in people
with Parkinson’s disease, compared with those without the
disease, indicate increased diffusion and potential leakage
of the blood-brain barrier, although choline PET and
gadolinium diffusion do not show changes in integrity of
the blood-brain barrier

+ In people with Parkinson’s disease, the blood-brain barrier
shows pathological changes compared with age-matched
controls

Epilepsy*

+ Increased permeability of the blood-brain barrier is due to
inflammation, oxidative stress, and tight junction
alterations

« Increased expression of efflux transporters is seen,
particularly ABCB1 and ABCG2 transporters
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Study status and results

Outcomes

Intervention

Inclusion criteria

Study design and phase

(Continued from previous page)

Membrane transporters

NCT04430842

Determination of the maximum tolerated ~ Completed Dec 22, 2022; safe and has led

QBS10072S (QBS72S; a cytotoxic

15 patients with advanced or metastatic
cancers with high LAT1 signature

(age =18-years; both sexes)

Phase 1 dose-escalation trial

to further trials

dose, as indicated by the incidence of
adverse events and their severity

compound that is transported by

LAT1)

Completed Aug 3, 2021; DNL343 safe and

showed CSF penetrance

Safety (incidence of adverse events);
tolerability; pharmacokinetics; and

DNL343 and placebo (single and

96 healthy volunteers (age 18-50 years; both

sexes)

Phase 1

NCT04268784*

repeating oral doses; not a substrate

of ABCB1 transporter)

pharmacodynamics

Completed June 5, 2024; DNL343 safe

and showed CSF distribution

Safety (incidence of adverse events),

pharmacokinetics, and
pharmacodynamics

DNL343 and placebo (oral repeating
dose; not a substrate of ABCB1

transporter)

29 patients with a diagnosis of sporadic or

familial amyotrophic lateral sclerosis

(age 18-80; both sexes)

Phase 1b

NCT05006352*

Receptor-mediated transcytosis

Completed June 15,2020; CNS and

Intracranial response rate, measured by
central independent radiology facility

review

ANG1005 (paclitaxel linked to
angiopep-2), 600 mg/m?

72 patients with recurrent brain metastases

Phase 2

Kumthekar et al

(2020)*

systemic treatment effects observed

from breast cancer (age 26-76 years; female)
subset of 28 patients with leptomeningeal

carcinomatosis

intravenously every 3 weeks

Nanotherapeutics
NCT03020017%

Safety (incidence of adverse events) Completed Aug 19, 2020; nanoparticle

RNA interference-based spherical

8 participants with recurrent glioblastoma

(age =18 years; both sexes)

First-in-human, phase 0

passed through the blood-brain barrier

nucleic acid with a gold nanoparticle
core, intravenously administered

and accumulated in the tumour; no

serious adverse events (grade 4 or 5)

reported

magnetic resonance-guided focused ultrasound.

glial cell-derived neurotrophic factor. MRgFUS:

**fluorine-labelled levodopa. GDNF:

Studies were identified by searching PubMed or ClinicalTrials.gov. **F-DOPA

Table 1: Completed clinical studies of strategies to cross or open the blood-brain barrier

CSF delivery
Intraventricular and intrathecal routes of administration,
including with small implantable devices, have been
utilised as routes for direct drug delivery to the CSF. The
blood-brain barrier and the blood—CSF barrier consist of
distinct membranes. The blood-CSF barrier is composed
of choroid plexus epithelial cells and tight junctions and
does not allow access to the inner brain parenchyma.
Although other CNS barriers might allow crossing from
the CSF to the brain, the physiologically relevant evidence
for this crossing is minimal, perhaps accounting for the
poor success with the CSF delivery approach.* CSF
delivery has been proposed as a strategy for tumours that
involve the ependyma or reside in the ventricles.”
Although this approach might be relevant for
leptomeningeal metastases from systemic cancers, most
primary tumours are present in the brain parenchyma,
and sufficient drug concentrations being achieved by
CSF delivery is unlikely.* Therapeutic strategies that use
CSF delivery should be developed on a case-by-case basis
for neurological disorders and brain malignancies.
Antisense oligonucleotides (ASOs) are short, synthetic,
single-stranded molecules that can alter RNA and reduce,
restore, or modify protein expression through several
distinct mechanisms.” These large molecules appear to
have wide uptake from CSF, and early clinical trials of
ASOs for amyotrophic lateral sclerosis to target the SOD1
gene (NCT02623699),” and Alzheimer’'s disease
(NCT03186989) to target the MAPT gene,** have shown
promise (figure 2). In the Alzheimer’s disease trial, the
ASO therapy reduced key tau biomarkers associated with
cognitive decline and has been advanced to a phase 2
trial. However, an ASO for Huntington’s disease was
discontinued (NCT03225846, NCT03225833) because of
adverse events and poor efficacy. CSF administration
has also been used for delivery of valproate in a clinical
trial in people with focal epilepsy (NCT02899611);7+
however, a planned phase 2 study was terminated due to
low efficacy (NCT04153175).

