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Abstract
Clinical evaluation and MR imaging are currently the cornerstone of brain tumor progression monitoring. However, this is 
complicated by the occurrence of treatment effects such as pseudoprogression and radionecrosis. While essential for patient 
management, the distinction from true progression remains a significant challenge. Moreover, MR imaging provides limited 
real-time insights into tumor heterogeneity, genetic divergence, and treatment resistance. Although surgical histopathological 
biopsies can yield additional valuable information, they are not always conclusive, invasive, and therefore, not suitable for 
longitudinal measurements. In the era of precision medicine, there is a critical need for minimally invasive, accurate, and 
cost-effective monitoring methods for both primary brain tumors and brain metastases. Liquid biopsies have emerged as a 
potential candidate. Various analytes, including circulating nucleic acids, extracellular vesicles, platelet RNAs, and circulating 
tumor cells, can be obtained from whole blood and its derivatives, as well as other body fluids such as cerebrospinal fluid. 
In this narrative review, we outline the potential of liquid biopsies for the management of gliomas and brain metastases in 
adults and emphasize their utility in monitoring disease progression and treatment response. We discuss the most studied 
biofluids and analytes, along with their respective advantages and downsides. Furthermore, we address key considerations 
for future research and biobanking to pave the way for clinical implementation.  

Keywords Liquid biopsy · Biomarkers · Monitoring · Brain tumors · Glioma · Brain metastases

Introduction

Among primary brain tumors, gliomas are the most common 
with 6.5 per 100,000 individuals diagnosed annually in the 
United States [96]. The prognosis varies widely depending 
on glioma subtype and grade, ranging from a few months 
to several decades, with each subtype requiring different 
treatment strategies [81]. Brain metastases are the most 

prevalent brain tumors, affecting 10–40% of patients with 
solid cancers, primarily those with lung (19–40%) or breast 
cancer (6–22%), or melanoma (6–15%) [13, 18, 62, 93]. 
The improvements in systemic disease control and better 
imaging technologies have led to a significant increase of 
brain metastases [62]. Brain metastasis diagnosis frequently 
relies on clinical information and imaging combined with 
prior histopathological information from the primary tumor 
or other metastases. However, increasing knowledge of 
(molecular) heterogeneity and resistance mechanisms in 
brain metastasis as compared to primary tumor and systemic 
metastases has emphasized the limitations of relying solely 
on prior histopathology of the primary tumor, particularly 
in the context of targeted therapies [84]. Accurate and up-
to-date molecular information of the primary tumor and 
its metastases, is therefore, essential to guide and monitor 
treatment.

The current monitoring strategies for both primary and 
secondary brain tumors rely heavily on magnetic reso-
nance (MR) imaging, supplemented by clinical evalua-
tion and, if indicated, tissue histopathological analysis. 
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The higher-grade gliomas warrant more frequent imaging, 
typically every 3–6 months, burdening patients, scanner 
capacity, and healthcare funds [81]. Imaging alone does 
not provide information on the biology underpinning tumor 
response and treatment resistance. Notoriously challenging 
is the increase of contrast-enhancing lesions on MR imaging 
following (chemo-)radiation. This can be due to true tumor 
progression or may be treatment-induced, such as pseudo-
progression or radionecrosis. These phenomena occur in 
approximately 30% of glioblastoma patients and in up to 
30% of patients with brain metastasis [3, 134]. These treat-
ment-induced imaging effects, relevant in both glioma and 
brain metastasis care, complicate clinical decision making 
as they may be misinterpreted as tumor progression [125, 
131]. Advanced MR imaging modalities, such as spectros-
copy, perfusion, and diffusion-weighted imaging may aid 
the discrimination from true tumor progression but are far 
from perfect [34, 77]. Needle biopsy or even repeat resection 
and histopathological analysis may not yield a conclusive 
answer, partially debit to tumor heterogeneity, and the lack 
of pathological definition of radionecrosis versus tumor pro-
gression. These factors emphasize the need for additional 
minimally invasive, accurate and affordable methods for the 
monitoring of brain tumors.

Over the recent decades, liquid biopsies have emerged 
as a promising candidate, including circulating nucleic 
acids, extracellular vesicles, platelet RNAs, and circulating 
tumor cells. These can be collected from whole blood and 
its derivates, but also from urine and cerebrospinal fluid 
(CSF). In the current era of personalized medicine, which 
has significantly improved the survival of cancer patients, 
increasing attention is being directed toward the use of 
liquid biopsies for disease monitoring. A decade ago, the 
potential of liquid biopsies has been extensively discussed 
in this journal, viz. Best et al. [22], which primarily focused 
on diagnostic capabilities of blood biomarkers for glioma 
diagnostics. As treatment monitoring appears to be the most 
relevant application of liquid biopsies in a neuro-oncological 
setting, we here present an initial overview of the current 
liquid biopsy platforms available for monitoring gliomas 
and brain metastases in adults. The value of liquid biopsies 
for molecular diagnosis and monitoring treatment response 
in pediatric brain tumors has been described previously 
[44, 124]. We provide perspective on the use of liquid 
biopsies for brain tumor monitoring and considerations 
for effective biobanking in clinical studies. The studies 
from this literature search are discussed per biomolecule 
for both diffuse gliomas and brain metastases. We discuss 
monitoring markers for diffuse glioma patients, which 
mainly focus on the distinction of tumor progression from 
pseudoprogression. In contrast, brain metastasis monitoring 
is primarily focused on differentiating radionecrosis from 
intracranial tumor progression. As a first step towards 

achieving this, a large number of studies have identified 
markers that differentiate between systemic and intracranial 
disease.

We expect  l iquid biopsies  to  complement 
histopathological, molecular and imaging diagnostics in the 
multidisciplinary treatment of neuro-oncological patients.

Circulating nucleic acids

Circulating nucleic acids encompass cell-free DNA (cfDNA) 
and RNA. CfDNA has a half-life of < 1.5 h, theoretically 
allowing for real-time depiction of tumor activity [127]. 
Circulating tumor DNA (ctDNA) specifically refers to the 
tumor-derived subset of cfDNA, which is mainly shed from 
tumor cells during necrosis and apoptosis. In blood, ctDNA 
typically constitutes < 1% of total cfDNA [32, 50]. Since it is 
not always possible to differentiate between cfDNA derived 
from normal cells and ctDNA, we will from here on use the 
term ‘cfDNA’.

