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Clinicians aim to provide treatments that will result in the best outcome for each patient. Ideally, treatment decisions 
are based on evidence from randomised clinical trials. Randomised trials conventionally report an aggregated 
difference in outcomes between patients in each group, known as an average treatment effect. However, the actual 
effect of treatment on outcomes (treatment response) can vary considerably between individuals, and can differ 
substantially from the average treatment effect. This variation in response to treatment between patients—heterogeneity 
of treatment effect—is particularly important in critical care because common critical care syndromes (eg, sepsis and 
acute respiratory distress syndrome) are clinically and biologically heterogeneous. Statistical approaches have been 
developed to analyse heterogeneity of treatment effect and predict individualised treatment effects for each patient. In 
this Review, we outline a framework for deriving and validating individualised treatment effects and identify challenges 
to applying individualised treatment effect estimates to inform treatment decisions in clinical care.

Introduction
Fundamentally, medicine aims to provide treatments that 
will result in the best outcome for each patient. This core 
concept motivates personalised medicine. Personalisation 
requires an understanding of how treatments affect 
outcomes for individual patients. This requirement raises 
an epistemological problem: the true effect of treatment 

on outcomes for individual patients is unmeasurable 
because an individual cannot be observed under both 
scenarios of treatment received and treatment not received 
(counterfactual conditions).1 Instead, randomised 
controlled trials (RCTs) typically combine the treatment 
effects for all patients into an average treatment 
effect (ATE), which represents the aggregated 

Key messages

• The average treatment effect reported in a clinical trial does 
not necessarily represent the treatment effect for individual 
patients in the trial. Treatment effects in individual patients 
can be larger, smaller, or in the opposite direction of the 
average treatment effect. This variation in response to 
treatment between patients is called heterogeneity of 
treatment effect (HTE).

• Several approaches exist for analysing HTE in randomised 
trials. The most basic approach, conventional subgroup 
analysis, assesses whether a single patient characteristic 
alters the effect of treatment on an outcome; this approach 
has important limitations. Data-derived subgroups 
(eg, subphenotypes) can incorporate multiple patient 
characteristics to assess treatment effect, although clinically 
important HTE could still exist within each group. 
Risk-based and effect-based models can incorporate 
multiple patient characteristics and examine HTE across a 
spectrum of predicted risk or predicted treatment effect.

• By accounting for complex interactions between multiple 
variables that might modify treatment effect, effect-based 

models can provide predictions of the individualised 
treatment effect (ITE) for each patient. Such models are at 
risk of statistical overfitting and spurious detection of HTE. 
These risks can be mitigated by robust model derivation and 
validation, as outlined in this Review.

• Clinical trials can use different approaches to prospectively 
address potential HTE. Novel trial designs might establish 
eligibility or stratify randomisation and analysis on the basis 
of prespecified hypothesised determinants of HTE, use 
information accrued about HTE during a trial to adapt 
eligibility criteria and randomisation in real-time, or 
prespecify plans to estimate ITEs after trial completion if 
substantial HTE is anticipated.

• There are several challenges in applying predicted ITEs to 
inform treatment decisions in clinical care, including the lack 
of a consensus framework for prospectively validating 
predicted ITE, barriers to data availability and timing, and 
challenges with regulation and implementation of ITE 
models in clinical care.
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between-group difference in an outcome (table 1).1–6 These 
ATEs can differ from treatment effects in individual 
patients, which can be larger, smaller, or opposite in 
direction to the ATE.7–9 This variability in response to 
treatment is referred to as heterogeneity of treatment 
effect (HTE).2

HTE is a particularly important consideration in critical 
care, a field in which treatments are often targeted on the 
basis of broadly defined clinical syndromes, such 
as sepsis and acute respiratory distress syndrome 
(ARDS), which encompass clinically and biologically 
heterogeneous populations.10 This heterogeneity might 
partly explain the limited success in identifying effective 
treatments in critical care trials.11 For example, two recent 
RCTs comparing fluid-liberal and fluid-restrictive 
resuscitation strategies in patients with sepsis found no 
difference in outcomes on average.3,4 Similarly, multiple 
trials have reported no significant difference in mortality 
between lower versus higher positive end-expiratory 
pressure (PEEP) strategies in patients with ARDS.12 
However, the absence of a significant ATE for a trial 
population does not necessarily mean that choices about 
fluid resuscitation or ventilator settings do not matter for 

individual patients; it is possible that some patients 
might have benefited from the tested treatment strategies 
while others were harmed by them, creating an overall 
null effect. For example, clinical intuition suggests that 
an older patient with chronic heart failure who develops 
sepsis and respiratory failure from pneumonia could 
have more benefit from a restrictive fluid strategy than a 
young patient with sepsis due to diarrhoeal illness. 
A recent study found that response to protocolised 
resuscitation varied among patients, with patient char-
acteristics such as albumin contributing to HTE.13 
Similarly, in ARDS, the benefit of a higher PEEP strategy 
can vary substantially according to a patient’s potential 
for lung recruitment (the capacity to open atelectatic 
portions of the lung).14

If meaningful HTE is present, relying on ATE to make 
clinical decisions could lead to suboptimal treatment, 
depriving some patients of potentially beneficial treatments 
and exposing others to unnecessary harm. Due to this 
limitation, HTE has often been framed as a problem that 
restricts the interpretability of RCTs. Alternatively, HTE 
can be viewed as an opportunity to personalise treatment 
(figure 1); information about HTE could guide clinical 

Abbreviation Definition Clinical example

Average treatment effect ATE In a clinical trial, the aggregated between-group 
difference in outcomes2