Intracranial delivery

Injection of agents into a focal target within the brain
bypasses the blood-brain barrier and minimises the risk
of systemic toxic effects. However, intracranial injection
is ideally suited to single treatment protocols, for agents
that can diffuse to the target site, or for agents that have a
discrete target that can be accessed surgically or
stereotactically.

Direct intracranial injection

Direct injection into the putamen of dopamine-producing
stem cells (NCT04802733) has progressed to an open-
label study in 12 patients with Parkinson’s disease and a
phase 2 trial is expected. Surgical access for deep brain
stimulation is well established for this target and should
be possible to do safely, but proof of engraftment and
persistent efficacy are needed.
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Figure 2: Methods and measurement strategies for overcoming the blood-brain barrier

(A) Delivery through the CSF-brain barrier has been targeted by use of ASO therapy in amyotrophic lateral sclerosis. SOD1 misfolding causes neuronal degradation in amyotrophic lateral sclerosis.

The ASO will bind the mRNA of SOD1 and initiate mRNA degradation processes, thereby leading to an overall reduction in SOD1 protein.”* (B) Direct injection will deliver therapies such as the
oncolytic virus to the target site. Convection-enhanced delivery can be adapted to deliver a range of therapies.>*4**’ A catheter-pump system creates a positive pressure gradient and allows the diffusion

of therapeutics to tissues via bulk flow. (C) Fluorescent microscopy image of the brain of a patient with glioblastoma who underwent intraoperative sonication with intravenous administration of

microbubbles, chemotherapy, and fluorescein. This image was taken as part of pharmacokinetic study of the effect of sonication on the concentration of drugs in the peritumoural brain.*®* Cortex
regions that underwent sonication show increased fluorescence intensity compared with the surrounding brain. (D) An ultrasound device is used to cavitate circulating microbubbles and increase the

permeability of the blood-brain barrier. This technique uses an implanted ultrasound device to deliver low-intensity pulsed ultrasound, which could be used for glioblastoma treatment® or for the

removal of amyloid plaques in Alzheimer’s disease.** ASO=antisense oligonucleotide. GDNF=glial cell line derived neurotrophic factor. HDAC=histone deacetylases.

Direct intracranial injection can be appropriate for
lesional diseases such as tumours. Viral therapies such as
the herpes simplex virus can be engineered to replicate in
glioblastoma cells.” These viruses are injected into the
tumour or peritumoural region, and because viruses are
self-replicating, multidosing is not a limitation (figure 2).
In aphase 1trial of 41 patients with recurrent glioblastoma,
CAN-3110 (a variant of the herpes simplex virus)
enhanced anticancer immuneresponses (NCT03152318).*
The therapeutic effect of this viral therapy is mediated
partly through the immune system, and therefore efforts
have been focused on enhancing these anti-tumour
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mediated effects. This enhancement includes inducing
the expression of an immunological target such as a
carcinoembryonic antigen (NCT00390299)* or providing
immune-stimulatory components such as FIt3L
(NCT01811992)® or IL-12 (NCT02026271)." Robust
preclinical animal research is the basis for future trials to
investigate enhancing the anti-tumour immune
responses by various means with these viruses.”*

Convection-enhanced delivery
For therapeutics that require wider distribution,
convection-enhanced delivery can be used instead of a
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single stereotactic injection (figure 2). Convection-
enhanced delivery relies on a positive pressure gradient
generated through a pump that enables large molecules
to reach the area of interest that would otherwise struggle
due to their size and subsequent diffusion rate.* Other
advantages of this strategy include a more even and
larger distribution area, relative to diffusion-based
treatments. Not relying on a steep diffusion gradient also
allows a consistent drug concentration to be delivered.*
Convection-enhanced delivery is most suitable for brain
disorders that already require surgical intervention, but
the approach has several disadvantages, including a slow
infusion rate, geometrical and anatomical constraints
that limit delivery, an increased risk of implant infection,
and a surgical recovery period.