For over a decade, cfDNA and RNA have been 
investigated as potential cancer biomarkers [36]. This was 
primarily initiated by the seminal paper of Bettegowda et al. 
(2014), describing the detection of tumor-derived DNA 
molecules in blood from 15 different tumor types, with 
detection rates increasing as tumor stages advance [23]. 
Potential purposes range from diagnosis and identification of 
treatment targets to monitoring for minimal residual disease 
[83]. As tumor-derived cfDNA detection in blood has been 
difficult in central nervous system (CNS) tumors, it has 
been suggested that the blood–brain barrier (BBB) hampers 
release of cfDNA in the circulation. In brain metastases, a 
low cerebral tumor load compared to systemic metastases 
may also contribute to this reduced detection efficiency.

Circulating nucleic acids in glioma

DNA

Starting with detection rates below 10% in 2014, the 
detectability of glioma cfDNA in blood plasma has 
improved over time [23]. More recent studies have detected 
glioblastoma somatic alterations in cfDNA in up to 83% of 
patients [10, 24, 37, 86, 89, 99, 114, 143]. Novel methods 
to detect cfDNA keep emerging rapidly, such as individual 
tumor-guided sequencing. Using an assay based on each 
patient’s individual tumor characteristics, Moulière et al. 
detected tumor-derived cfDNA in a cohort of IDH-wild type 
glioblastoma patients in CSF of 7/8 (88%) patients, in plasma 
of 10/12 (83%) patients, and in urine of 6/8 (75%) patients 
[86]. Tumor-derived cfDNA was more fragmented than non-
mutant DNA in these biofluids. Selection of specifically 
fragmented DNA molecules may thus enhance detection 
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sensitivity, as well as the presence of somatic mutations. 
Muralidharan et al. showed that in TERT-promoter mutant 
glioma (81% IDH-wildtype), this mutation can be detected 
in 63% of cases in plasma cfDNA employing digital droplet 
PCR (ddPCR) [89]. Moreover, in longitudinal monitoring of 
five patients, the TERT mutant allele frequency (MAF), i.e., 
the proportion of tumor-derived DNA among total detected 
cfDNA, decreased following resection and chemoradiation 
and increased upon tumor progression. Although TERT 
MAF did not correlate with MRI tumor volume, contrast-
enhancing tumors had increased TERT MAF-values, 
indicating more tumor DNA leakage from a more disrupted 
and thereby more permeable BBB. Although not directly 
applicable to non-mutant TERT promoter gliomas (i.e., 
40% of gliomas), this study delivers an important proof-
of-concept regarding cfDNA as a blood-based monitoring 
marker in glioma [60]. In blood plasma of eight patients with 
glioblastoma, Iorgulescu et al. detected tumor cfDNA with 
88% sensitivity and 99% specificity using their proprietary 
MAESTRO-Pool (minor allele enriched sequencing 
through recognition oligonucleotides) assay. Additionally, 
they suggest that it may help distinguish true progression 
from pseudoprogression as defined by follow-up MR 
imaging and histopathology, although longitudinal samples 
were collected in only seven patients [48]. Furthermore, 
two pilot studies noted that total cfDNA concentration in 
plasma might provide prognostic and monitoring value in 
glioblastoma regardless of whether somatic alterations were 
detected [10, 95]. Lower-grade gliomas are more difficult to 
detect as MAF decreases with glioma grade [99].

Epigenetics

CfDNA analysis also encompasses epigenetic alterations, 
such as methylation patterns. In patients with glioma, Nassiri 
et  al. analyzed plasma-based DNA methylation profiles 
with cell-free methylated DNA immunoprecipitation and 
high-throughput sequencing (cfMeDIP-seq) and employed 
machine learning to distinguish gliomas from other brain 
tumor types, extracranial cancer, and healthy individuals 
with high accuracy (AUC 0.99; 95% confidence interval 
(CI): 0.96–1.00) [92]. The detection of specific types of 
glioma within a subgroup of common intracranial tumors 
was more challenging (IDH-wild type versus others: AUC 
0.71; 95% CI 0.53–0.90; IDH-mutant versus others: AUC 
0.82; 95% CI 0.66–0.98). Sabedot et al. developed a serum-
based glioma-epigenetic liquid biopsy (GeLB) score that 
allowed for discrimination between 149 glioma patients 
and patients with various other brain tumor types with 98% 
accuracy [112]. Additionally, they were able to distinguish 
tumor progression from pseudoprogression in two patients 
with astrocytoma grade 2 and one patient with glioblastoma.

RNA

RNA is increasingly studied as a liquid biomarker source. 
Although unbound mRNA is unstable in blood, RNA that 
forms protein complexes, such as microRNA (miRNA), 
are more resistant to RNAses [9, 104]. Other RNA, such 
as long non-coding RNA and circular RNA (circRNA), 
are intrinsically more resistant to degradation and thus 
detectable in blood [46, 128].

MiRNA consists of small, non-coding fragments of 
RNA that serve as protein expression regulators. Distinct 
tissue miRNA profiles have been found in various cancer 
types, including brain tumors [72]. In contrast to cfDNA, 
miRNA seems to be less dependent on BBB disruption to 
enter the circulation or is released by ‘bystander’ cells (e.g., 
endothelial or immune cells) [85].

One study screened the expression of 739 miRNAs in 
serum obtained from patients with diffuse astrocytoma, 
anaplastic astrocytoma, or glioblastoma (according to 
the 2007 WHO classification) and age- and sex-matched 
healthy controls and found a panel of 108 differentially 
expressed miRNAs [142]. After subsequent validation 
in 90 astrocytoma patients and 110 healthy controls, the 
resulting 9-miRNA panel reached an AUC of 0.97 for 
the identification of astrocytoma cases, with a significant 
decrease of these miRNAs following tumor surgery in 73 
patients. Another study aimed to identify a miRNA serum 
biomarker to monitor lower-grade glioma and glioblastoma 
patients post-treatment [85]. This group also first identified a 
9-miRNA panel, demonstrating near-perfect accuracy (AUC 
0.998) distinguishing between glioma patients and healthy 
controls. The authors analyzed 11 patients with longitudinal 
blood samples and found a close correlation between miR-
223 and lower-grade glioma volume, and miR-320e and 
glioblastoma volume as measured on MR imaging. In two 
cases of pseudoprogression, miRNA levels did not increase. 
These studies suggest the potential of miRNA as a biomarker 
in glioma monitoring and warrant a prospective validation 
study.