In an RCT evaluating fluid-liberal vs fluid-restrictive 
resuscitation strategies in sepsis, the ATE would 
represent the average difference in outcomes 
(eg, mortality) between patients randomised to 
each strategy 2

Heterogeneity of treatment 
effect

HTE The magnitude of variation of treatment effects 
across a population;2 HTE is present when patients 
respond differently to treatment based on their 
individual characteristics

In two recent RCTs comparing fluid-liberal vs 
fluid-restrictive strategies in sepsis, the ATE 
showed no difference in mortality between thr two 
strategies;3,4 however, if there is HTE, 
a fluid-restrictive strategy could benefit some 
patients while potentially harming others

True individual treatment 
effect

·· The unobservable difference in potential outcomes 
with or without treatment for an individual 
patient;2 true individual treatment effect is 
unmeasurable because we cannot observe the 
outcome for the patient under both counterfactual 
conditions (ie, treated and untreated)

The true individual treatment effect would 
represent the difference in outcome (eg, mortality) 
that a specific patient with sepsis would have if 
they received a fluid-liberal vs fluid-restrictive 
resuscitation strategy

Conditional average treatment 
effect

CATE Treatment effect for a patient or groups of patients 
conditional on their pre-treatment characteristics;5,6 
CATEs can include treatment effects conditioned on 
a single characteristic (ie, conventional subgroup 
analysis) or they can refer to treatment effects 
conditioned on multiple characteristics

In trials of fluid-liberal vs fluid-restrictive 
resuscitation strategies, the CATE would be the 
average treatment effect of a fluid strategy (liberal 
vs restrictive) for a subpopulation of patients with 
a particular set of baseline characteristics

Subgroup average treatment 
effect

·· The average between-group difference in an 
outcome within a given subgroup;1 this is a type of 
CATE conditioned on a single baseline characteristic

In a subgroup analysis of a recent RCT comparing 
fluid-liberal and fluid-restrictive strategies,4 
patients requiring respiratory support had a larger 
subgroup average treatment effect with fluid-
restriction (eg, larger benefit) than patients not on 
respiratory support

Individualised treatment effect ITE The CATE meant to represent—as closely as 
possible—the treatment effect for an individual 
patient conditioned on multiple baseline 
characteristics;6 it is often estimated using 
multivariable models

In trials of fluid-liberal vs fluid-restrictive 
resuscitation strategies, the ITE is the expected 
treatment effect of a fluid strategy (liberal vs 
restrictive) for a given patient conditioned on their 
baseline characteristics

RCT=randomised controlled trial.

Table 1: Definitions of terms
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decisions about fluid management, ventilator settings, and 
other therapeutics in individual patients.

Statistical approaches for analysing HTE in RCTs involve 
estimation of the effect of treatment on outcomes for 
patients conditioned on one or more of their baseline 
characteristics, referred to as the conditional average 
treatment effect (CATE).5 When the CATE is meant to 
represent—as closely as possible—the expected effect on 
individuals, it is called the individualised treatment 
effect (ITE). Multivariable models or machine learning 
methods can be used to predict ITEs on the basis of 
baseline characteristics.6,15 For example, the ITE of a 
particular fluid resuscitation or PEEP strategy could be 
estimated for an individual patient on the basis of their 
demographics, comorbidities, illness severity, lung 
compliance, etc. In this Review, we use the term ITE to 
refer to an approximation of an individual effect; this ITE 
is distinct from a true individual treatment effect, which 
cannot be measured (table 1).15 Illustrative examples of ITE 
in critical care trials are summarised in figure 2.16–20

In this Review, we describe emerging methods for the 
identification of HTE and prediction of ITE, review novel 
clinical trial designs that aim to address known or 
unknown sources of HTE to obtain more individualised 
estimates of treatment effects, discuss the challenges of 
applying ITE predictions to inform clinical care, and 
outline future directions to fully leverage the reality of 
HTE to advance towards care that is both evidence-based 
and personalised.

When does HTE matter?
Experts disagree as to when HTE matters. Some argue 
that estimating treatment effects for individuals is useful 
only when there is substantial HTE and meaningful 
potential downsides to treatment in terms of harm or 

cost.15 For example, when an inexpensive treatment 
(eg, paracetamol for a headache) benefits some patients 
without causing relevant harm in others, the ATE could be 
sufficient to guide clinical decision making. Estimating 
ITEs could require substantial information, and the high 
costs of conducting a large trial to estimate ITEs might not 
be worthwhile if a treatment has no real downside of 
expense or risk. Those who approach health care at the 
system or population level—such as policy makers and 
regulators—might be more likely to adopt this perspective.

An alternative view contends that estimation of ITEs 
is always preferable to ATEs. In trials without a 
significant ATE, some patients could still derive benefit 
from treatment.21 Moreover, the definitions of 
meaningful benefit, tolerable risk, and acceptable cost 
are contingent on patient values, clinical context, and 
system resources. Therefore, some experts argue that 
truly personalised decision making requires knowledge 
of the treatment effect for individuals. From this 
standpoint, clinical trials should always include HTE 
analyses designed to generate sufficiently precise 
estimates of ITEs to inform clinical decision making. 
This perspective might be shared by those involved in 
clinical decisions at the bedside, including patients, 
caregivers, and clinicians.

