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Towards standardized and clinically relevant definitions of hypoxemia
and hyperoxemia in preterm infants: A systematic review
Recognise the role of different oxygen monitoring techniques
Provide an overview of definitions and the association with neonatal outcomes
dentify the limitations of current definitions using continuous monitoring devices
nterpret the hypoxemia and hyperoxemia burden as measured with continuous oxygen monitoring devices taking into acco
that the definition influences the total measured burden

Educational Aims

The aims of this article regarding hyperoxaemia and hypoxaemia in preterm infants are to:

Identify definitions based on continuous monitoring technologies•

•

•

• I
• I

Abbreviations: cFTOE, fractional cerebral oxygen extraction; CI, Confidence
interval; FiO2, fraction of inspired oxygen; FTOE, fractional tissue oxygen extrac-
tion; GA, gestational age; IH, intermittent hypoxemia; IQR, interquartile range;
NICU, neonatal intensive care unit; NIRS, near-infrared spectroscopy; OR, odds
ratio; PMA, postmenstrual age; PNA, postnatal age; rcSO2, regional cerebral tissue
oxygenation saturation; RCT, randomized controlled trial; ROP, retinopathy of
prematurity; RR, relative risk; rStO2, regional tissue oxygen saturation; rSO2C,
regional cerebral tissue oxygen saturation; SD, standard deviation; SctO2, StO2,
cerebral tissue oxygen saturation; SGA, small for gestational age; SpO2, oxygen
saturation measured with pulse oximetry; TcPO2, transcutaneous partial pressure
of oxygen.
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In neonatal care, maintaining oxygen levels in the target range is essential to minimize adverse outcomes.
Both episodes of hyperoxemia and hypoxemia are associated with adverse neonatal outcomes. Criteria to
determine the hypoxemic and hyperoxemic burden are currently not standardized or generally applied in
clinical care. This results in difficulty to identify clinically relevant events in preterm infants. Clinical deci-
sions and interventions are therefore mostly based on the experience of the clinical team. This systematic
review aims to provide an overview of the used definitions for hypoxemia and hyperoxemia in preterm
infants, based on continuous monitoring techniques and the relation to neonatal outcome (PROSPERO:
CRD42023493201).
© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
INTRODUCTION

Preterm infants often suffer from transient hypoxemic events
due to immaturity of the respiratory system and its control. Respi-
ration can be supported with invasive and non-invasive ventila-
tion, oxygen supplementation, and medication [1,2]. Maintenance
of oxygen levels within narrow target ranges is important to avoid
adverse outcomes. Low oxygen levels are associated with a higher
risk of death, impaired neurodevelopment, persistent ductus arte-
riosus, and necrotizing enterocolitis [3]. High oxygen levels are
associated with retinopathy of prematurity (ROP) and bronchopul-
monary dysplasia (BPD) [3]. Intermittent hypoxemia, calculated as
a percentage of time below a certain oxygen saturation measured
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with pulse oximetry (SpO2), has been associated with an increased
risk of late death or disability at a corrected age of 18 months [4].

Clinical target ranges are mainly used to optimize oxygenation
and to avoid exposure to both low and high oxygen levels. No stan-
dard definitions are available to determine the burden of hypox-
emia and hyperoxemia, or to identify clinically relevant events.
As a consequence, interventions and clinical decisions are largely
based on the experience of the clinical team. Pulse oximetry is by
far the most frequently applied technique for measuring oxygena-
tion continuously and noninvasively to support clinical decisions.
Despite its invasiveness, intermittent arterial blood gas analysis
remains the gold standard for measuring oxygen levels due to its
accuracy. Transcutaneous oxygen monitoring can be used as well
to estimate arterial blood gas levels noninvasively [5]. Near-
infrared spectroscopy (NIRS) is applied for the assessment of
end-organ perfusion and, combined with arterial oxygen levels,
can provide information on the balance between oxygen delivery
and consumption [6].

Treatment and respiratory support can be adjusted to prevent
hypoxemia and hyperoxemia when their harmful limits are clearly
defined. There is a wide variety in definitions used in literature,
making it difficult to concisely conclude upon a clinically relevant
relation with neonatal outcome. This review aims to investigate
the literature definitions of hypoxemia and hyperoxemia based
on continuous monitoring techniques, and the association between
applied definitions and outcome in preterm infants. The results of
this systematic review could aid in the assessment of the hypox-
emic and hyperoxemic burden in preterm infants in daily clinical
care and providemore clarity on the relationwith adverse outcome.

METHODS

Search strategy

A systematic search of electronic medical databases, including
Embase, Medline, Web of Science Core Collection, Cochrane Central
Register of Controlled Trials, and Google Scholar, was conducted on
March 30, 2022 and extended on August 18, 2023 by a reference
librarian (Supplementary Methods). The search was restricted to
studies including human participants and written in English. This
systematic review has been registered in the international
prospective register of systematic reviews database (PROSPERO:
CRD42023493201).