In summary, circulating nucleic acids show promise in 
distinguishing between glioma subtypes, differentiating 
gliomas from other brain tumors, and may allow treatment 
monitoring. However, many studies have small sample sizes, 
are retrospective, and lack external validation. Furthermore, 
the detection of glioma-derived cfDNA in blood is 
challenging due to its low abundance and short half-life. 
Advancements in detection techniques as well as multimodal 
testing approaches could improve glioma monitoring. As 
miRNA is more stable than cfDNA and easier to detect in 
the blood, they show promise in glioma detection. Clues 
towards their monitoring potential have been found but 
require further investigation.  
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Circulating nucleic acids in brain metastasis

DNA

Brain metastasis-derived circulating nucleic acids are 
difficult to identify and to distinguish from those originating 
from systemic metastases. Several studies have explored 
the role of cfDNA for diagnosis and monitoring of brain 
metastasis in patients with metastatic solid tumors. Liang 
et  al. detected cfDNA in blood of 28% (2/7) of cancer 
patients with brain metastases, with genetic alterations 
matching those in brain tumor tissue [67]. However, it 
was not specified whether these patients also had systemic 
metastases, which may have positively affected cfDNA 
detectability in the blood.

Several studies have shown that cfDNA detection is 
particularly difficult in isolated progressive intracranial 
disease. First, Aldea et al. identified plasma cfDNA in 52% 
(n = 28/54) of NSCLC patients with intracranial progression 
only (iCNS), compared to 84% (n = 83/99) with extracranial 
(eCNS) and 92% (n = 86/94) with concurrent extra- and 
intracranial progression (cCNS) [5]. Driver and resistance 
genetic alterations were also lower in the iCNS group 
compared to the eCNS and cCNS group, respectively 37% 
versus 77% and 73% for driver alterations and 6% versus 
45% and 44% for resistance alterations. Second, Alder 
et al. assessed genomic alterations in serum cfDNA of 253 
patients with brain metastases of various solid cancers, 
primarily breast cancer (12%) and NSCLC (76.4%) [6]. The 
proportion of detected MAFs ≥ 1% was 65.5%, 80.6%, and 
73.4% (p = 0.40) for the iCNS (n = 29), cCNS (n = 160), 
and eCNS (n = 64) group, respectively. Additionally, the 
median MAF percentage per patient identified in any gene 
was also higher in the cCNS group (median 4.75) compared 
to the iCNS (median 1.6) and eCNS group (median 2.55, 
p = 0.003). Although the identified MAFs were lower in 
the iCNS patients, the researchers successfully identified 
unique genomic alternations in their cfDNA. Furthermore, 
they demonstrated a comparable ability to detect actionable 
mutations in cfDNA of patients with iCNS and those 
with extracranial progression. These findings suggest 
that cfDNA might find an application in characterizing 
molecular profiles of brain-metastases, thereby informing 
and optimizing treatment strategies. Kim et  al. showed 
plasma cfDNA’s clinical utility. Among 164 patients with 
positive tissue or plasma EGFR mutation tests, 34 (20.7%) 
were detected only in plasma, leading to first-line EGFR TKI 
treatment in 85.3% (29/34) of patients [54]. Furthermore, 
they found a significant association between EGFR mutation 
status in plasma cfDNA and the presence of brain metastasis 
in 311 treatment-naive stage IV non-small cell lung cancer 
(NSCLC) patients, with an adjusted odds ratio of 2.73 (95% 
CI 1.39–5.36; p = 0.003).

Two additional studies analyzed plasma cfDNA in (brain) 
metastatic melanoma patients before and during anti-PD1 
therapy. Seremet et al. detected  BRAFV600E/K mutations in 
47% (22/47) and  NRASQ61/G12/G13 mutations in 38% (6/16) 
baseline samples but found no detectable cfDNA in 36 
samples collected at baseline and subsequent assessment 
during therapy from ten patients with progressive 
intracranial disease only [115]. Lee et al. detected tumor-
derived cfDNA in plasma of 53% (40/76) patients with 
active brain metastasis at baseline and in 24% during therapy 
[64]. Both studies linked undetectable cfDNA levels at 
baseline and follow-up with better survival. However, both 
studies failed to detect cfDNA in patients with isolated brain 
metastases.

In conclusion, previous studies illustrate the challenges 
of detecting isolated progressive brain metastases and 
monitoring brain metastasis response to therapy using 
cfDNA analysis in blood. Despite these difficulties, the 
unique genomic alterations can still be identified in cfDNA 
from patients with isolated intracerebral progression, 
offering potential insights for treatment decisions.

Epigenetics

Methylation patterns could also aid in early diagnosis 
in patients at risk for brain metastases and help identify 
an unknown primary tumor. Barciszewska found that 
differences in 5-methylcytocine  (m5C) content between DNA 
of matched brain metastasis tissue and peripheral blood 
samples were significantly associated with primary tumor 
type and negatively correlated with histopathological tumor 
grade (from G1: highly differentiated, least malignant to 
G3: low differentiated, most malignant) [12]. Furthermore, 
 m5C content in DNA of matched brain metastasis tissue and 
peripheral blood samples was strongly correlated. Pangeni 
et  al. analyzed cfDNA in plasma from brain metastatic 
breast cancer patients and found concordant methylation 
patterns in cfDNA and brain metastasis tissue [97]. Zuccato 
et al. evaluated DNA methylation patterns of lung cancer 
patients with and without brain metastasis [144]. Plasma 
methylome-based cfMeDIP-seq enabled them to identify 
brain metastasis in patients with lung cancer with high 
accuracy (AUC = 0.80, 95%-CI 0.68–0.93). Additionally, 
the plasma methylome signals of patients with brain 
metastasis correlated well with matched brain tumor tissue 
methylation values. Thus, the methylation patterns in plasma 
may harbor potential as a diagnostic and prognostic tool for 
brain metastasis.