Analysing HTE in trials with a null ATE
The Predictive Approaches to Treatment Effect 
Heterogeneity (PATH) statement was developed by an 
expert panel to provide general guidance for analysing 
HTE in clinical trials.15 As outlined in this statement, 
assessment of HTE in trials with positive results is 
important for understanding the distribution of effects 
and to identify patients most likely to benefit from 
treatment. The PATH statement advises against 

Figure 1: Potential clinical analysis design for enhanced decision making in critical care
This figure illustrates how understanding HTE could help to inform clinical decision making at the bedside. Panel 1 shows the ATE from an RCT comparing treatment A versus option B; this panel 
represents scenarios where two treatments (A and B) are compared or where a new treatment (treatment A) is compared with standard care or placebo (option B), with A and B resulting in the same 
outcome on average. Panel 2 outlines steps for modelling ITE from a clinical trial. In this step, which is the focus of this Review, model derivation and validation are used to identify differential effects of 
treatment in patients with different sets of characteristics. In this panel, treatment A works better (shown by > in the figure) than treatment B in patients with one set of characteristics (purple 
individuals) and vice versa for patients with a different set of characteristics (green individuals), and the treatments work similarly for patients with other characteristics (yellow individuals). A goal 
might be for HTE analyses to culminate in panel 3, the development of CDS tools that can be applied to enhance decision making at the bedside. However, how to go from panel 2 to panel 3 (ie, how to 
clinically confirm ITE-based decision tools and apply them in practice) remains a challenge in critical care. ATE=average treatment effect. HTE=heterogeneity of treatment effect. ITE=individualised 
treatment effect. CDS=clinical decision support. RCT=randomised controlled trial.
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performing HTE analyses in trials with null ATEs, given 
the risk of identifying spurious, clinically insignificant 
HTE.15 However, the statement recognises a key exception 
to this rule that is commonly present in critical care 
trials: situations in which treatment-related harm affects 
the primary outcome (eg, mortality). In such cases, 
treatment-related mortality in some patients could offset 
a potential mortality benefit in others, resulting in a null 
ATE.15 Many HTE analyses of critical care trials with null 
ATEs have found evidence of this scenario (figure 2).21–24 
Therefore, HTE analysis is probably warranted in many 
critical care trials, even if the ATE is null. Importantly, to 
maximise interpretability, HTE analyses should be 
prespecified at the outset of a clinical trial on the basis of 
a priori suspicion for HTE, and not performed selectively 
in trials finding no significant ATE.

Conceptual approaches to analysis of HTE
HTE analyses can have many goals, depending on the 
clinical or research question. Three primary goals are: 
to establish whether HTE exists in a population for 
a given treatment (ie, do different patients respond 
differently to this treatment?); to predict the direction 
and magnitude of treatment effect for individual 
patients (ie, given this patient’s characteristics, how will 
they respond to this treatment?); and to generate 
mechanistic hypotheses based on observed HTE 
(ie, which patient character istics are associated with 
a differential response to treatment?).

Several different methods can be used to analyse HTE, 
with varying ability to achieve these core goals (figure 3, 
table 2).16,18,20,21,23–31 Each method uses a different solution to 
the challenge of grouping patients based on multiple 
char acteristics. Importantly, these methods measure asso-
ciation, not causation—they do not show that observed 
effect modifiers (eg, age) are causally respon sible for 
differential treatment effects. Prespecification of the 
approach, included variables, and rationale for expected 
differences in treatment effect is recommended to ensure 
reproducible results.25,32

Conventional subgroup analysis
Conventional one-variable-at-a-time subgroup analyses 
compare treatment effects between subgroups of 
patients defined by a single baseline characteristic 
that is hypothesised to modify treatment response 
(eg, age >65 years).25 This approach is inefficient and 
could substantially underestimate HTE (table 2).32,33 
Additionally, patients often fit into multiple subgroups 
simultaneously, which makes it challenging to apply the 
results. For example, if harm is observed in older 
patients and benefit is observed in female patients, how 
should an older female patient be treated? When 
reported, conventional subgroup analyses should be 
appraised for rigour and quality using validated tools 
such as the Instrument to assess the Credibility of Effect 
Modification Analyses (ICEMAN).25

Figure 2: Examples of individualised treatment effects in critical care trials
This figure summarises findings from recent HTE analyses of critical care trials, 
and was created by compiling published results from the referenced manuscripts 
and presenting them in a standardised format to allow comparison (appendix 
p 16). The ATE from the original trial and results from the post-hoc HTE analyses 
are presented as absolute risk differences, for which 0 (dashed line) means there 
was no difference in outcomes between interventions. The arrows explain the 
clinical implication of absolute differences above and below 0 (eg, in panel 1, 
absolute differences above 0 favour higher targets and those below 0 favour 
lower targets). The black square represents the ATE and 95% confidence interval 
from the original trial. The black circles represent observed absolute difference in 
outcomes by quantile of predicted ITE in the HTE analyses, with 95% confidence 
interval in A and B and 95% credible interval in C, which was a Bayesian analysis. 
(A) Results from the ICU-ROX trial16 comparing lower versus higher oxygen 
targets in mechanically ventilated critically ill patients and a post-hoc HTE 
analysis. Primary outcome: mortality. (B) Results from the BOUGIE trial17 
comparing use of a bougie versus stylet among patients who are critically ill 
undergoing endotracheal intubation and a post-hoc HTE analysis.18 Primary 
outcome: successful intubation on first attempt. (C) Results from the REST trial19 
of protective ventilation with extracorporeal CO₂ removal in patients who are 
critically ill with respiratory failure and a post-hoc HTE analysis.20 Primary 
outcome: mortality. ATE=average treatment effect. HTE=heterogeneity of 
treatment effect. ITE=individualised treatment effect.
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Data-derived subgroup analysis
Data-derived subgroups overcome key limitations of the 
conventional approach to subgroup analyses by 
grouping patients using multiple, rather than single, 
baseline characteristics. Statistical techniques—such as 
unsupervised clustering—are used to partition patients 
into groups that appear distinct on the basis of 
combinations of baseline characteristics, including 
research biomarkers.34 Such groupings are hypothesis-
generating and require replication. Once groupings are 
confirmed, these groups—or clusters—can be treated as 
prespecified subgroups in HTE analyses or used for 
stratification during enrolment in clinical trials.35,36 In 
critical care, this approach has been used to identify 
subphenotypes of ARDS and sepsis that have been 
associated with HTE in post-hoc subgroup analyses of 
multiple critical care trials.26–38