Screening and data extraction

The following inclusion criteria were defined prior to the search
and review: 1) preterm infants with a gestational age
of ≤ 32 weeks; 2) continuous oxygen monitoring techniques; 3)
quantifiable definition of hypoxemia and/or hyperoxemia. Moni-
toring techniques could have varying sampling rates and averaging
intervals. All cerebral near-infrared oxygen measurements, regard-
less of their specific brand-specific parameter names, were
included as NIRS. All types of published studies could be included,
except for case reports, reviews and conference abstracts. Studies
published before 1975, subjects other than human infants and
written in a language other than English were also excluded. Stud-
ies on intermittent monitoring methods, such as laboratory values,
do not fall within the scope of this review. All selected publications
were managed in EndNote© X9 (ClarivateTM, London, United King-
dom). Two reviewers (N.G.-P. and J.P.) screened titles and abstracts
independently. Discrepancies were resolved by consensus and
disagreement was resolved by consensus with two additional
reviewers (W.W. and S.S.). Full text articles were screened for eli-
gibility by two reviewers (N.G.-P. and J.P.) and data were extracted
2

independently. Data extraction included information on (I) study
characteristics, (II) participant characteristics, (III) hypoxemia
and/or hyperoxemia definitions, (IV) device specifications, (V)
monitoring periods, and (VI) investigated associations with
adverse outcomes.

Quality assessment

Quality assessment of the studies including the association of
definitions with clinical outcomes was performed independently
by two reviewers (N.G.-P. and J.P.). Discrepancies and disagree-
ment were resolved similarly to the data screening and extraction
methods. The Newcastle-Ottawa Scale tool was used for quality
assessment of observational and cross-sectional studies [7]. Stud-
ies are judged on the selection of the study groups, the comparabil-
ity of the groups, and the ascertainment of either the exposure or
outcome of interest. A study can be awarded with a star for quality
for each item in the scale, with a maximum of nine stars.

Outcome measures

The primary outcome measure of this systematic review was
defined as a quantified definition of hypoxemia and/or hyperox-
emia based on continuous monitoring data. This included the type
of data source, monitoring technique, sampling rate, averaging
time and gestational age. In addition, secondary outcomemeasures
assessed the associations between hypoxemia and/or hyperoxemia
and neonatal outcomes, including mortality and morbidity, during
or after neonatal intensive care unit (NICU) admission.

Data analysis

A description of all used definitions is provided. Data on the def-
inition of hypoxemia and hyperoxemia were synthesized struc-
turally according to the characteristics of the study population,
data source, and measurement details. Descriptive methods,
including frequencies, were used to summarize the data. Descrip-
tive methods were also used to present the association between
hypoxemia and/or hyperoxemia and adverse outcomes. The out-
come measures were not suitable for meta-analyses, as this was
a descriptive systematic review on the definition of hypoxemia
and/or hyperoxemia. Data analyses were performed using R (ver-
sion 4.2.3, The R Foundation for Statistical Computing, Vienna,
Austria).

RESULTS

The search strategy resulted in 1914 potentially relevant stud-
ies. Of these, 1703 were excluded based on title and abstract,
resulting in the selection of 211 studies for full-text screening. Ulti-
mately, 91 studies were extracted for further analyses (Fig. 1)
[4,6,8–96]. Eighty-six (86/91) articles explicitly stated one or more
definitions of hypoxemia (N = 135) [4,6,8–39,41–44,46–
81,83,84,86–93,95,96] and thirty-six provided definitions of hyper-
oxemia (N = 47) [6,8,13,19–21,32–34,38,40,45,47,49,50,54,56–
59,67,68,72,73,78,80,82,83,85,89–95].

Definition of hypoxemia

Hypoxemia was defined as a threshold or a percentage devia-
tion from a baseline. Additionally, time could be included in the
definition as a threshold with a specified time limit, and as a speci-
fic interval or time period (intermittent hypoxemia) (Table 1).
Pulse oximetry (N = 117), NIRS (N = 16) and transcutaneous blood
gas monitoring (N = 2) were applied in the studies with
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Fig. 1. Flow diagram of the systematic selection of literature.
corresponding definitions. The most frequently used definition of
hypoxemia with pulse oximetry was an SpO2 threshold of < 80 %
(28/117; 24 %) (Fig. 2A). For cerebral NIRS, a threshold of < 55 %
was most commonly used (9/16; 56 %). Two definitions of
hypoxemia were found for transcutaneous blood gas monitoring;
a deviation of more than 20 % from the baseline and a threshold
of < 40 torr. In 39/135 definitions, time was taken into account,
mostly in studies using pulse oximetry (38/39), applied as a limit
(22/39) or as intermittent hypoxemia (13/39) (Fig. 2B). Intermit-
tent hypoxemia was most frequently defined as SpO2

exposure < 81 % with a duration between 10 s and 180 s.

Definition of hyperoxemia

Few articles provided a definition for hyperoxemia, which was
specified as either a threshold or a threshold with a specific time
limit (Supplementary Table 1). Most frequently, a threshold
of > 95 % for pulse oximetry was applied (16/35) (Fig. 3).
Levels > 85 % were used in most studies (8/9) in which NIRS was
applied for tissue oxygen monitoring. No definitions for transcuta-
neous blood gas monitoring were found. Time with hyperoxemia
was taken into account in two articles, with limits varying greatly
from 10 s to 30 min.

Association with adverse outcomes

Twenty-two studies tested the difference in hypoxemic and/or
hyperoxemic exposure for the development of adverse outcomes,
including ROP, mortality, BPD, symptomatic childhood wheezing,
necrotising enterocolitis, intraventricular hemorrhage, and
3

neurodevelopmental impairment [4,9,12,25,34–36,42,53,55–
57,59,69,72,73,77,78,82,87,93,94]. The quality assessment of these
studies is presented in Supplementary Tables 2 and 3. Eight out of
22 studies scored 8 to 9 points on the 9-point quality assessment
scale. Five out of 22 studies scored 6 or less points. The associations
of ROP, mortality, BPD, neurodevelopmental impairment and other
adverse outcomes with hypoxemic and hyperoxemic exposure are
presented in Table 2. Exposure to hypoxemia was found to be asso-
ciated with a higher risk of ROP in 5/7 studies, with mortality in 3/5
studies, with BPD in 2/3 studies, with neurodevelopmental impair-
ment in 1/2 studies, and with combined death or disability in 3/3
studies. In the remaining studies no association was found
between hypoxemic exposure and adverse outcomes.