In general, it is known that cancer inflicts damage to the 
surrounding organ tissue. Lubotzky et al. demonstrated that 
cancer-induced cell death in organs is reflected in tissue-
specific cfDNA methylation patterns [73]. Although levels 
of brain-derived cfDNA in plasma were low compared to 
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cfDNA derived from other organs, they were measurable 
in most patients with brain metastases (neuron-derived in 
27/29 patients, oligodendrocyte-derived in 25/29 patients, 
and astrocyte-derived cfDNA in all 29 patients), as opposed 
to patients without brain metastases or healthy controls. 
These findings suggest that brain cell type-specific cfDNA 
methylation markers may enable detection of healthy brain 
tissue damage resulting from brain metastasis.

RNA

Several non-coding RNAs are involved in brain metastases 
in breast cancer patients. Fu et al. identified circBCBM1 
as a proliferation and migration-promoting circRNA in 
a preclinical breast cancer model and noted that it was 
markedly upregulated in plasma samples of brain metastatic 
patients [38]. Another study comparing serum samples 
from advanced breast cancer patients with and without 
brain metastasis identified miR-4428 and miR-4480, which 
detected presence of brain metastasis with an AUC of 0.78 
[113]. Additionally, serum miR-330-3p levels were also 
found to be significantly higher in NSCLC patients with 
brain metastasis than in those without brain metastasis [129]. 
These studies indicate that non-coding RNAs may serve as 
diagnostic biomarkers for brain metastases in breast cancer. 
No studies have been performed on the value of non-coding 
RNAs in treatment response of brain metastasis.

Regarding the previously mentioned circulating nucleic 
acids, thus far only somatic mutation analysis of plasma 
cfDNA may provide value for diagnosing brain metastases 
and, potentially, for monitoring treatment response. Brain 
tissue specific cfDNA methylation patterns in blood 
appear to be promising, as these are directly linked to brain 
metastasis and not to systemic metastasis.

Extracellular vesicles

Extracellular vesicles (EVs) are defined as particles that are 
actively released from cells, delimited by a lipid bilayer and 
cannot replicate on their own [132]. They have been found 
in most biofluids, including blood, saliva, urine, ascites, 
and CSF, and are released by all cell types, although the 
majority originates from circulating blood platelets [33, 
63]. The EVs are essential for intercellular signaling in 
(patho)physiological processes, including cancer. EVs are 
heterogeneous and have distinct biological functions based 
on their molecular composition, structural characteristics 
and size, ranging from small EVs of 30 nm to large EVs 
with a size up to 10 µm [51]. Tumor-derived EVs contribute 
to different stages of cancer development by promoting and 
regulating both tumor cells and the tumor microenvironment 
[78].

EVs are investigated as tumor biomarkers as they bear 
various useful properties. Due to their envelope, the content 
of EVs is relatively resistant to degradation. Additionally, 
they may be able to cross an intact BBB as shown in a mouse 
model with xenografted human glioma stem cells [41]. As 
EVs are shed by all cell types, they are believed to reflect 
the full molecular properties of heterogeneous tumors such 
as gliomas and their cell of origin [76]. They also contain a 
plethora of biomolecules, such as DNA, RNA, proteins, and 
lipids, allowing for multimodal biomarker testing. Here, we 
cover the brain tumor monitoring potential of EVs.

EVs in glioma

The release of EVs by gliomas was first reported in 2008 
by Skog et al., who found that EVs contain tumor-specific 
RNAs [118]. Normal cells were shown to sequester these 
EVs, which could also be isolated from serum. Even 
without investigating the contents of EVs, their numbers 
can be informative. A 5.5-fold increase in total plasma EV 
concentration was observed in 101 glioblastoma patients 
compared to 29 age-matched healthy controls [105]. 
Within the glioblastoma group, increased EV plasma levels 
were significantly associated with shorter survival. EV 
levels correlated with MR imaging FLAIR hyperintensity 
volume, but not with T1 contrast-enhancing volume. FLAIR 
hyperintensity in glioma signifies diffuse infiltration and 
edema, suggesting increased permeability of the BBB 
and consequently elevated EV levels. Alternatively, the 
peritumoral cells may release additional EVs due to tumor-
induced brain edema. Importantly, EV concentration did not 
correlate with platelet counts, indicating that the mechanism 
causing increased EVs is distinct from disease-associated 
thrombocytosis.

EV plasma concentrations may also reflect treatment 
response. In a subset of 34 patients with glioblastoma, EV 
levels decreased more in patients that underwent gross total 
resection compared to subtotal tumor resection. During 
the stable disease phase, EV concentrations remained low, 
whereas levels rose upon tumor progression. In two of 11 
follow-up patients, the EV levels even increased 3–6 months 
before MR imaging revealed tumor progression, highlighting 
the potential of this biomarker for glioblastoma monitoring.

Batool et al. have detected several somatic alterations 
in EV RNA of patients with glioma [15]. They developed 
a novel ddPCR assay for the detection of EGFRvIII—a 
glioma specific deletion mutant—in blood plasma, reaching 
a sensitivity of 73% and a specificity of 98% in a cohort 
of 40 glioblastoma patients and 14 age-matched healthy 
controls. The plasma samples were drawn from four 
patients after glioblastoma treatment, in which EGFRvIII-
mutant copies seemed to mirror clinical status. In CSF 
of three additional patients with recurrent glioblastoma 
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treated with chimeric antigen receptor (CAR) T-cells, the 
number of mutant copies was concordant with response 
based on RANO criteria [30]. EGFRvIII was undetectable 
at time of CAR-T infusion, but increased dramatically in 
the following weeks, potentially due to treatment-initiated 
cell death. Subsequently, EGFRvIII became undetectable 
after treatment. Plasma taken from a single patient before 
and after infusion showed a decrease to undetectable 
levels. No plasma or CSF was collected at time of recurrent 
disease, but given that immunohistochemical analysis of 
post-treatment tumor tissue was negative for EGFRvIII, 
increased levels of EGFRvIII-mutant copies in plasma or 
CSF at tumor recurrence are unlikely. The loss of EGFRvIII 
through treatment-induced tumor evolution suggests that the 
detection of a single somatic alteration is not optimal for the 
monitoring of targeted (immune) therapy. A combination of 
biomarkers may be preferred.