Although promising, this approach has several 
limitations. First, this data-derived subgroups method 
estimates treatment effects for groups of patients rather 

than individuals, limiting the degree of personalisation. 
Clinically significant HTE might still exist within each 
subgroup. Additionally, the unsupervised clustering 
algorithms used to define patient clusters are derived 
without consideration of treatment assignment or 
outcome, so there is no inherent reason to anticipate that 
subgroups derived in this manner would show differential 
treatment effects. Although this reality might limit the 
ability to detect HTE, it might also be an advantage: 
identifying clusters of patients who are biologically 
similar, independent of treatment response, could offer 
insight into novel shared pathways for future research.

Risk-based analysis
Risk-based HTE analyses use prognostic models to 
predict a patient’s baseline risk of an outcome and 
then estimate treatment effects for patients 
condi tioned on baseline risk. Predicted risk can be 
established using either previously validated off-the-shelf 
models, such as Acute Physiology and Chronic Health 

Figure 3: Overview of approaches for analysing heterogeneity of treatment effect
This figure presents a simplified example trial where substantial HTE is present. In this example, N=16 patients were assigned to treatment A (solid individuals; n=8) 
versus standard care (outlined individuals; n=8). The solid lines lines represent outcomes for those receiving treatment, and dashed lines represent outcomes for 
those receiving usual care. (A) ATE. This panel displays sample results for the overall trial. The ATE suggests small possible benefit. (B) Subgroup analysis. This panel 
represents a traditional subgroup analysis ,generating CATE on the basis of a single characteristic. (C) Risk-based models of HTE. This panel displays a risk-based 
model, in which patients in the trial are grouped by quartiles of baseline risk of the outcome (eg, using the Acute Physiology and Chronic Health Evaluation IV score 
for mortality), and the effect of treatment A is compared within each quartile, generating CATE by level of risk. (D) Effect-based models of HTE. Effect-based models 
use machine learning methods that use a patient’s baseline characteristics, treatment group assignment, and interactions between these variables to predict the 
CATE for each patient on the basis of multiple characteristics, which is also known as the individualised treatment effect. This approach allows us to predict how 
individual patients might respond to treatment A based on multiple baseline variables. ATE=average treatment effect. CATE=conditional average treatment effect. 
HTE=heterogeneity of treatment effect. ITE=individualised treatment effect.
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Evaluation (APACHE) scores,39 or models developed de 
novo within data from an RCT. The latter approach is 
susceptible to model overfitting on risk, particularly in 
RCTs with small sample sizes, and should be designed 
following existing guidance for prediction models.40,41

Potential advantages of risk-based analyses are that the 
prognostic models incorporate multiple characteristics to 
generate a single putative effect modifier (predicted risk) 
and allow treatment effects to be compared across the 
continuum of baseline risk, rather than a small number 
of discrete categories (eg, subgroups by low vs high 
APACHE score).42 Risk-based analyses can be useful 
because the distribution of risk in clinical trials is 
generally skewed toward patients at lower risk of poor 
outcomes, who often have less potential to benefit from 
treatment than patients at higher risk.42 Therefore, risk-
based analysis can identify subpopulations at higher risk 
of poor outcomes who could derive more benefit from 
treatment.8,43

However, there might be no inherent relationship 
between a patient’s baseline risk of an outcome and how 
beneficial a given treatment will be for that patient. 
Two patients with different characteristics (eg, age 
or severity of illness) and a different probability of 
responding to therapy could share the same baseline risk. 
For example, a previously healthy patient with refractory 
septic shock could have similarly high predicted risk of 
mortality as an elderly patient with less severe sepsis, but 
be more likely to respond to a sepsis-specific therapy, 
such as an immune modulator. The relationship between 
risk and treatment effect is complex and can vary 
depending on the clinical scenario. Indeed, previous risk-
based HTE analyses in critical care have identified larger 
treatment effects in patients at higher risk of poor 
outcomes,31,44 larger treatment effects in patients at lower 
risk of poor outcomes,21 and no difference in treatment 
effects across baseline risk.45 Detailed discussion of risk-
based HTE analysis is outside the scope of this Review 

Description Limitations* Putative effect 
modifier

Model building step Model testing step Salient examples in 
the literature

Subgroup 
analysis: single 
variable

Compares subgroup average 
treatment effects between 
subgroups of patients defined by 
a single baseline clinical or 
physiological characteristic

Captures a limited range of 
treatment effects; carries risk of 
false negative results (due to low 
power within smaller subgroups) 
and false positive results (due to 
multiple testing); patients could 
fit into multiple subgroups

Single baseline 
characteristic

None Subgroup analysis Most trials include 
subgroup analyses; the 
ICEMAN criteria25 are 
helpful to guide 
interpretation of results

Subgroup 
analysis: data- 
derived

Uses unsupervised clustering 
techniques (eg, latent class 
analysis) to partition patients into 
groups (ie, clusters) that are 
maximally distinct based on 
baseline characteristics, 
biomarkers, or both; subgroup 
average treatment effects are 
then compared across these 
clusters of patients