In associations describing a higher risk for certain outcomes,
varying SpO2 limits of 80 % (N = 8), 83 % (N = 2), 85 % (N = 4)
and 90 % (N = 1) were used to define hypoxemia. In 5 of these asso-
ciations a time interval was used to define hypoxemia, varying
from a duration below the defined saturation target of at least
10 s to 1 min up to a maximum duration of 3 to 5 min.
DISCUSSION

This systematic review presents an overview of literature defi-
nitions of hypoxemia and hyperoxemia in preterm infants, based
on continuous monitoring techniques. Pulse oximetry, NIRS, and
transcutaneous blood gas monitoring were used to detect hypox-
emia and hyperoxemia. A large range of thresholds and time vari-
ables was described to define the burden of hypoxemia and
hyperoxemia. A higher burden of hypoxemia was related to an

move_f0010
move_f0015
move_t0010


N
.H
.G

angaram
-Panday,J.A

.Poppe,A
.N
.Tintu

et
al.

Paediatric
R
espiratory

R
eview

s
xxx

(xxxx)
xxx

4

able 1
haracteristics of included studies with a hypoxemia definition.

T
C

Study Title Study design n GA (w) PNA (d) Definition of
hypoxemia

Measurement Monitoring
specifications

Primary outcome Monitoring
period

Abu Jawdeh, 2014, USA The effect of red blood
cell transfusion on
intermittent hypoxemia
in ELBW infants

Retrospective
cohort study

130 24 to 27 6/7 Group 1:4
(IQR 2–5)
Group 2:13
(IQR 10–18)
Group 3:33
(IQR 31–38)

Intermittent
hypoxemia:
SpO2 ≤ 80 %
for ≥ 4 s and ≤ 3
min

Pulse oximetry
(Radical, Masimo,
Irvine, CA, USA)

Averaging
time:
2 s
Sample rate:
0.5 Hz

Incidence of hypoxemic
events in the 24 h period
before, 24 h after and 24 –
48 h after transfusion

Day 1 to 8 weeks

Abu Jawdeh, 2017, USA Prenatal opioid exposure
and intermittent
hypoxemia in preterm
infants: a retrospective
assessment

Prospective
cohort study

82 < 30 Follow-up till: 56 Percent time
spent with
SpO2 < 80 %
Intermittent
hypoxemia:
number of
events per day
with SpO2 < 80 %
during 4–180 s

Pulse oximetry (Radical
7, Masimo, Irvine, CA,
USA)

Averaging
time:
2 s
Sample rate:
1 Hz

Percent time spent with
SpO2 < 80 %

Day 1 to 8 weeks

Abu Jawdeh, 2021, USA Extubation readiness in
preterm infants:
evaluating the role of
monitoring intermittent
hypoxemia

Prospective
cohort study

50 < 30 Group 1:18 (IQR
5–37) Group 2:21
(IQR 9–33)

Percent time
spent with
SpO2 < 80 %
Intermittent
hypoxemia:
number of
events per day
with SpO2 < 80 %
during 4–180 s

Pulse oximetry (Radical
7, Masimo, Irvine, CA,
USA)

Averaging
time:
2 s
Sample rate:
1 Hz

Percent time spent with
SpO2 < 80 % and the
number of events

24 h pre-
extubation until
72 h post-
extubation or
when reintubation
was necessary

Abi Jawdeh, 2021, USA Intermittent hypoxemia
in preterm infants: a
potential
proinflammatory process

Prospective
cohort study

26 < 30 30 (IQR: 29–32) SpO2 < 80 % Pulse oximetry (Radical
7, Masimo, Irvine, CA,
USA)

Averaging
time:
2 s
Sample rate:
1 Hz

SpO2 < 80 % At 30 days of PNA,
a week prior to c-
reactive protein
collection

Afshar, 2018, Canada The impact of hypoxemia
on the development of
retinopathy of
prematurity in infants
less than 29 weeks of
gestation

Retrospective
cohort study

112 < 29 Follow-up till: 70 SpO2 ≤ 80 % Pulse oximetry
(Masimo, Irvine, CA,
USA)

Averaging
time:
NA
Sample rate:
NADaily
percentage of
time periods
(SpO2 ≤ 80 %)
converted to
minutes

Association between ROP
and cumulative exposure
to hypoxemia

Weeks 1 to 10

Atanasov, 2023, Germany Fluctuations in oxygen
saturation during
synchronized nasal
intermittent positive
pressure ventilation and
nasal high-frequency
oscillatory ventilation in
very low birth weight
infants: a randomized
crossover trial

Retrospective
cohort study

22 < 32 26.5 (range:
10.0–84.0)

SpO2 < 88 %
Severe:
SpO2 < 80 %
Intermittent
hypoxemia:
SpO2 < 80 %
during > 30 s
Desaturations:
SpO2 < 70 %
during > 1 min
SctO2 < 65 %
SctO2 < 60 %

Pulse oximetry
(IntelliVue MP50
monitor, Philipps,
Amsterdam, The
Netherlands) NIRS
(Root kit 3.0 device,
Massimo, CA)

Averaging
time: SpO2 8 s
Sample rate:
0.5 Hz

Time spent within the
SpO2 target (SpO2 88–95 %)