Convection-enhanced delivery of GDNF as a
neurorestorative and neuroprotective therapy has been
investigated in Parkinson’s disease.” Initial trials used
intraventricular delivery of GDNF, but this approach led
to off-target effects, therefore, convection-enhanced
delivery was trialled.” The trial randomly assigned
41 people with late-stage Parkinson’s disease to receive
putamen-wide sustained delivery of GDNF versus
placebo and reported that convection-enhanced delivery
was an acceptable route for drug delivery.” However,
poor improvement in motor function and quality of life
suggests that either the premise for the role of the growth
factor was flawed or patients with early-stage disease, in
whom innervation of the striatum with dopaminergic
neurons is maintained, need to be enrolled.

Convection-enhanced delivery has also been used in
brain tumour clinical trials. MTX-110 is a water-soluble
formulation of a histone deacetylase inhibitor (aqueous
panobinostat). Treatment with MTX-110 was considered
for diffuse midline glioma after it showed efficacy in a
rodent xenograft model,* which led to a phase 1 clinical
trial (NCT03566199).”” Seven participants received a total
of 48 infusions, with three experiencing dose-limited
toxic effects. Repeated administration by convection-
enhanced delivery was tolerable and the median overall
survival of 26 months was similar to historical data. The
combined infusions for each participant resulted in
tumour coverage of 35-81%.” Convection-enhanced
delivery of MTX-110 is currently being evaluated for the
treatment of recurrent glioblastoma (NCT05324501),
diffuse  midline glioma  (NCT04264143), and
medulloblastoma (NCT04315064). Strategies thatimplant
multiple catheters would increase coverage but, to date,
only a single flexible catheter has been tested
(NCT01502917)."

Ultrasound-based methods

Ultrasound is an emerging strategy to enhance blood—
brain barrier penetration. This approach uses soundwaves
to resonate intravenously administered microbubbles
that are co-administered with a drug. The microbubbles
open the endothelial junctions around the brain

capillaries, enabling penetration of concomitantly
administered drugs across the blood-brain barrier.
Success of this technique, with a range of chemo-
therapeutic and immunotherapeutic agents, has been
reported in preclinical animal models.®® Translation
into the clinic requires that soundwaves either penetrate
the human skull (which is considerably denser than in
rodent models) or bypass the bone.”® High-energy
transcranial ultrasound devices have been developed to
penetrate the human skull, incorporating stereotactic
guidance and modelling of skull attenuation of
soundwaves. Alternatively, bypassing the skull is done
with an implantable ultrasound device, of which an array
of emitters are positioned epidurally within a skull
window. This approach uses low-energy soundwaves and
is suitable for multidosing.**** Over the past 5 years,
both transcranial and skull-implantable ultrasound
devices have proven to be safe and feasible as a means of
repeated blood-brain barrier opening.