Unsupervised clustering 
techniques are blinded to 
treatment and outcome and do 
not directly measure HTE—
therefore, this approach does not 
necessarily capture the full range 
of variation in treatment effect; 
clustering methods could identify 
groupings based on noise rather 
than true signal, so results should 
ideally be replicated to confirm 
findings; clusters are often 
categorical

Subgrouping variable 
defined on the basis of 
multiple baseline 
characteristics 
(including both clinical 
and biomarkers)

Cluster identification, 
which is often 
performed in separate 
study populations or 
using previously 
identified clusters 
(eg, inflammatory 
subphenotypes)

Subgroup analysis by 
cluster

Calfee et al, 26 Sinha 
et al,27 Famous et al,28 
Calfee et al,29 Sinha 
et al30

Risk-based 
modelling

Compares treatment effect across 
patients conditional on predicted 
baseline risk of an outcome

Does not necessarily capture the 
full range of variation in 
treatment effect, as factors could 
modify treatment effect without 
modifying baseline risk of the 
outcome; more difficult to 
implement with a continuous 
outcome

Risk variable computed 
from multiple baseline 
characteristics

Development of a new 
risk model; this step is 
skipped if using an off-
the-shelf risk model 
(eg, APACHE)

Compare treatment 
effect by stratifying 
patients by baseline 
risk of an outcome

Goligher et al,21

Ely et al31

Effect-based 
modelling

Uses statistical and machine 
learning approaches to predict 
each patient’s ITE using baseline 
characteristics, treatment 
assignment, and interaction 
terms between patient 
characteristics and treatment

Extensive validation required to 
avoid overfitting and spurious 
detection of HTE; data hungry 
(requires large sample size for 
adequate power); relies on 
patterns within the dataset to 
predict ITE, with minimal input 
based on existing literature or 
clinical insight

Predicted ITE computed 
on the basis of multiple 
baseline characteristics

Model derivation; this 
step can have high 
data cost because 
treatment and 
outcome data are 
needed to build the 
model

Model validation: 
compare ITEs 
predicted by the 
model to patient 
outcomes in the trial

Buell et al,16 Seitz et al,18 
Goligher et al,20 Blette 
et al,23 Zampieri et al,24

APACHE=Acute Physiology and Chronic Health Evaluation. HTE=heterogeneity of treatment effect. ICEMAN=Instrument to assess the Credibility of Effect Modification Analyses. ITE=individualised treatment 
effect. *All analyses of HTE are limited by sample size and cannot address HTE driven by variables not measured in the study; all approaches identify associations between patient characteristics and treatment 
effect but do not establish causation.

Table 2: Overview of statistical approaches for analysing heterogeneity of treatment effect
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and is thoroughly covered in previous reviews and the 
PATH statement.8,15

Effect-based analysis
Effect-based analyses model treatment effect for 
individual patients using statistical approaches, such as 
machine learning methods (appendix pp 10–11).46,47 Effect-
based analyses model the association between multiple 
baseline characteristics and the difference in outcomes 
between treatment groups to generate ITE predictions 
(table 2).48 Because some effect-based modelling strategies 
can account for interactions between multiple variables 
that influence treatment effect (eg, the influence of age 
on treatment effect could depend on frailty, and vice 
versa), these models can theoretically provide more 
accurate estimates of individual treatment effects than 
subgroup or risk-based analyses. However, this strength 
also puts effect-based models at risk of statistical 
overfitting and identification of spurious HTE. Thus, 
rigorous statistical validation is required. Due to their 
complexity, effect-based models require large sample 
sizes to achieve adequate statistical power. As effect-based 
modelling is comparatively novel and might be unfamiliar 
to many clinicians, we provide a brief overview of this 
approach, in the context of a recently published example 
from the literature,16 in the Quantifying ITE using effect-
based models section. Relevant methods are surveyed in 
more detail in the appendix (pp 8–9, 14–15).

Quantifying ITE using effect-based models
To understand how effect-based models are used to 
quantify ITE, we consider the example of oxygen targets 
in mechanically ventilated patients. Two large trials 
comparing liberal versus conservative oxygen targets 
found no significant difference in mortality—the 
Pragmatic Investigation of Optimal Oxygen Targets 
(PILOT) trial and the Intensive Care Unit Randomised 
Trial Comparing Two Approaches to Oxygen Therapy 
(ICU-ROX).22,49 A recent post-hoc analysis of these trials 
used effect-based modelling to quantify HTE and predict 
ITEs in the trial populations (figure 2A).16 An overview of 
this approach is outlined in the appendix (pp 14–15).

The effect-based model was derived by fitting multiple 
types of effect model to the baseline characteristics of 
patients in the derivation cohort (the PILOT trial 
population). These effect models were compared using 
specific performance metrics (appendix p 12). The model 
that best predicted (on the basis of model performance 
metrics) ITE in the derivation cohort was then used to 
generate a predicted ITE for each patient in the validation 
cohort (ICU-ROX trial population). The validity of the 
model was assessed by comparing observed treatment 
effects between subgroups defined by predicted ITE. This 
study found that the subgroup of patients with a predicted 
ITE consistent with benefit from a lower oxygen target 
had a significant mortality benefit when receiving lower 
targets, whereas the subgroup of patients with a predicted 

ITE consistent with harm from lower oxygen targets had a 
significant increase in mortality when receiving lower 
targets, confirming the validity of the ITE estimates.

Once validated, effect-based models can be interrogated 
to understand which baseline characteristics had the 
greatest influence on ITE estimates (appendix p 13). 
For example, we might want to understand which 
characteristics are associated with a favourable response 
to a low oxygen target strategy. Although not showing 
causality, such information from effect-based models can 
help to identify factors associated with differential 
treatment responses, which in turn can be used to design 
experimental models to explore mechanisms of disease 
and treatment effect.