Two periods of 8 h
on two
consecutive days,
recovery period of
16 h

Baerts, 2011, The
Netherlands

Cerebral oxygenation and
oxygen extraction in the
preterm infant during
desaturation: Effects of
increasing FiO2 to assist
recovery

Prospective
cohort study

24 < 32 Follow-up till: 3 SpO2 < 75 %
during > 30 s

Pulse oximetry
(Nellcor, Boulder, Colo.,
USA)INVOS 4100
(Somanetics, Troy,
Mich., USA)

Averaging
time:
NA
Sample rate:
10 Hz

Absolute and relative
differences in saturations
and cFTOE values between
episodes that were not
managed with an increase
in FiO2 levels and which
were not

Starting as soon as
possible after
birth during 6
desaturation
episodes for a
period of 72 h



able 1 (continued)

Study Title Study design n GA (w) PNA (d) Definition of
hypoxemia

Measurement Monitoring
specifications

Primary outcome Monitoring
period

Bauschatz, 2008,
Switzerland

Low oxygen saturation
target range is associated
with increased incidence
of intermittent

Intermittent
hypoxemia:
SpO2 ≤ 80 %
during ≥ 10 –

Averaging
time:
2 s
Sample rate:

Within 2 h after
birth, continued
until 36 weeks
PMA or until the

(continued on next page)
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A preliminary report of
nursing in the three-stair-
position to prevent
apnoea of prematurity

Prospective
cohort study

20 < 31 30 3/7 (Range
26 6/7–34 6/7)

SpO2 < 85 % Siemens SC7000 Averaging
time:NA
Sample rate:
NA

Difference in bradycardic
or hypoxemic episodes
between the three
positions

Three times 24 h

Blanchard, 1991, Canada Effects of tactile
stimulation on physical
growth and hypoxemia in
preterm infants

RCT 9 30 to 32 Enrollment: 15 ± 1 SpO2 ≤ 80–85 %,
during ≥ 60 s

Pulse oximetry (Nellcor
N-100)

Averaging
time:NA
Sample rate:
NA

Physical growth as
measured by weight,
height and head
circumference

During 10 days,
twice daily
measurements of
20 min

Bohnhorst, 2000,
Germany

Pulse oximeters’
reliability in detecting
hypoxemia and
bradycardia: Comparison
between a conventional
and two new generation
oximeters

Prospective
cohort study

17 25 (Range 24–30) 35 (Range 8–77) TcPO2 < 40 torr Pulse oximetry (Nellcor
N-200)
Pulse oximetry with
OXISMART technology
(Nellcor N-3000)
instrument with Signal
Extraction Technology
(Masimo SET)
TcPO2 monitoring at
44 °C (Kontron 7640,
Kontron Instruments,
Watford, UK)

Averaging
time:
6–7 s
Variable
averaging
8 s
Sample rate:
1 Hz

Number of hypoxemic
episodes (TcPO2 < 40 torr)
and bradycardic events
missed with pulse
oximetry

Reported median
recording
duration of 13
(Range 5–36)
hours

Bohnhorst, 2010,
Germany

Oral versus nasal route
for placing feeding tubes:
No effect on hypoxemia
and bradycardia in
infants with apnea of
prematurity

Randomized
controlled
crossover trial

32 < 32 32 (IQR 30 – 35) SpO2 ≤ 80 % Pulse oximetry
(Noninxx in beat-to
beat-mode, Nonin
Medical, Inc.,
Plymouth, Minn., USA)

Averaging
time:
NA
Sample rate:
NA

Combined rate of
bradycardia and
desaturation per hour

A 24 h recording
period after
consent

Bucher, 1988,
Switzerland

Does caffeine prevent
hypoxaemic episodes in
premature infants? A
randomized controlled
trial

Double blinded
RCT

50 ≤ 32 Enrollment: 2 TcPO2 < 20 %
from baseline
within 20 s

NA Averaging
time:
NA
Sample rate:
0.3 Hz

Difference in the incidence
of hypoxaemic and
bradycardic episodes

From 24 h to
100 h of age

Clarke, 2015, Australia A randomised crossover
trial of clinical algorithm
for oxygen saturation
targeting in preterm
infants with frequent
desaturation episodes

RCT 16 < 32 30.5 ± SD 2.4 SpO2 ≤ 85 %
SpO2 ≤ 85 %
during > 5 s
SpO2 < 70 %

Pulse oximetry (Radical
7, Masimo, Irvine, CA,
USA)

Averaging
time:
8 s
Sample rate:
0.015 Hz

Proportion of time spent
within the target
saturation range

4-hour period in
each control
modality

Dani, 2021, Italy Cerebral and splanchnic
oxygenation during
automated control of
inspired oxygen (FiO2) in
preterm infants

Randomized
controlled
crossover trial

20 < 32 18.9 ± SD 19.4 SpO2 < 80 % Pulse oximetry
(IntelliVue MP40
Neonatal, Philips, DA
Best)
NIRS
(INVOS 5100®,
Somanetics
Corporation, Troy)

Averaging
time:
NA
Sample rate:
0.03 Hz

Comparison of rSO2C
changes during the two
phases of the study

Two 12-hour
periods

Dassios, 2022, UK Cumulative hypoxia,
socioeconomic
deprivation and
neurodevelopmental
outcomes in preterm
infants

Retrospective
cohort study

80 < 30 Follow-up until
36 weeks PMA

SpO2 < 85 %,
SpO2 < 80 %,
SpO2 < 75 %

Pulse oximetry Averaging
time:
NA
Sample rate:
NA

Bayley-III assessment From admission to
36 weeks PMA

Di Fiore, 2010, USA A higher incidence of
intermittent hypoxemic
episodes Is associated
with severe retinopathy
of prematurity