Analogous to the EGFRvIII assay, the group of Batool 
et al. developed an assay for the IDH1.R132H mutation [14]. 
A sensitivity of 75% and specificity of 89% was reached in 
a cohort of 124 glioma patients (n = 80 IDH-mutant) and 9 
age-matched healthy controls. Multiple follow-up samples 
were taken from eight patients with IDH1-mutant glioma. 
The patients in the disease progression group (n = 3; grades 
2–4 astrocytoma) and the treatment response group (n = 3; 
subtypes not mentioned) displayed EV RNA-based MAF 
concordant with disease status. Notably, in the treatment 
response group, MAF increased at the start of treatment 
in all three patients, presumably due to increased tumor 
shedding. In an additional patient, the same initial spike 
in IDH-mutant MAF was observed, which later returned 
to baseline. This drop in MAF co-occurred with suspected 
pseudoprogression, indicating its potential utility in tumor 
treatment monitoring.

While EV liquid biopsies in their current state are not 
yet ready for adoption, EVs have promise for monitoring 
of glioma due to their rich EV cargo, stability and 
abundance in the blood. The biomarker has undergone 
significant development, yet a standardized protocol for 
EV identification is essential before it can be considered 
ready for large-scale prospective validation studies. As the 
isolation of EVs is relatively time-consuming, efforts to 
improve labor intensity are needed to progress its utility as 
a biomarker.

EVs in brain metastasis

While studies on EV-associated biomolecules specifically 
for monitoring brain metastasis are still scarce, growing 
evidence supports their diagnostic and prognostic utility, 
with most research focusing on miRNAs and proteins 
present in EVs.

The screening for brain-metastasis specific miRNAs, Wei 
et al. conducted RNA-sequencing from plasma-derived EVs 
and identified 22 differentially expressed miRNAs in plasma 
of lung cancer patients with and without brain metastasis, 
of which miR-550a-3-5p was significantly enriched in EVs 
from patients with brain metastasis [130]. Accordingly, Ruan 
et al. sequenced RNA of plasma of 42 stage IV breast cancer 
patients, of which 21 had brain metastasis and found that 
high levels of miR-199b-5p in EVs are associated with brain 
metastasis [111].

Additional studies have focused on size and protein cargo of 
circulating EVs. Carretero-González et al. found that patients 
with brain metastasis had lower levels of plasma EVs and 
higher protein concentration in small EVs (sEVs) compared 
to patients without brain metastasis and healthy controls 
[28]. Melanoma patients with brain metastasis had decreased 
STAT3 activation and increased PD-L1 levels in sEVs as 
compared to patients without brain metastasis, possibly 
because of systemic immunosuppression in melanoma brain 
metastasis patients. Rodrigues et  al. demonstrated high 
expression of the cell migration-inducing and hyaluronan-
binding protein (CEMIP) in brain metastasis tissue and their 
secreted EVs in plasma in contrast to tissue from systemic 
metastasis [110]. Li et al. compared EV-associated proteins in 
42 metastatic lung cancer patients, 25 locally advanced lung 
cancer patients, and 5 healthy controls and identified 120 
differentially expressed EV-associated proteins in 28 brain 
metastatic lung cancer patients, of which MUC5B and SELL 
could be used as diagnostic biomarkers (AUC 0.774 and 0.720, 
respectively) [66]. Both miRNA and proteins in plasma EVs 
are therefore promising biomarkers for brain metastasis.

In addition to aiding in brain metastasis diagnosis, plasma 
EV content has been linked to disease progression and survival. 
Chen et al. found that elevated EV-associated integrin β3 
levels in 75 lung carcinoma patients who received whole brain 
radiotherapy for brain metastasis were associated with poorer 
intracranial control (HR: 1.22 per 1 ng/mL increase; 95% CI 
1.012–1.46; p = 0.037) and reduced overall survival (HR: 1.15 
per 1 ng/mL increase; 95% CI 1.01–1.32; p = 0.04) [29]. These 
results indicate that proteins in EVs, in particular integrin β3, 
may serve as prognostic biomarkers for brain metastasis.

In conclusion, the diagnostic and prognostic potential 
of plasma EVs has been demonstrated in brain metastasis 
patients. Further research is needed to confirm the diagnostic 
and prognostic role of EVs and to establish whether they can 
be used for treatment monitoring.

Platelet RNA

The blood platelets play a significant role in the 
progression of systemic cancer. Direct and indirect contact 
between platelets and tumor cells of colon and breast 
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cancer facilitates transition towards a more mesenchymal 
phenotype, enabling tumors to invade surrounding tissues 
and metastasize [59]. The platelets even help circulating 
tumor cells to evade the immune system by forming 
a physical shield around them [70, 101]. Despite the 
recognized role of platelets in cancer pathogenesis, platelet 
counts have inconsistently shown utility as biomarkers 
in glioma patients [7]. Consequently, research efforts 
focus on analyzing platelet content rather than platelet 
counts. Platelets and tumor cells have demonstrated 
‘cross-talk’. The transcriptome and proteome of platelets 
incorporate a tumor signature that includes tumor-specific 
mutant transcripts [55, 91, 94]. Possibly, this occurs via 
alternative splicing of pre-mRNAs from megakaryocytes 
and sequestration of (circulating) tumor-derived RNA 
molecules. As platelets have a life span of ~ 7 to 10 days, 
they may provide a real-time snapshot of the tumor status. 
Additionally, they are practical biomarker candidates: 
platelets are widely abundant, can be isolated from only 
4–6 mL of whole blood, and the isolation procedure is 
simple. Before processing, whole blood can be stored for 
as long as 48 h at room temperature, enabling for sample 
shipment [19].

Over the last decade, our group has developed a platelet 
mRNA biomarker platform that enables distinction 
between cancer, non-neoplastic disease, and healthy 
controls with high accuracy [19–21, 47]. In a cohort of 126 
patients with one or multiple brain metastases primarily 
from NSCLC (n = 85), and 89 patients with glioblastoma, 
we demonstrated that platelet RNA profiles can be used 
to discriminate brain metastases from glioblastoma with 
an AUC of 0.84 (95% CI 0.76–0.92; p < 0.001) [119]. A 
subsequent study investigating patients with 18 different 
tumor types showed that RNA profiles of 93 patients with 
brain metastasis were distinct to profiles of 299 patients 
with a similar primary tumor without brain metastasis. 
Furthermore, platelet RNA profiles of brain metastasis 
patients had similarities to those of patients with gliomas, 
suggesting that the platelet transcriptome is influenced by 
both the primary tumor and the metastatic site [47].