Designing clinical trials in the context of HTE
HTE has historically been viewed as a problem for clinical 
trial design, in which HTE is the noise that attenuates the 
signal of ATE. However, when the goal is to personalise 
evidence-based medicine, HTE provides valuable signal 
about treatment effect for individuals—necessary 
information that is neglected by a narrow focus on ATE. 
Conceptually, clinical trials can be designed to leverage 
HTE via at least two broad approaches: prospective 
detection of, and adaptation to, HTE during the trial or 
analyses of HTE at the conclusion of the trial.

Predictive biomarkers: addressing HTE in trial design
A predictive biomarker is any clinical, physiological, or 
biological characteristic that is hypothesised to predict 
differential treatment effect. For example, in addition to 
traditional biomarkers (eg, IL-6 concentration), a 
patient’s baseline risk of an outcome or predicted ITE 
can be a predictive biomarker. Predictive biomarkers can 
have varying credentials—that is, there can be varying 
degrees of evidence that treatment effect will vary across 
the range of values for that predictive biomarker.50 The 
appropriate trial design for addressing HTE will depend 
on the credentials of the proposed predictive biomarker.

Predictive enrichment
Designing trials to incorporate HTE is often discussed in 
relation to predictive enrichment. Predictive enrichment 
is the strategy of targeting enrolment towards patients 
expected to have a more favourable response to an 
intervention.51 When predictive biomarker credentials 
are deemed to be very strong on the basis of pre-existing 
mechanistic or clinical trial data, trials could be designed 
to simply exclude patients who do not have the predictive 
biomarker.50 This situation, however, is probably rare and 
this approach should be adopted with caution.

When predictive biomarker credentials are weaker (ie, it 
is less clear that the biomarker will predict differential 
treatment response), trials should enrol patients from the 
entire population. However, randomisation and analysis 
can be stratified based on the predictive biomarker, which 
enables efficient prospective estimates of ATE for 
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subpopulations defined by the predictive biomarker. To 
enhance trial efficiency, adaptive designs can discontinue 
enrolment separately in each biomarker-defined stratum 
when benefit or futility are confirmed.52–54

Several ongoing trials in critical care provide instructive 
examples of this adaptive approach. The Precision 
Medicine Adaptive Network Platform Trial in Hypoxemic 
Acute Respiratory Failure (known as PANTHER) is using 
biological phenotypes in ARDS as predictive biomarkers 
for novel therapeutics.36 The Driving Pressure Limited 
Ventilation in Hypoxaemic Respiratory Failure (DRIVE) 
RCT on the Platform of Randomized Adaptive Clinical 
Trials in Critical Illness (PRACTICAL) platform is using 
respiratory system elastance as a predictive biomarker 
for ventilator management (NCT05440851).36 The 
TRAITS trial is using a combination of biological and 
physiological abnormalities (termed treatable traits) to 
establish eligibility of patients who are critically ill for 
randomisation to therapeutics that are thought to be 
mechanistically linked to those traits.55

Identification of relevant predictive biomarkers during 
trials
Often, relevant predictive biomarkers are not known at 
the outset of a clinical trial. When there is a range of 
plausible potential predictive biomarkers, adaptive 
designs can be used to adapt enrolment or randomisation 
using information about relevant predictive biomarkers 
accumulated during the trial.52–54 A seminal example of 
this approach comes from the Investigation of Serial 
studies to Predict Your Therapeutic Response with 
Imaging and Molecular Analyses 2 (I-SPY 2) trial, an 
ongoing adaptive platform phase 2 clinical trial of 
breast cancer therapies.56 Patients with breast cancer 
are grouped into ten molecular subtypes based on 
hormone receptor status and gene score and randomly 
assigned to up to five different experimental therapies. 
As information about treatment response to each therapy 
in each subtype accumulates during the trial, response-
adaptive randomisation is used to increasingly allocate 
patients to beneficial therapies within each subtype, 
maximising the probability of reaching a conclusion of 
benefit for a given therapy. If powered appropriately, this 
approach can also identify relevant predictive biomarkers 
during a trial. It is important to note that response-
adaptive randomisation is only one approach to adaptive 
trial design and is subject to potential limitations. Other 
trial features can be adapted, including sample size, 
available interventions, eligibility criteria, or outcomes.53 
As with all clinical trials, the optimal adaptive design 
depends on the research question.

In critical care, the ongoing Anti-Thrombotic Therapy 
to Ameliorate Clinical Complications in Community-
Acquired Pneumonia (or ATTACC-CAP; NCT05848713) 
trial uses a two-stage design to accommodate possible 
HTE. In the initial stage, treatment effects are estimated 
on the basis of combinations of several candidate effect 

modifiers. In the second stage, enrolment is restricted 
to patients with clinical characteristics predicting a 
higher probability of clinically meaningful treatment 
benefit from the initial analysis, thereby enriching the 
overall trial population for potential responders.

In theory, when predictive biomarkers are entirely 
unknown, one could design a trial using interim risk-
based or effect-based models to identify relevant 
subpopulations who have differential treatment effects, 
and this information could be used to adapt the trial 
design in real-time. Given the large information 
requirements and analytical complexity of these analyses, 
such a trial would be challenging to execute. Nevertheless, 
this approach represents a compelling goal for future 
trial innovation.