Retrospective
cohort study

79 24 0/7–27 6/7 Follow-up till: 56 Intermittent
hypoxemia:
SpO2 ≤ 80 %,
during ≥ 10 –
≤180 s

Pulse oximetry
(Radical, Masimo,
Irvine, CA, USA)

Averaging
time:
2 s
Sample rate:
0.5 Hz

Duration of hypoxemic and
hyperoxemic events

First 8 weeks of
life

Di Fiore, 2012, USA RCT post-hoc
analysis

115 24 0/7–27 6/7 Follow-up until
36 weeks PMA

Pulse oximetry
(Radical SET, Masimo,
Irvine, CA, USA)

Incidence of intermittent
hypoxemia

T
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able 1 (continued)

Study Title Study design n GA (w) PNA (d) Definition of
hypoxemia

Measurement Monitoring
specifications

Primary outcome Monitoring
period

hypoxemia ≤180 s 0.5 Hz infant was
breathing room
air without
respiratory
support for ≥ 72 h

Di Fiore, 2012, USA

Episodes of hypoxemia
during synchronized

SpO2 < 90 %,
SpO2 < 85 %,

Pulse oximetry (Nellcor
N-200, Nellcor-Puritan,

Averaging
time:

The relationship between
patterns of intermittent
hypoxia and retinopathy
of prematurity in preterm
infants

Retrospective
cohort study

79 24 0/7 – 27 6/7 Not described Intermittent
hypoxemia:
SpO2 ≤ 80 %
during ≥ 10 –
≤180 s

Pulse oximetry
(Radical, Masimo,
Irvine, CA, USA)

Averaging
time:
2 s
Sample rate:
0.5 Hz

Number of intermittent
hypoxemic episodes

First 8 weeks of
life

Di Fiore, 2017, USA Patterns of oxygenation,
mortality, and growth
status in the surfactant
positive pressure and
oxygen trial cohort

RCT post-hoc
analysis

1054 24 0/7 – 27 6/7 Follow-up till 3 SpO2 < 80 %
Intermittent
hypoxemia:
SpO2 < 80 %,
during ≥ 20 - ≤
300 s

Pulse oximetry
(Radical, Masimo,
Irvine, CA, USA)

Averaging
time:
16 s
Sample rate:
0.1 Hz

Comparison of achieved
oxygen saturation between
infants born SGA and AGA

First three days of
life

Di Fiore, 2019, USA Early inspired oxygen and
intermittent hypoxemic
events in extremely
premature infants are
associated with asthma
medication use at 2 years
of age

Retrospective
cohort study

137 24 0/7 – 27 6/7 Follow-up till 28 Intermittent
hypoxemia:
SpO2 ≤ 80 %,
during ≥ 10 -
≤180 s

Pulse oximetry
(Radical, Masimo,
Irvine, CA, USA)

Averaging
time:
2 s
Sample rate:
0.5 Hz

Prescription asthma
medication use at 2-year
follow-up

First 4 weeks of
age

Dijkman, 2021, The
Netherlands

Predictive Intelligent
Control of Oxygenation
(PRICO) in preterm
infants on high flow nasal
cannula support: a
randomised cross-over
study

Randomized
controlled
crossover trial

27 < 30 31 (IQR 23 – 42) SpO2 < 80 % Pulse oximetry
(Masimo, Irvine, CA,
USA)
(Philips IntelliVue
MX800, Böblingen,
Germany).

Averaging
time:
10 s
8 s
Sample rate:
1 Hz
0.03 Hz

Time spent within target
range (88 %-95 %)

Two consecutive
24-hour
treatment periods

Dobson, 2017, USA Caffeine decreases
intermittent hypoxia in
preterm infants nearing
term-equivalent age

RCT subcohort
combined with a
prospective
cohort study

27 < 32 Enrollment: Group
1:
33.1 ± SD 2.8
Group 2: 34.9 ± SD
1.1

SpO2 ≥ 10 %
from the
baseline,
during ≥ 5 s
Baseline was
defined as the
90th percentile
of all baselines
recorded

Pulse oximetry
(Masimo Rad 8, Irvine,
CA, USA)

Averaging
time:
NA
Sample rate:
NA

SpO2 < 90 % in s/24 h When weaned off
supplemental
oxygen and
discontinuation of
caffeine treatment
until continued at
home until
40 weeks PMA

Dormushian, 2022, USA Pulse oximetry reliability
for detection of
hypoxemia under motion
in extremely premature
infants

Post-hoc
analysis

20 ≤ 28 13 (IQR 8 – 20) Intermittent
hypoxemia:
SpO2 < 90 %
during > 10 s,
SpO2 < 80 %
during > 10 s

Pulse oximetry (non-
rainbow X2, DSP
V4.6.0.2, Masimo
Signal Extraction
Technology pulse
oximeter12 SET®,
Masimo, Irvine, CA)

Averaging
time: 10 s
Sample rate:
0.9765 Hz,
1.024 Hz

Episodes of intermittent
hypoxemia

Periods of 24 to
72 h duration

Dormushian, 2023, USA Etiology and Mechanism
of Intermittent
Hypoxemia Episodes in
Spontaneously Breathing
Extremely Premature
Infants

Secondary
analysis of a
prospective
observational
study

51 < 29 At 32 weeks PMA
38.7 ± (SD)11.1

Intermittent
hypoxemia:
SpO2 < 90 %
during ≥ 5 s
Severe:
SpO2 < 80 %
during ≥ 5 s