Focused ultrasound

Transcranial magnetic  resonance-guided focused
ultrasound paired with microbubbles can open the
blood-brain barrier in small regions deep within the
brain (figure 2). This strategy was evaluated in a first-in-
human study of four patients with amyotrophic lateral
sclerosis to test feasibility in this neurological disease,
without any drug being delivered (NCT03321487).*
Transient blood-brain barrier opening was observed in
the primary motor cortex, shown by the degree of
contrast enhancement seen on post-procedure MRI with
a gadolinium-based contrast agent, and no major adverse
events were reported. Accessing the primary motor
cortex has traditionally impeded the development of
effective disease-modifying treatments for amyotrophic
lateral sclerosis; therefore, a non-invasive strategy, such
as magnetic resonance-guided focused ultrasound, has
the potential to enable therapeutic access to affected
neurons. However, disadvantages of this approach
include issues with acoustic pressure, appropriate
sonication power, and vessel damage.®® These technical
safety aspects, as well as the possibility that the patient
with amyotrophic lateral sclerosis cannot communicate
symptoms, should be carefully considered for future
studies. To date, no clinical trials are in progress for
focused ultrasound for amyotrophic lateral sclerosis. In
Alzheimer’s disease, blood-brain barrier opening using
magnetic resonance-guided focused ultrasound has been
achieved in PET studies, but similar to the study in
amyotrophic lateral sclerosis, no therapeutic agents were
delivered because the study was to test feasibility. The
opening of the blood-brain barrier in the default mode
network areas did not affect cognitive scores or disease
biomarkers (NCT03739905). This opening supports
blood-brain  barrier modulation using magnetic
resonance-guided focused ultrasound as a potential
strategy for enhanced therapeutic delivery.*
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Clinical trials of focused ultrasound to deliver
therapeutic monoclonal antibodies in people with brain
metastases (NCT03714243)* and Alzheimer’s disease®
have shown that this approach facilitates increased
entrance and concentrations of the treatment in the brain.
In a study of three individuals with Alzheimer’s disease,
focused ultrasound was applied to one hemisphere of the
brain alongside aducanumab infusions once a month for
6 months, with the objective of enhancing amyloid
removal.*® The transient blood-brain barrier disruptions
were safe and reduced amyloid B concentrations by 32%
(measured by standard uptake value ratio) in the region
that received ultrasound compared with the untreated
hemisphere of the brain. However, this study did not
quantify drug penetration and, therefore, whether focused
ultrasound directly enhanced delivery cannot be
ascertained definitively, which should be confirmed in
future trials. Another monoclonal antibody, lecanemab, is
already being similarly applied in an ongoing phase 0 trial
(NCT05469009). In a brain metastases study,” 20 infusions
of trastuzumab were delivered to four patients with
HER2-positive breast cancer, indicating that repeated
treatment using a focused ultrasound strategy is feasible.
Clinical studies using focused ultrasound are also
investigating delivery of doxorubicin for paediatric diffuse
intrinsic pontine glioma (NCT05630209; NCT05615623).

In patients with Parkinson’s disease, focused ablation
with ultrasound is becoming established as a therapeutic
strategy, but magnetic resonance-guided focused
ultrasound has also been used to open the blood-brain
barrier in the nigrostriatal region (NCT03608553).” In a
pilot study with three participants, no adverse events
were reported and enhanced [18F]fluorodeoxyglucose-
choline-PET uptake was observed in the targeted brain
regions. A phase 1/2 study is underway for bilateral
putamenal delivery of recombinant glucocerebrosidase
in patients with Parkinson’s disease (NCT05565443).

A disadvantage of magnetic resonance-guided focused
ultrasound is that the patient must be placed into a
stereotactic frame for each treatment. Therefore,
therapeutics that require frequent dosing would not be
suitable for this strategy, from the perspective of patient
acceptability and cost.

Low-intensity pulsed ultrasound

With respect to implantable ultrasound devices, brain
tumour research has helped with development of low-
intensity skull-bypassing ultrasound. Because surgery to
resect a brain tumour entails removal of a cranial
window, risks of open operation to test an implantable
device can be justified. In a phase 1 trial, an ultrasound
device (composed of nine 1 MHz ultrasound emitters)
was directly implanted in 17 patients with recurrent
glioblastoma through a cranial window in the skull.
Albumin-bound paclitaxel (a potent chemotherapy drug,
that does not cross the blood-brain barrier”) was
administered immediately after ultrasound. Biopsy
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specimens of sonicated and non-sonicated peritumoral
brain tissue were obtained, and pharmacokinetic analysis
showed a 3-.7-fold increase in brain parenchymal
paclitaxel when compared with non-sonicated samples.*
A phase 1/2 clinical trial evaluated the safety of the same
implantable ultrasound device for delivery of carboplatin
in 33 patients with glioblastoma (NCT03744026).” Drug
delivery across the blood-brain barrier was enhanced,
with a 5-9-fold increase in parenchymal concentrations
of carboplatin in sonicated brain regions (figure 2).

Low-intensity ultrasound has also been tested in a pilot
study of blood-brain barrier disruption to aid in the
clearance of amyloid and tau aggregates in people with
Alzheimer’s disease (NCT03119961).* A 1 MHz
ultrasound device was implanted in the skull of
ten people with mild Alzheimer’s disease over the left
supramarginal gyrus, which was well tolerated. The risk
of open surgical implantation for an older population is
not trivial and differs clinically from the risk profile for a
patient with an incurable brain tumour such as
glioblastoma.