The platelets may also be of value for glioblastoma 
treatment monitoring. Distinguishing true progression 
from pseudoprogression, a platelet RNA-based 
glioblastoma-specific classifier has demonstrated an 
AUC of 0.86 (95% CI 0.70–1.00; p < 0.012) [119]. In 
a follow-up cohort of 48 glioblastoma patients, the 
classifier score seemed to mirror disease course, although 
the correlation varied across patients. In some patients, 
the score correctly indicated tumor progression before 
radiological progression occurred. These properties render 
platelet RNA potentially valuable in therapy monitoring, 
which is currently being evaluated in the multicenter, 
prospective PREDICT-study.

A disadvantage of the use of platelet RNA as a biomarker 
source is that the mechanism of platelet ‘education’ is not 
completely identified. Recent findings by Karp et al. suggest 
that platelets are indirectly influenced by other circulating 
cells rather than sequestering tumor transcripts [53]. 
Conversely, previous studies have demonstrated transfer of 
EGFRvIII RNA from glioblastoma to platelets, and RNA 
transfer between platelets and other cells [42, 61, 94, 107]. 
Future studies should aim to elucidate these contradictions, 
through improved wet-lab protocols as well as computational 
cleaning methods. Platelet RNA remains a promising 
biomarker in the monitoring of brain tumors, warranting 
large-scale prospective validation studies.

Circulating tumor cells

Circulating tumor cells (CTCs) originate from primary 
or metastatic tumor sites and offer a minimally invasive 
approach to retrieve information about tumor characteristics 
[68]. Since most tumors metastasize hematogenously, 
tumor release of CTCs is a proxy of its metastatic 
potential. However, CTCs require adaptive mechanisms to 
survive, resulting in low levels in blood, with only a rare 
subset capable of initiating brain metastases [58]. Recent 
technological advances, such as immunomagnetic bead 
methods, microfluidic technologies, and high-throughput 
sequencing technology, have significantly improved the 
detection and characterization of CTCs associated with brain 
tumors [4, 52, 138].

CTCs in glioma

Compared to cell-free nucleic acids and EVs, the field 
of CTCs in glioma has advanced less rapidly due to the 
technical difficulties in enriching CTCs from glioma. As 
glioma does not express the epithelial cell adhesion molecule 
(EpCAM) typical for carcinomas, standard EpCAM-based 
CTC isolation methods cannot be employed. This has 
resulted in the development of various protocols that employ 
different markers and isolation methods [43]. Most studies 
have focused on improving enrichment of glioma CTCs 
rather than correlating them to clinical status, a purpose for 
which current methods may not be sufficiently mature. The 
reported blood detection rates of CTCs in glioma patients 
range from 20 to 84%, with the number of cells detected in a 
tube of blood often in single digits [40, 75, 87, 88, 102, 123, 
140, 141]. Several studies have investigated the prognostic 
and monitoring potential of CTCs in glioma, of which we 
describe here the most recent and the most important ones.

Using a telomerase reverse transcriptase-based assay, 
Zhang et al. were able to detect CTCs in plasma of 106 
glioma patients with 83% sensitivity [141]. The presence 
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of postoperative, but not preoperative CTCs was associated 
with poor prognosis, and a significant decrease in the 
number of CTCs following tumor resection was observed. 
Unfortunately, CTC levels during the chemotherapeutic 
treatment phase, and thereafter, are not described. In 
addition, Sullivan et al. report 39% sensitivity in detecting 
CTCs in plasma of 33 glioblastoma patients [123]. 
A significant difference in CTC counts was observed 
between patients with stable disease and patients with 
disease progression. Notably, all detected CTCs had 
the mesenchymal subtype, indicating that a molecular 
transition of glioblastoma cells may be necessary to enter 
the circulation. Consequently, the blood may only contain 
a subset of tumor-derived cells, not fully reflecting the 
heterogeneity of the primary tumor. A further increase 
in sensitivity might enable CTCs to play a role in glioma 
disease monitoring.

Although we did not find any studies that formally 
investigated CTCs as a biomarker in the monitoring of 
glioma, some studies report a decrease in CTCs after tumor 
resection and an increase upon progression. More research 
is needed to determine their monitoring value.

CTCs in brain metastasis

In systemic metastasis, CTCs have shown utility in treatment 
response assessment and post-treatment surveillance [35, 
122]. Unfortunately, no studies have specifically evaluated 
CTCs for monitoring brain metastasis. Most research on 
CTCs has focused on cellular and molecular adaptations 
that allow them to cross the BBB and blood‐CSF barrier, 
colonize the brain microenvironment and form brain- or 
leptomeningeal metastases [58].

The translational research in human cell lines and mouse 
models has identified specific molecular profiles that 
differentiate CTCs associated with brain metastasis from 
those associated with systemic metastases from the same 
primary tumor [17, 25, 26, 57, 58, 82, 98, 103, 106, 126, 
135, 139]. Building on these findings, several studies have 
investigated CTCs in blood of patients with brain metastasis. 
In a mixed cohort of brain metastatic patients with NSCLC, 
breast cancer, or melanoma, Loreth et al. found that CTCs 
in blood mostly expressed CD74 and CD44, unlike matched 
brain tumor tissue [71]. This suggests plasticity of CD44 
and CD74 expression on CTCs that survive in blood and 
penetrate the BBB. Aljohani et al. reported mutations in 
KEAP1-NRF2-ARE pathway genes in CTCs in blood of 
lung cancer patients with brain metastasis [8]. In melanoma 
patients, the RPL/RPS-gene signature in CTCs has been 
linked with the onset of brain metastasis [27]. These 
characteristics across various primary solid tumors may 
provide leads for future development of a CTC-based brain 
metastasis monitoring platform.

Several studies have investigated overall CTC counts as 
a prognostic tool for brain metastasis. In NSCLC patients 
with oligo-metastatic brain disease and patients with 
concurrent systemic metastases, Hanssen et al. found that 
presence of ≥ 2 and ≥ 5 CTCs/7.5  mL predicted poorer 
survival [45]. Naito et al. found no association between 
pre- and post-treatment CTC counts and brain metastasis 
presence in small-cell lung cancer (SCLC) patients before, 
during and after receiving chemo(radio)therapy, although 
only seven patients had brain metastasis [90]. In contrast, 
the LANDSCAPE trial showed that early CTC clearance in 
HER2-positive breast cancer patients with brain metastases 
predicted intracranial response to HER2-directed therapy 
combined with chemotherapy and overall survival [100]. 
However, both responders and non-responders showed 
a decline in CTC count after one cycle, and only 15% of 
patients had brain-only metastatic disease, suggesting that 
reduced CTC levels in blood may reflect overall disease 
control, rather than intracranial tumor control.