Pulse oximetry (Radical
7, Masimo, Irvine, CA,
USA)

Averaging
time: 8 s
Sample rate:
100 Hz

Prevalence of the different
mechanisms that lead to
daytime intermittent
hypoxic episodes

4 h at 32 weeks
PMA and 4 h at
36 weeks PMA

Elsayed, 2021, Canada Titration of inspired
oxygen in preterm infants
with hypoxemic
respiratory failure using
near-infrared
spectroscopy and pulse
oximetry: A new
approach

Retrospective
cohort study

38 < 28 Group 1:
32 (IQR 17 – 56)
Group 2:
25 (IQR 11 – 46)

SpO2 < 80 % Pulse oximetry
(Masimo Rad 7
Masimo®, Masimo
Corporation, Masimo,
Irvine, CA, USA)
NIRS
(FORE-SIGHT® Absolute
Tissue Monitor,
Casmed®)

Averaging
time:
NA
Sample rate:
0.5 Hz

The achievement of
significantly lower FiO2 at
72 h after the start of the
integrated monitoring

24 h before CAR
test until 72 h
after CAR test or
until weaning
FiO2 to < 0.3

Firme, 2005, USA RCT 18 ≤ 30 43 ± SEM 6
41 (IQR 24 – 48)

Duration and severity of
hypoxemic episodes

Two periods of 1 h
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able 1 (continued)

Study Title Study design n GA (w) PNA (d) Definition of
hypoxemia

Measurement Monitoring
specifications

Primary outcome Monitoring
period

intermittent mandatory
ventilation in ventilator-
dependent very low birth
weight infants

SpO2 < 80 % Inc., Pleasanton, CA,
USA)

NA
Sample rate:
NA

Gentle, 2022, USA

Hypoxemia episodes
during day and night and
their impact on oxygen

Randomized
controlled
crossover trial

SpO2 < 85 %,
SpO2 < 75 %
SpO2 < 85 %,

Averaging
time:
8 s

(continued on next page)

Intermittent Hypoxemia
and Bronchopulmonary
Dysplasia with
Pulmonary Hypertension
in Preterm Infants

Matched case-
control study

80 22 0/7 – 28 6/7 Follow up: day 28
and the preceding
week
Control group: at
echo 37 (IQR 33–
40) weeks

SpO2 < 80 %,
SpO2 < 70 %

Pulse oximetry (Philips
IntelliVue MP70 or
MP50, using Nellcor
sensors)

Averaging
time: 8 s
Sample rate:
125 Hz

Bronchopulmonary
dysplasia-associated
pulmonary hypertension

The week
preceding
echocardiography
(after PNA day 28)

Gottlob, 2019, Germany Randomized controlled
trial on the effects of
morning versus evening
primary vaccination on
episodes of hypoxemia
and bradycardia in very
preterm infants

Two RCTs 26 26–30 Group 1:
60.2 ± 0.83
Group 2:
61.0 ± 1.35

SpO2 < 80 % Pulse oximetry
(VitaGuard® VG3100;
Getemed, Teltow,
Germany)

Averaging
time:
NA
Sample rate:
NA

The number of additional
episodes of hypoxemia or
bradycardia during the
first 24 h after vaccination
compared to the number of
episodes in the 24 h before
vaccination

24 h before and
after vaccination

Hanke, 2022, Germany Early skin-to-skin contact
does not affect cerebral
tissue oxygenation in
preterm
infants < 32 weeks of
gestation

Two
observational
convenience
samples

76 Group 1:
26 0/7 – 31 6/7
Group 2:
24 0/7 – 28 6/7

Follow-up till: 5 rcSO2 < 55 % NIRS (INVOS 5100 near
infrared spectrometer,
Somanetics Corp,
Medtronic, Meerbusch,
Germany)

Averaging
time:
NA
Sample rate:
0.2 – 0.1 Hz

Differences in rcSO2 values The first 120 h of
life

Hyttel-Sorensen, 2013,
Denmark

Clinical use of cerebral
oximetry in extremely
preterm infants is feasible

observational
pilot study of
the
experimental
arm of the
SafeBoosC phase
II

10 24 0/7 – 27 6/7 Follow-up till: 3 rStO2 < 55 % INVOS 5100C
(Covidien, Boulder, CO,
USA)
Adult SomaSensor
NONIN EQUANOX 7600
(NONIN, Plymouth,
MN, USA)
8000CA sensor model

Averaging
time:
NA
Sample rate:
0.2 Hz
0.25 Hz

Time with rStO2 below
55 % and above 85 %
multiplied by the extent of
deviation

Within three
hours of birth
until 72 h of age

Hyttel-Sorensen, 2015,
France, Denmark,
Spain, Ireland, The
Netherlands, Austria,
Italy, UK

Cerebral near infrared
spectroscopy oximetry in
extremely preterm
infants: phase II
randomised clinical trial

RCT 166 < 27 6/7 Follow-up till: 3 The
multiplication of
duration and
magnitude of
rStO2 < 55 %

INVOS 5100C with
adult SomaSensor,
NIRO 300, and NIRO
200NX with small
probe holder
(Hamamatsu
Phototonics,
Hamamatsu City,
Japan)
NONIN EQUANOX 7600
with adult sensor,
model 8004CA (Nonin
Medical, Plymouth,
MN)

Averaging
time:
NA
Sample rate:
NA

The time spent outside the
target range of 55–85 %
rStO2 multiplied by the
mean absolute deviation,
expressed in %hours