Large-scale trials to predict ITEs
All of the aforementioned approaches to trial design 
involve designing trials to estimate ATEs within 
subgroups or subpopulations. An alternative approach 
could be to reorient the goal of clinical trials away from 
measuring ATEs altogether and instead aim to use the 
information accrued in RCTs to generate valid models 
for predicting ITE. Using simple designs, broad inclusion 
criteria, and electronic health record-based or registry-
based data collection, pragmatic trials can enrol large, 
representative populations and obtain granular data on 
baseline characteristics and outcomes—all of which can 
facilitate effect-based modelling to predict ITEs.57 
However, the derivation of such effect-based models, 
even when prespecified, requires rigorous validation. 
Furthermore, such large-scale trials are typically 
restricted to comparing treatments that patients are 
already receiving in clinical care (eg, intravenous fluids 
or intubation strategies17), rather than evaluating new 
drugs or devices. Initiatives focused on lowering trial 
costs, enrolling larger sample sizes, and streamlining the 
collection and harmonisation of comprehensive datasets 
between trials will help to facilitate HTE evaluations.

Challenges in applying HTE in practice
The ability to predict ITEs offers new and compelling 
means to implement evidence-based personalised 
medicine. Nevertheless, there are many challenges to 
applying HTE analyses at the bedside.

The evidentiary threshold required to justify the use of 
predicted ITE to guide treatment in clinical practice is 
controversial. One of the most well known examples of 
applying ITE to inform clinical decision making is the 
Atherosclerotic Cardiovascular Disease (ASCVD) Risk 
Assessment Tool, which is now widely disseminated 
despite no prospective randomised assessment of its 
benefit.58 This approach was feasible because the 
ASCVD tool was built on well validated cardiovascular 
risk factors. In critical care, where factors associated 
with treatment benefit are less clearly established, ITE 
models are only hypothesis-generating and need to be 
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prospectively validated before adoption into practice. 
This process of prospective validation, or clinical 
confirmation, is distinct from the statistical model 
validation discussed above. Clinical confirmation 
should aim to verify that the predicted ITE accurately 
identifies who benefits from treatment and to evaluate 
whether personalising care on the basis of predicted 
ITE improves outcomes compared with standard 
approaches. There is no consensus framework for 
prospectively establishing when ITE prediction models 
are adequately validated and confirmed ready for use in 
clinical practice.

As critical care has so far had little experience with 
ITE models, rigorous clinical confirmation with 
prospective trials is probably needed. However, 
traditional RCTs could face challenges in evaluating 
such ITE-based decision tools given the large sample 
sizes needed to detect the expected benefits and the 
inability to assess the acceptability of the decision tool 
in routine clinical care. Achieving requisite sample 
sizes for confirmation trials might be feasible for 
common interventions, such as oxygen targets, but is 
more challenging for trials of novel therapeutics. As 
we gain more experience with methods for analys-
ing HTE, we can improve our understanding of 
required sample sizes for ITE models and use HTE 
to improve the precision of our trials, even within 
sample size limitations. In the meantime, in addition 
to addressing sample size limitations by advocating for 
improved trial infrastructure and harmonisation of data 
between trials, incorporation of additional data 
could help to overcome these barriers. For example, 
prospective target trial emulation using observational 
data could be a useful tool for HTE analyses, providing 
an opportunity to benchmark findings from RCTs and 
allowing generalisation of findings to populations not 
investigated in the original trial.59 Similarly, for novel 
therapeutics, phase 4 and post-marketing surveillance 
studies could represent potential opportunities to both 
discover HTE and validate HTE found in earlier-phase 
trials, as long as granular patient-level data are available.

Implementation of predicted ITE also presents an 
important challenge. To be translated to the bedside, 
predicted ITE must be presented in such a manner that 
clinicians can act on the information to improve 
management, which will likely require real-time clinical 
decision support tools (figure 1). The success of such 
decision tools hinges on the validity of the ITE-based 
model, real-time availability of information required for 
the model, and clinician willingness to use the tool. The 
latter consideration is important, as clinicians have 
historically had reservations about using complex 
black-box models to make treatment decisions.60

There could also be regulatory considerations for 
prospective validation trials, as clinical decision support 
tools based on complex ITE models might be viewed as 
medical devices in some jurisdictions.61

There are additional practical considerations for 
applying ITE-based decision tools in clinical care. 
Importantly, the quality and timing of real-time data 
might differ from data used to develop ITE models. 
Complex models often require multiple data inputs that 
might or might not be routinely available in clinical 
practice (eg, real-time research biomarkers), which could 
restrict their application. Conversely, clinicians might 
use factors in clinical decision making that are not 
included in ITE models. For example, current methods 
for predicting ITE consider only baseline, single time-
point variables, yet critical illness is dynamic and these 
variables often rapidly evolve during a patient’s illness. 
Considering the planned application of ITE models from 
the outset could help to build models that translate well 
to clinical practice.

Limitations of ITE
The treatment effects estimated in risk-based and effect-
based analyses are not always clinically meaningful. The 
appropriateness of ITE-guided treatment depends on 
multiple factors, including the direction and magnitude 
of treatment effect, availability of treatment, associated 
harms and costs, and the patient’s goals and values. For 
high-risk or high-cost treatments (eg, extracorporeal CO₂ 
removal), HTE could have an important influence on 
practice. For example, in fields other than critical care, 
findings from HTE analyses have helped to target 
surgical interventions to appropriate candidates.62 In 
contrast, for inexpensive, low-risk treatments 
(eg, paracetamol for a headache), detailed investigation 
of HTE is unlikely to change practice and pursuing the 
large-scale trials required to predict and validate ITE 
could waste valuable resources. As such, performing 
HTE analyses might not always be appropriate, especially 
in small trials or when evidence for HTE from clinical or 
translational studies is scarce.