In conclusion, CTC-based liquid biopsies are increasingly 
implemented in various cancer types. However, the 
applicability for brain tumor monitoring is insufficiently 
studied. Important steps have been made in differentiating 
brain metastasis-associated CTCs from systemic metastasis-
associated CTCs. Despite this, further research is required to 
develop a clinically applicable brain metastasis-specific CTC 
signature. This may pave the way to CTC-based monitoring 
of brain metastases.

Role of myeloid cells/monocytes

Currently, liquid biopsies in brain metastasis patients 
primarily focus on diagnosis and prognosis. There is a 
critical need to expand their role in monitoring tumor 
progression, especially since the incidence of cerebral 
radiation necrosis is rising, which may be hard to 
distinguish from tumor progression on MR imaging. A 
recent study proposed an immunosuppressive marker as a 
surrogate for differentiation between patients with active 
and inactive brain metastases [121]. Flow cytometry was 
used to quantify monocytic myeloid-derived suppressor 
cells (Mo-MDSC) from peripheral blood in 22 patients 
with biopsy-proven active brain metastasis or radiation 
necrosis. They concluded that the HLA-Dr-Vnn2 Index 
could reliably discriminate recurrent brain metastasis 
from radiation necrosis. The patients with brain metastasis 
recurrence showed significantly increased CD14 + HLA-
DRneg/low Mo-MDSCs and reduced expression of Vnn2 
on circulating CD14 + monocytes compared to those with 
radiation necrosis. This study has set a foundation for 
further research finding biomarkers for post-treatment brain 
metastasis monitoring.
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Cerebrospinal fluid as liquid biopsy source

The BBB restricts the release of biomolecules into 
the bloodstream, making CSF a potentially superior 
compartment for studying brain-derived biomarkers. 
However, CSF collection via lumbar puncture is more 
invasive than venipuncture and not always possible due 
to the risk of cerebral herniation. While intraventricular 
devices such as an Ommaya reservoir enables easier repeat 
sampling, the surgical placement carries risks such as 
infection and hemorrhage. Despite these challenges, CSF-
derived biomarkers for brain cancer monitoring have been 
studied; we will highlight the most relevant studies.

Glioma

In glioma patients, several CSF-based biomarkers are 
being investigated. One promising candidate is D-2 
hydroxyglutarate, a metabolite of mutant IDH, whose CSF 
concentration differs between patients with IDH-mutant and 
IDH-wild-type gliomas, as well as pre- and post-resection 
of IDH-mutant tumors [39, 109]. Ongoing studies will show 
whether this relatively new CSF biomarker is suitable for 
treatment monitoring of IDH-mutant gliomas.

Furthermore, several studies have shown the potential 
of liquid biopsies using cfDNA from CSF. Iser et  al. 
demonstrated molecular-based classification of 75% 
(n = 24) of glioblastoma patients and 53% (n = 10) of 
patients with other types of glioma using targeted next-
generation sequencing of cfDNA from CSF [49]. They 
also included patients with recurrent/progressive glioma 
(n = 14). Klinsing et al. evaluated the diagnostic ability of 
somatic copy number alterations from CSF cfDNA in brain 
tumor patients, of which six (26%) glioma patients [56]. 
They were able to differentiate tumor recurrence from other 
potential causes of deterioration, e.g., postoperative infection, 
during surveillance in one patient with a previous history 
of glioma. Interestingly, a recent case-report indicated the 
value of CSF-based cfDNA methylation analysis using 
nanopore sequencing for the diagnosis of a difficult-to-
diagnose intracranial lesion [120]. Additionally, Afflerbach 
et al. demonstrated the potential of nanopore sequencing on 
cfDNA from CSF for the classification of brain tumors [1]. 
Most patients in their study were children and adolescents 
(n = 91/129) with pediatric brain tumors. Although a minority 
of included patients were adults, this study highlights the 
utility of cfDNA Nanopore sequencing for brain tumor 
monitoring. This approach shows particular promise in the 
early detection of tumor recurrence and identification of 
molecular characteristics, as evidenced by two follow-up 
patients. Several other studies report on the detection of 
glioma-derived DNA in CSF, showing that it can be used to 

track tumor evolution, which lays the foundation for CSF-
based tumor monitoring in future [56, 80, 108, 116].

Brain metastasis

In brain metastasis patients, CSF is deemed a more reliable 
source than plasma for detecting tumor-derived cfDNA [31, 
74, 136]. Wu et al. found that CSF cfDNA had significantly 
higher concordance with brain tumor tissue than plasma 
cfDNA (99% vs. 67%) in patients with single brain 
metastasis, although performance was similar in patients 
with multiple brain metastases [136]. Additionally, Li 
et al. observed that cfDNA changes in CSF correlate with 
intracranial response, while plasma cfDNA seems to reflect 
extracranial disease response [65].

In summary, CSF collection is more invasive than blood, 
making it a theoretically suboptimal compartment for 
frequent liquid biopsies. Nevertheless, CSF is anatomically 
closer to brain tumors and possibly reflects intracranial 
disease better than plasma. If CSF-based liquid biopsies, 
despite all drawbacks, reach excellent performance in 
clinical practice, the added value of CSF-derived biomarkers 
could overcome these drawbacks.

Focused ultrasound‑enhanced liquid 
biopsies

An alternative approach to enhance biomarker detection may 
be to enrich the repertoire of tumor-derived biomolecules 
in the blood, for example using focused ultrasound (FUS). 
Originally designed to temporarily open the BBB to enhance 
delivery of chemotherapeutic agents, the technique was 
found to increase the blood concentrations of cfDNA by 
up to 2.6-fold, neuron-derived EVs by 3.2-fold, and brain-
specific protein S100b by 1.4-fold [11, 79, 137]. TERT-
mutation cfDNA blood plasma levels rose up to 5.6-fold in 
a cohort of four patients, indicating that focused ultrasound 
increased tumor-derived cfDNA [137]. With this proof-of-
concept, the LIBERATE-trial, in which low-intensity FUS 
will be used for cfDNA-based liquid biopsy in glioblastoma, 
has been initiated. Further research, including this trial, 
should further elucidate the applicability and efficiency of 
FUS-enhanced liquid biopsies [2].