Within three
hours of birth
until 72 h of life

Ibonia, 2018, USA Blood transfusions in
preterm infants: changes
on perfusion index and
intermittent hypoxemia

Prospective
cohort study

39 < 30 Group 1:
4.6 ± SD 1.6
Group 2:
18.0 ± SD 6.4
Group 3:
43.5 ± SD 8.9

Percent time
spent with
SpO2 < 80 %
Intermittent
hypoxemia:
SpO2 < 80 %,
during ≥ 4 – ≤
180 s

Pulse oximetry
(Radical 7, Masimo,
Irvine, CA, USA)

Averaging
time:
2 s
Sample rate:
1 Hz

A decrease in
SpO2 to < 80 % for at least 4
sec and not more than 3-
min duration and the
overall percent time spent
with SpO2 of < 80 %

First 2 months of
life

Jain, 2016, USA Volume guarantee
ventilation: effect on
preterm infants with
frequent hypoxemia
episodes

RCT 24 < 32 32 ± SD 22 SpO2 < 85 %,
SpO2 < 75 %
Intermittent
hypoxemia:
SpO2 < 85 %,
during ≥ 20 s

Pulse oximetry
(Radical 7, Masimo,
Irvine, CA, USA)

Averaging
time:
8 s
Sample rate:
1 Hz

Difference in frequency or
duration of hypoxemic
events

Two consecutive
24-hour periods

Jain, 2017, USA 24 < 32 32 ± SD 22 Pulse oximetry
(Radical 7, Masimo,
Irvine, CA, USA)

Difference in frequency or
duration of hypoxemic
events

Two consecutive
24-hour periods
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able 1 (continued)

Study Title Study design n GA (w) PNA (d) Definition of
hypoxemia

Measurement Monitoring
specifications

Primary outcome Monitoring
period

saturation targeting in
mechanically ventilated
preterm infants

post-hoc
analysis

during ≥ 20 s Sample rate:
1 Hz

Jenni, 1997, Switzerland

Time to desaturation in
preterm infants
undergoing endotracheal

SpO2 < 90 %,
SpO2 < 80 %,
SpO2 < 70 %,

Averaging
time:
10 s

The time from the last
positive pressure inflation
or spontaneous breath

Effect of nursing in the
head elevated tilt position
(15°) on the incidence of
bradycardic and
hypoxemic episodes in
preterm infants

Randomized
controlled
crossover trial

12 < 31 Range 6 – 38 SpO2 < 80 % Pulse oximetry (Nellcor
N-200, Pleasanton, CA)

Averaging
time:
NA
Sample rate:
NA

Difference in the frequency
of hypoxemic and
bradycardic episodes

Two periods of
24 h

Jensen, 2021, Canada,
USA, Argentina,
Finland, Germany,
Israel

Association between
intermittent hypoxemia
and severe
bronchopulmonary
dysplasia in preterm
infants

Prospective
cohort study
post-
hoc analysis

1018 23–27 Follow-up until at
least 36 weeks of
PMA

SpO2 < 80 %
Intermittent
hypoxemia:
SpO2 < 80 %
during ≥ 60 s

Pulse oximetry Averaging
time:
16 s
Sample rate:
0.1 Hz

Severe BPD defined
according to the 2001 NIH
Workshop Summary

Within 24 h after
birth, continued
until at least
36 weeks of PMA

Johnson, 2018, USA Reducing alarm fatigue in
two neonatal intensive
care units through a
quality improvement
collaboration

Prospective
cohort study

48 < 30 29.4 ± SD 2.6 SpO2 ≤ 80 % Pulse oximetry
(Masimo Corporation,
Irvine, CA)
(Nellcor oximeter
technology, Medtronic,
Minneapolis, MN)

Averaging
time:
NA
Sample rate:
NA

The total number of
nonactionable SpO2 alarms
per patient per hour and
the number of
nonactionable low
SpO2 alarms per patient
per hour

NA

Katheria, 2021, USA Association between
early cerebral
oxygenation and
neurodevelopmental
impairment or death in
premature infants

Prospective
cohort study

127 < 32 Follow-up till: 3 StO2 < 67 % Fore-Site Elite monitor Averaging
time:
NA
Sample rate:
NA

Death or
neurodevelopmental
impairment

First 72 h of life

Kaufman, 2014, USA Time outside targeted
oxygen saturation range
and retinopathy of
prematurity

Prospective
cohort study

102 < 32 NA SpO2 < 83 % for
infants with
oxygen
supplementation
SpO2 < 85 %for
infants in room
air

Pulse oximetry (Nellcor
N600 OXIMAX,
Covidien, CA)

Averaging
time:
NA
Sample rate:
0.5 Hz

Threshold retinopathy of
prematurity

The entire
hospital
admission

Kenosi, 2015, Ireland Effects of Fractional
Inspired Oxygen on
Cerebral Oxygenation in
Preterm Infants following
Delivery

Prospective
cohort study

47 < 32 Follow-up till: 2 rcSO2 total
area < 55 %

INVOS 5100 NIRS
(Covidien, Mansfield,
Massachusetts)
Neonatal transducer
(OxyAlertTM
NIRSensor, Covidien)

Averaging
time:
NA
Sample rate:
0.2–0.17 Hz

The rcSO2 area < 55 % and
area > 85 %

First 48 h of life

Kenosi, 2018, Ireland Monitoring cerebral
oxygenation of preterm
infants using a neonatal
specific sensor

Prospective
cohort study

120 < 32 Follow-up till: 2 rcSO2 total
area < 55 %
rcSO2 total
area < 60 % for
very preterm
infants