Four other open-label clinical trials are using the low-
intensity ultrasound approach, including carboplatin for
patients with recurrent glioblastoma (NCT05902169);
balstilimab, botensilimab, and liposomal doxorubicin
for patients with newly diagnosed glioblastoma
(NCT05864534);  albumin-bound  paclitaxel — and
carboplatin for patients with recurrent glioblastoma
(NCT04528680); and carboplatin for paediatric patients
with malignant brain tumour (NCT05293197). A general
advantage of a low-intensity ultrasound strategy,
compared with focused ultrasound, is the large area that
can be covered (eg, in the dominant hemisphere for
Alzheimer’s disease). For future devices, adjustable
direction and coverage could be included.

Membrane transporters

Two types of membrane transporters on brain endothelial
cells could be targeted for CNS drug delivery: solute
carrier transporters such as LAT1 (SLC7AS; which is a
large neutral amino acid transporter); and the ATP-
binding cassette (ABC) family of efflux transporters
(figure 3). The complexity of membrane transporters
with respect to substrate specificity and number has
previously made this area challenging for therapeutic
approaches, but there is now renewed interest due to an
increased understanding of membrane transporters in
general at the molecular level. Safety considerations and
restriction to transport of small molecules are
outstanding areas of challenge for using membrane
transporters to enhance drug delivery to the brain.®®

Amino acid transporters

LAT1is an amino acid transporter that is widely expressed
at the luminal and abluminal membranes of the blood—
brain barrier and has a large transport capacity.®” Since
LAT1 is present on either side of the blood-brain barrier,
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Figure 3: Transport mechanisms across the blood-brain barrier

Three different transport systems can be targeted for blood-brain barrier crossing: receptor-mediated transcytosis;
the amino acid transporter LAT1; and the ABC transporter (ABCB1 substrate system). Receptor-mediated transport
uses the vesicular trafficking system within the brain endothelial cells to allow transcytosis. Ligand-receptor
complexes facilitate this system without disruption to the barrier. Amino acid transporters, such as the LAT1
transporter, make use of expression on both the abluminal and luminal sides of the membrane. ABC transporters,
such as the ABCB1 transporters, are efflux transporters existing on the luminal side of the membrane. ABC=ATP-
binding cassette transporter. LAT1=L-type amino acid transporter 1 (SLC7A5).

transport across the membrane is possible without
toxicity to endothelial cells or tight junctions.

A chemotherapeutic agent that bypasses DNA repair
mechanisms, designated QBS10072S, has been designed
with a chemical moiety that makes it a substrate of LAT1,
to enhance blood-brain barrier crossing.””” A dose-
escalation trial of QBS10072S has been completed in
15 patients with advanced or metastatic cancers with a
high LAT1 expression (NCT04430842). The safety,
tolerability, and dose profile has led to the agent now
being evaluated for glioblastoma (NCT02977780) and
brain metastases (NCT05305365).

4-chlorokynurenine is a prodrug of an NMDA receptor
antagonist and is in clinical development for various
CNS disorders, including neuropathic pain, major
depressive disorder, and levodopa-induced dyskinesia.”*
Preclinical studies indicate that 4-chlorokynurenine
crosses the blood-brain barrier via LAT1, after which the
active metabolite 7-chlorokynurenic acid leaves the brain
extracellular fluid via probenecid-sensitive organic anion
transporters. Probenecid could be used to boost the
bioavailability of 7-chlorokynurenic acid in the prefrontal
cortex by blocking the activity of probenecid-sensitive
transporters, which would otherwise have pumped the
active metabolite out of the brain.”*”* Coadministration of
probenecid and 4-chlorokynurenineis is being evaluated
in a phase 1 trial in healthy volunteers to identify if this
boosting strategy can increase the CNS concentration of
7-chlorokynurenic acid (NCT05280054).

ABC transporters

The potential intracranial efficacy of many agents is
undermined because of the expression of ABC
transporters at the blood-brain barrier, such as ABCB1,
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which pumps substrates out of the brain. In
neurodegenerative diseases, such as amyotrophic lateral
sclerosis, activation of EIF2B modulates the integrated
stress response that controls protein synthesis, as well as
responses to cellular insult, and is a proposed drug
target. During early work on EIF2B activators,
compounds were assessed for interactions with ABCBI.
The therapeutic agent DNL343 was developed, which is
not a substrate for the ABCB1 transporter and retains
selective EIF2B activation function. DNL343 is CNS-
penetrant (NCT04268784; NCT05006352),*” and its
efficacy is currently under investigation in the Healey
platform trial for amyotrophic lateral sclerosis
(NCT05842941).