Conclusions and considerations for future 
research and biobanking

The ideal brain tumor biomarker is reliably detectable, 
stable after collection, and does not require complicated 
processing (Figs. 1 and 2). Currently, this best describes 
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EVs, miRNA, and platelet RNA (Table 1). Although total 
cfDNA levels may also prove informative, tumor-derived 
cfDNA is difficult to detect in blood and repeated CSF col-
lection is less desirable due to its invasive nature. Follow-
ing cfDNA collection either in blood or CSF tubes, cfDNA 
has a half-life of less than 1.5 h, making timely process-
ing a challenge. Brain tumor-associated CTC detection in 
blood is also difficult and time-intensive. In Tables 2 and 
3, we provide an overview of the most important studies.

The molecular information obtained from liquid biop-
sies could complement current clinical, histopathological, 
tissue molecular and imaging diagnostics tests. Despite 
extensive research on liquid biopsy in brain tumors over 
the past decades, no platform is ready for clinical imple-
mentation. Progression monitoring using liquid biopsy in 
neuro-oncological diseases is still in its infancy, with most 

studies pursuing diagnostic or prognostic goals only. Stud-
ies assessing diffuse gliomas show primarily potential in the 
higher-grade tumors, whereas lung and breast cancer are the 
most frequent tumor types assessed in the context of brain 
metastases. The sampling time points are often limited to 
pre- and post-resection in glioma and to the first weeks of 
systemic treatment in brain metastasis. We foresee the main 
clinical applicability of liquid biopsies in brain tumors to 
be therapy monitoring, with markers reflecting treatment 
response, especially when treatment-related effects (pseu-
doprogression/radionecrosis) are suspected. Treatment-naïve 
detection of brain tumor-associated biomarkers is a prerequi-
site for future therapy-monitoring and aligns with numerous 
studies searching for diagnostic markers. However, the next 
step—evaluating monitoring potential of liquid biopsies—is 
a significant challenge. It requires longitudinally collected 

Fig. 1  Overview of blood-based biomarkers in glioma and brain 
metastasis, including ctDNA (1), RNA (2), platelet mRNA (3), 
extracellular vesicles (4) and circulating tumor cells (5). a Primary 
tumor with cancer cells which intravasate (CTCs), cells secrete EVs, 

necrotic and apoptotic cells shed nucleic acids (ctDNA, RNA) in cir-
culation; b Brain metastasis formation by CTCs; c Brain metastasis 
derived CTCs; d Glioma derived CTCs, EVs, ctDNA, RNA
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samples, extensive patient and sample annotation, and suf-
ficient research funds. To demonstrate clinical potential, bio-
markers subsequently require validation in large, prospec-
tive, preferably multicenter cohorts. The final step towards 
clinical implementation is an interventional trial to confirm 
that the proposed biomarker informs clinical decisions 
including treatment continuation in case of pseudoprogres-
sion/radionecrosis or alternative treatment options in case of 
true tumor progression. MR imaging, with all its modalities, 
may be complemented by liquid biopsies.

A prospective biomarker validation study should be 
meticulously planned to ensure proper evaluation of 
performance in a clinical context. For a fair comparison, 
time points of the investigational test should be 
harmonized as much as possible with the gold standard 
test. For a progression versus pseudoprogression design, 
this would mean collecting blood at the moment of MR 
imaging evaluation. Moreover, a well-defined ‘gold 
standard’ outcome measure should be selected, such as 
RANO-evaluation of imaging, clinical characteristics, and/
or systematically collected tissue biopsies [69, 133]. The 
clinical feasibility of the investigational test needs to be 
considered, and its clinical relevance should be defined. 
When studying tumor molecular evolution, sample 
collection is preferred when this will have consequences 
for treatment, including potential inclusion in experimental 
studies. The results of a biomarker test should be included 
in the multidisciplinary decision about the patient’s 

treatment, jointly made by neurologists, neurosurgeons, 
medical oncologists, radiotherapists, and pathologists.

When collecting samples, the costs for patients and 
institutions need to be weighed against the potential 
benefits of isolating multiple markers at various time 
points. Incorporating a broader range of markers allows 
for multimodal platforms that combine a panel of 
biomarkers with the purpose of increasing sensitivity and 
specificity. As some analytes require rapid processing after 
collection, the choice of biomarkers should also depend 
on expected logistics. The measurement of unstable 
biomolecules can be unfeasible in multicenter research, 
especially if the samples need to be transported to a central 
processing facility. The preservatives exist for a subset of 
biomolecules but amount to an extra processing step and 
additional costs. Furthermore, following the wide adoption 
of techniques such as next-generation sequencing, 
machine learning can play a significant role in interpreting 
extensive datasets and drawing meaningful conclusions.

Finally, simple, standardized protocols should be used as 
much as possible for each analyte for the benefit of reusabil-
ity, comparability and clinical adoption. Ideally, the protocol 
can be performed in a standard diagnostic laboratory in non-
academic hospitals of a medium size. To preserve valuable 
samples, leftover material should be kept in a biobank for 
long-term storage and reuse in future studies. We encour-
age world- or nationwide initiatives in central registration 
of samples to make maximal use of collected samples and 

Fig. 2  The ideal theoretical liquid biopsy for monitoring treatment response in brain tumors as compared to MR-imaging
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avoid unnecessary spending of resources collecting new 
samples. An example of such combined efforts is the Brain-
Liquid Biopsy Consortium [16, 117].

In conclusion, liquid biopsies have the potential to 
monitor progression of brain cancer using novel molecular 
biomarkers, and to inform treatment decisions. To take full 
advantage of this potential, focus will need to shift to large-
scale prospective validation, preferably in a collaborative 
manner. Well-considered choices need to be made when 
designing these studies to ensure maximum impact.

Methods

A comprehensive PubMed search was conducted from its 
inception in 1996 through January 15, 2025. Language was 
restricted to English. Key search terms included synonyms of 
“liquid biopsy” and biomarker subtypes, such as “cfDNA”, 
extracellular vesicles”, and “circulating tumor cells”, as well 
as “pseudo-progression”, "radionecrosis", “glioma” and 
“brain metastases”. The references from identified studies 
were reviewed for any additional relevant research.
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