Furthermore, even when HTE is suspected, the 
optimal approach to analysing HTE has not been 
established. In general, we challenge the convention 
that subgroup analyses should be held as the standard 
for analysing HTE in clinical trials. Risk-based 
and effect-based approaches are methodologically 
superior to conventional subgroup analysis, as they 
allow evaluation of treatment effect across multiple 
characteristics simultaneously. Therefore, when HTE is 
suspected (eg, when studying broad clinical syndromes 
such as sepsis or ARDS), risk-based or effect-based 
analyses, or both, should be prospectively incorporated 
into trial analysis plans in addition to—or even in lieu 
of—conventional  subgroups.63 However, as a field, our 
experience with HTE analyses and ITE is limited, and 
at this time it is not possible to identify a clear 
framework for when to use risk-based versus effect-
based approaches. As we gain more experience with 
these approaches, we must continue to evaluate and 
compare these methods with the aim of developing 
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guidance for their incorporation into trial analysis 
plans.64

The application of ITE models in clinical care also risks 
exacerbating health-care disparities, if not approached 
carefully. First, applying results from adaptive trials could 
lead to overly narrow clinical guidelines or drug approvals, 
or both, if benefits are observed only in small sub-
groups. Additionally, if a population of patients is 
under-represented in a clinical trial,65 then a model of ITE 
derived from that clinical trial might not validly inform 
care for that population.66–68 How well this challenge 
is addressed by de-biasing techniques69,70 or approaches 
that combine observational and RCT data in an effort to 
improve generalisability remains uncertain.71,72 Given this 
risk of bias, studies should report detailed information on 
the characteristics of the patient population in which ITE 
models were developed, and confirmation studies should 
pay particular attention to how tools and interventions 
perform across differing patient populations.73 Additionally, 
since patients from low-income and middle-income 
countries are often not included in clinical trials conducted 
in high-income countries, models built in such trials could 
have limited applicability in vast regions of the world, 
increasing pre-existing disparities in the delivery of care.74,75 
In all cases, HTE analyses should be undertaken with 
careful consideration of the potential clinical effect, 
required resources, and generalisability of the results.

Conclusions and future directions
The ATEs reported in randomised trials represent 
the traditional reference standard for evidence-based 
medicine but often do not represent the effect of 
treatment on outcomes for individual patients. By 
tackling the challenges (panel) involved in using RCTs to 
derive, validate, and inform implementation of ITE, the 
critical care community can facilitate progress towards 
the goal of evidence-based personalised medicine.
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Panel: Proposed future directions for research to advance analyses of heterogeneity 
of treatment effect and individualised treatment effect in critical care

• Bring together diverse perspectives from patients, clinicians, policy makers, and 
regulators to work towards consensus on the goals of heterogreneity of treatment 
effect (HTE) analyses.

• Develop statistical approaches that address limitations of existing risk-based and 
effect-based models, particularly sample size limitations and risk of overfitting.

• When HTE is suspected, incorporate prespecified risk-based or effect-based models, or 
both, in RCT analysis plans.

• Continue validating risk-based and effect-based methods to develop a framework to 
establish when these methods should be used as the primary method for analysing 
HTE within clinical trials.

• Use existing trial design features to understand HTE in critical care trials, particularly in 
areas where large HTE is expected.

• Continue to support initiatives focused on lowering trial costs to enrol larger sample 
sizes, and streamlining the collection of richer datasets. The ability to accrue 
comprehensive data efficiently and to harmonise these data between trials will 
facilitate HTE evaluations.

• Develop frameworks for confirming findings of HTE analyses and testing decision rules 
based on predicted ITE in clinical practice.

• Consider the clinical implications of HTE analyses from the outset of a trial, balancing 
the potential benefits of predicting ITEs with the resources required for risk-based and 
effect-based analyses and the limitations of applying results from these models to 
under-represented patient populations.

Search strategy and selection criteria

This Review is a summary statement from an international Round Table—organised by 
the Platform of Randomized Adaptive Clinical Trials in Critical Illness (PRACTICAL) 
platform trial and Evidence-based Individualized Treatment Effects (EvITE) Group—on 
heterogeneity of treatment effect (HTE) in critical care. To review current methodologies 
for HTE analyses, identify challenges, and develop a framework for approaching HTE in 
critical care trials, over 30 clinician-scientists and statisticians were invited to attend a 
dedicated Round Table meeting in Toronto, Canada, on Nov 27, 2023. Invitees were 
selected on the basis of published expertise and previous engagement in HTE analysis and 
methods within critical care. The meeting was sponsored by the PRACTICAL) and the 
EvITE Group. To mentor future clinician-scientists, eight early-career researchers were also 
invited to attend. The Round Table meeting was anchored around prespecified meeting 
objectives and organised into four sessions. Each session included topic-focused 
presentations reviewing current literature, identified by the speakers, followed by 
structured discussion. After the meeting, working groups were convened to conduct 
additional literature reviews and summarise the evidence and group discussions for each 
section. Methodological details are provided in the appendix (pp 3–5) along with full 
author contributions (appendix pp 6–7). Definitions, methodology, and challenges 
proposed within the Round Table meeting were iteratively refined via discussion within 
the larger EvITE working group and with additional selected experts in the field. Data for 
this Review were identified by searches of PubMed and references from relevant articles 
(last search conducted May, 2024) using the search terms “heterogeneity of treatment 
effect”, “subgroup analysis”, “conditional average treatment effect”, “individualised 
treatment effect”, “risk-based analysis”, and “effect-based analysis.” Articles published in 
English between 1955 and 2024 were considered. For simplicity, in this Review we focus 
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