Some highly effective systemic anticancer drugs, such
as paclitaxel and docetaxel, are substrates of the ABCB1
transporter. Inhibition of ABC membrane transporters is
problematic because they are expressed elsewhere in the
body, leading to toxic effects in organs such as the liver.
Instead, molecules designed to overcome the efflux
system have shown promise. An example is lorlatinib, a
third-generation tyrosine kinase inhibitor designed to
avoid being a substrate of the ABCB1 transporter. In a
randomised phase 3 trial (NCT03052608) for advanced
anaplastic lymphoma kinase-positive non-small-cell lung
cancer, 71% of patients with brain metastases who
received lorlatinib had an intracranial complete
response.”® Further studies will clarify the rates of CNS
progression, but these preliminary results are highly
clinically significant because patients with brain
metastases are usually excluded from drug trials due to
poor intracranial efficacy.”

Receptor-mediated transcytosis

Receptor-mediated transcytosis is a non-invasive strategy
to cross the blood-brain barrier, which entails binding of
a ligand to a receptor on the luminal membrane of the
blood-brain barrier (figure 3). Vesicle-mediated
endocytosis and subsequent intracellular trafficking to
the abluminal blood-brain barrier membrane allows the
ligand to cross to the brain parenchyma.* An important
consideration is the selection of the receptor, because
expression can be altered in disease or during ageing.
Also, the drug to be transported should avoid lysosomal
compartments to prevent degradation.

The LRP1-mediated endocytosis mechanism has been
targeted to treat brain metastases in patients with breast
cancer.” LRP1 is expressed at high concentrations on the
blood-brain barrier and on tumour cells, making it an
ideal transport system for chemotherapeutic molecules.
LRP1 protects the structure of the blood-brain barrier,
regulating angiogenesis, clearing toxins, and acting as a
diverse endocytic receptor.® Expression of LRP1 on
tumours induces migration and invasion, inhibits
apoptosis, and contributes to metastasis.” A synthetic
peptide called angiopep-2 can cross the blood-brain
barrier via LRP1-mediated endocytosis. A peptide—drug
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conjugate called ANGI1005, which consists of
three paclitaxel molecules linked to angiopep-2, can cross
the blood-brain barrier. The paclitaxel is later cleaved
from the peptide via lysosomal esterases. A phase 2 study
reported benefit for patients with leptomeningeal disease
(median overall survival of 8 months [95% CI 5-4-9-4]).#
A phase 3 trial is underway for leptomeningeal disease
and brain metastases from breast cancer (NCT03613181).

Iron transport mechanisms in the brain have been
targeted via receptor-mediated transcytosis to facilitate
blood-brain barrier penetration for the treatment of
mucopolysaccharidosis type II (also known as Hunter
syndrome).” This lysosomal storage disorder stems
from a deficiency in iduronate 2-sulphatase (IDS), an
enzyme that impairs various cellular functions. Muco-
polysaccharidosis type II causes an accumulation of
gangliosides in the brain, which activate microglia and
an inflammatory response that triggers neuronal death.*
DNL310 is a molecule consisting of IDS linked to an
antibody fragment that binds the transferrin receptor
TFRC. This receptor mediates the uptake of iron-loaded
transferrin, which allows the transfer of iron to the
brain. Targeting TFRC for blood-brain barrier transport
has previously been limited by off-target binding,
resulting in anaemia and other downstream effects, as
well as sparse delivery into the brain parenchyma.®
Therefore, the antibody must display a low affinity to
TFRC to allow transcytosis and prevent overly strong
binding to the endothelial cells. DNL310 has shown
activity in mice,*and early-stage clinical trials in patients
with mucopolysaccharidosis type II are underway
(NCT04251026).*

A new version of the anti-amyloid agent gantenerumab
for treatment of Alzheimer’s disease—called trontinemab
or brain shuttle gantenerumab—utilises TFRC for
enhanced blood-brain barrier crossing.” Based on data
from a non-human primate model, this receptor-
mediated transcytosis approach is predicted to increase
brain exposure by 300-700% in humans, which could be
especially impactful for Alzheimer’s disease because of
its diffuse nature.® A phase 1b/2a clinical trial is in
progress in people with mild-to-moderate Alzheimer’s
disease to ascertain safety, pharmacokinetics, and
pharmacodynamics (NCT04639050).

Nanotherapeutics

Nanosystems can encapsulate, carry, and deliver a variety
of therapeutic agents, including drugs and nucleic acids,
to the CNS. Nanoparticles are sized between 1-100 nm in
diameter and have two distinct categories: organic (eg,
lipid and polymeric); and inorganic (eg, metals).® No
guidelines are available regarding the use of nanoparticles
for drug delivery; however, production costs and safety
concerns have, thus far, restricted the use of the agents
that have reached clinical trials for mneurological
disease.”? Concerns about nanosystems arise from the
inadequate knowledge surrounding their toxic effects,
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Figure 4: Therapeutic delivery of drugs with nanoparticles

A nanoparticle containing a gold core, conjugated with a spherical nucleic acid, could target oncogenes
upregulated in patients with glioblastoma. The spherical nucleic acid-nanoparticle conjugates are administered
intravenously and will cross the blood-brain barrier through paracellular pathways.

biocompatibility, long-term effects, and regulation, as
this technology is very new.

RNA molecules can be engineered to silence genes in
genetic disorders, including epilepsy syndromes and
Parkinson’s disease,”** and oncogenes in cancer.” These
RNA interference molecules can be attached to an
oligonucleotide carrier for therapeutic delivery® In
addition to the challenges posed by the blood—brain barrier,
unmodified oligonucleotides have a short in vivo half-ife,
might trigger an immune response, and are not efficient at
targeting specific cell populations. Nanoparticles could
house small therapeutics such as small interfering RNA
(siRNA) and be designed to overcome these issues. Brain-
penetrant RNA interference-based spherical nucleic acids
(which consist of gold nanoparticle cores covalently
conjugated with radially oriented and densely packed
siRNA oligonucleotides) were used to target the oncogene
BCL2L12 in glioblastoma patients (figure 4).” In a phase 0
first-in-human trial, eight participants were enrolled
toidentify the safety, pharmacodynamics, and accumulation
of these siRNA nanostructures for the treatment of
glioblastoma (NCT03020017). Intravenously administered
microdoses of the nanoparticle were recorded in
endothelial cells, immune cells, and tumour cells, with
subsequent reduction of target protein expression. These
results showed proof-of-concept of nanoparticle delivery
past the blood-brain barrier, but glioblastoma oncogene
heterogeneity is a confounder.

Overall nanoparticles have had far less effect than
envisaged due to issues such as accumulation,
aggregation concerns, and unstable impractical agents to
handle and prepare for clinical use. Future studies will
need to be directed towards the pharmacokinetics and
clearance of nanotherapeutics to inform appropriate
safety considerations and schedules.

Towards clinical implementation

The novel treatment approaches that we have described
for crossing the blood—brain barrier are in their infancy,
and robust clinical trial data will be required to establish
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their role in routine clinical practice. Each mechanism
will require different implementation strategies and
resources for education, training, and integrated care
models. Moreover, it is important to consider that
high-risk invasive strategies will be less favourable for
older patients or those with comorbidities. When applied
to some neurodegenerative disorders, use of these novel
strategies might encounter hesitancy from both patients
and health-care providers because, for some disorders
(eg, Parkinson’s disease), existing therapies are available
that improve quality of life (albeit that are not disease-
modifying). Ongoing clinical trials of strategies to
enhance blood-brain barrier crossing are predominantly
in the field of neuro-oncology and for neurological
conditions with poor prognosis (table 2). High treatment
risks might be more acceptable to patients with diseases
with a poor prognosis and few alternative treatments.

Conclusions and future directions
An appreciation that the blood—brain barrier is one of the
largest challenges to drug efficacy has prompted
development of various novel techniques to overcome
this barrier, ranging from direct intracranial approaches
to nanotherapeutics. Advances in therapeutic strategies to
cross the blood-brain barrier have, to date, been made
mostly in the areas of neurodegeneration and neuro-
oncology. No singular method of crossing the blood-brain
barrier will likely be appropriate for the various
neurological disorders, or even for individuals with the
same disease. For example, the most effective treatment
for a disease as heterogeneous as glioblastoma will differ
between patients and possibly even in different regions
within the tumour. In neurodegenerative disorders such
as Alzheimer’s disease, for which surgical intervention is
not part of the current standard of care, focused
ultrasound to open the blood-brain barrier paired with a
therapeutic agent is an exciting therapeutic prospect.
Each of the novel strategies we have described has
promise for development into an established standard
for enabling blood—brain barrier penetration, which is an
exciting step forward for a previously unmet need. Before
this advancement can be properly made, appropriately
designed and powered clinical studies are needed with a
focus on the timing of treatment, demographic and
genetic considerations, head-to-head comparison with
other treatment strategies (rather than a placebo), and
relevant primary and secondary outcome measures.
These measures will include imaging of drug delivery,
disease modification, and clinical measures of efficacy
such as cognition, but should also encompass patient-
related and carer-determined parameters, such as quality
of life and the ability to drive and work. Looking forward,
various preclinical studies show promise but have not
progressed to clinical trials, such as the use of
nanoparticles to apply deep brain stimulation for the
treatment of Parkinson’s disease, which is currently
showing promise in vivo.

www.thelancet.com/neurology Vol 24 March 2025

Intervention Outcomes Study status

Inclusion criteria

Study design and phase

(Continued from previous page)

NCT05280054

Estimated completion
Nov 1, 2022 (but no
results reported to

date)

Plasma and CSF concentrations of

4-chlorokynurenine alone or in combination

with probenecid

24 healthy patients (age 18-55 years; both sexes)

Interventional phase 1

7-chlorokynurenic acid and 4-chlorokynurenine

(with and without probenecid)

Disease progression (measured by change in disease  Estimated completion

severity against amyotrophic lateral sclerosis

240 patients with amyotrophic lateral sclerosis (age  DNL343 and matching placebo administered

Interventional phase 2

and phase 3

NCT05842941

August, 2025

orally once daily for 24 weeks; not a substrate of

ABCB1 transporter

>18 years; both sexes)

functional rating scale-revised and survival)

Estimated completion

Dec31,2028;

Progression free survival based on blinded

independent central review

Lorlatinib (not a substrate of ABCB1 transporter)

and crizotinib

296 patients with ALK-positive non-small-cell lung

cancer (age =18 years; both sexes)

NCT030526087 Interventional phase 3

preliminary results

show robust

intracranial response

Receptor-mediated transcytosis

NCT03613181

Estimated completion
December, 2024

Overall survival (assessed for up to 2 years)

150 patients with HER2-negative breast cancer with  ANG1005 binds to LRP1 to cross the blood-brain

Open-label,

barrier

newly diagnosed leptomeningeal carcinomatosis

(age =18 years; both sexes)

interventional phase 3

Estimated completion

July, 2027

Incidence and severity of treatment-emergent

DNL310 (tividenofusp alfa), which targets

47 paediatric patients with mucopolysaccharidosis
type Il (Hunter syndrome; age 1-18 years; male)

Interventional phase 1

and phase 2

NCT04251026%

transferrin receptor TFR1 to cross the blood-brain  adverse events and infusion-related reactions,

barrier

change in baseline in total urine glycosaminoglycan

concentrations, and concomitant medications

Estimated completion

Dec 31,2028

Percentage of participants with adverse events and

change from baseline in brain amyloid load

(measured by PET scan)

Trontinemab, which exploits TFR1 for enhanced

blood-brain barrier crossing

285 patients with prodromal, mild, or moderate

Interventional phase 1

and phase 2

NCT04639050

Alzheimer’s disease (age 50-85 years; both sexes)

magnetic resonance-guided focused ultrasound.

Response Evaluation Criteria in Solid Tumours. MRgFUS=

=herpes simplex virus type 1. RECIST:

anaplastic lymphoma kinase. HSV-1:

Trials were identified by searching PubMed or ClinicalTrials.gov. ALK

mRANO-BM:

modified Response Assessment in Neuro-oncology Brain Metastases.

Table 2: Ongoing clinical trials of strategies to circumvent the blood-brain barrier
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Search strategy and selection criteria

We searched PubMed, ClinicalTrials.gov, and Google Scholar
with the key search terms “blood-brain barrier AND
therapeutics”, “blood-brain barrier AND clinical trial”, and
“"blood-brain barrier AND crossing”. We searched for papers
published between March 1, 2019, and Aug 1, 2024, and for
publications that were in English. References were selected
with respect to originality, impact, and scope. Studies were
prioritised if clinical studies had taken place and were
primary papers.

Future experimental studies should be directed towards
characterising disease alterations of the blood-brain
barrier, the development of complex in-vitro models of
the blood-brain barrier for rapid screening of strategies,
and expansion on the mechanistic understanding of how
these strategies enable the blood-brain barrier to be
crossed, to more fully optimise their clinical use for
diverse groups of patients.
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