INVOS 5100 NIRS
(Covidien, Mansfield,
MA, USA)
OxyAlertTM NIRSensor
(Covidien IIc,
Mansfield, MA, USA)

Averaging
time:
NA
Sample rate:
0.2–0.17 Hz

The rcSO2 area < 55/60 %
and area > 85/90 %

First 48 h of life

Klevebro, 2019, Sweden Adherence to oxygen
saturation targets
increased in preterm
infants when a higher
target range and tighter
alarm limits were
introduced

Retrospective
cohort study

399 23 0/7–30 6/7 Follow-up til: 21 SpO2 < 85 % Philips Fourier Artifact-
Suppression
Technology (Philips
Medical Systems,
Andover, MA, USA)
Masimo Signal-
Extraction Technology
(Masimo, Irvine, CA,
USA)

Averaging
time:
10 s
Sample rate:
0.008 Hz

Differences in mean SpO2 First three
postnatal weeks

Kothari, 2021, Australia RCT secondary
analysis

78 ≤ 32 36 (10–312) hours Pulse oximetry (Radical
7, Masimo, Irvine,
California, USA)
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Table 1 (continued)

Study Title Study design n GA (w) PNA (d) Definition of
hypoxemia

Measurement Monitoring
specifications

Primary outcome Monitoring
period

intubation SpO2 < 60 % Sample rate:
0.5 Hz

until desaturation
(SpO2 < 90 %)

Kovatis, 2020, USA

Pulse oximetry
(IntelliVue MX700,
Philips Healthcare with
RD-Set (Masimo Corp)
and Radical-7 (Masimo

(continued on next page)

Effect of blood
transfusions on
intermittent hypoxic
episodes in a prospective
study of very low birth
weight infants

Prospective
cohort study

41 23 0/7 – 28 6/7 Group 1:
28.11 ± SD 2.34
Group 2:
27.17 ± 1.16 weeks

Intermittent
hypoxemia:
SpO2 ≤ 80 %,
during ≥ 10––
180 s

Pulse oximetry
(Radical 87, Masimo,
Irvine, California)

Averaging
time:
2 s
Sample rate:
0.5 Hz

Number of intermittent
hypoxemia events

First day of
enrollment or
after one week of
age, until
six weeks of age

Kurtom, 2022, USA Effect of the target range
on arterial oxygen
saturation stability in
extremely premature
infants

Prospective
crossover study

18 ≤ 28 56 ± (SD) 28 Intermittent
hypoxemia:
SpO2 < 90 %
during ≥ 10 s
Severe:
SpO2 < 80 %
during ≥ 10 s

Pulse oximetry (Radical
7, Masimo, Irvine, CA,
USA)

Averaging
time:
8 s
Sample rate:
100 Hz

Episodes of severe
hypoxemia defined as
SpO2 < 80 % during ≥ 10 s

Two periods of 2 h
each

Lee, 2006, Canada Frequency of apnea,
bradycardia, and
desaturations following
first diphtheria-tetanus-
pertussis-inactivated
polio-Haemophilus
influenzae type B
immunization in
hospitalized preterm
infants

Retrospective
cohort study

248 ≤ 32 Group1:
74 (range 58–125)
Group 2:
74 (range 56–120)
days

SpO2 ≤ 85 % NA Averaging
time:
NA
Sample rate:
NA

Frequency of events 72 h pre-
immunization and
72 h post-
immunization (for
controls 72 h prior
to equivalent age
and 48 h post)

Lehtonen, 2002, USA Relation of sleep state to
hypoxemic episodes in
ventilated extremely-
low-birth-weight infants

Prospective
cohort study

13 Mean 24.9 (Range
23–27)

Mean 28.3 (Range
25–34)

SpO2 ≤ 85 % Pulse oximetry
(Datex-Ohmeda 3900,
Madison, Wis)

Averaging
time:
3 s
Sample rate:
NA

Proportion of time spent in
hypoxemia

3 h

Martini, 2020, Italy Cardiorespiratory events
in infants born preterm
during the transitional
period

Prospective
cohort study

32 < 32 Follow-up til: 3 SpO2 < 85 %
Mild:
SpO2 80 %-84 %,
during ≤ 60 s
Moderate: SpO2

70 %-79 %, and/
or during 61–
120 s
Severe:
SpO2 < 70 %,
and/or
during > 120 s

Pulse oximetry (Radical
7, Masimo Corporation,
Irvine, CA, USA)

Averaging
time:
2 s
Sample rate:
1 Hz

Daily incidences of isolated
desaturation, isolated
bradycardia, and combined
desaturation and
bradycardia

Time of
enrollment to up
to 72 h of life

McEvoy, 1997, USA Prone positioning
decreases episodes of
hypoxemia in extremely
low birth weight infants
(1000 g or less) with
chronic lung disease

Prospective
crossover study

55 Mean 26.0 (Range
23 – 30)

42 ± SD 2 (range
28–83)

SpO2 < 90 %,
SpO2 < 85 %,
SpO2 < 80 %

Pulse oximetry (Nellcor
N-200 monitor, Nellcor
Inc., Hayward, Calif.)

Averaging
time:
NA
Sample rate:
1 Hz

Mean oxygen saturation Consecutively 1-
hour time
intervals

MacFarlane, 2023, USA Plasma serotonergic
biomarkers are associated
with hypoxemia events in
preterm neonates

Prospective
cohort study

168 < 31 Group 1: 7 ± 3
(range: 5–14)
Group 2:
30 ± 5 (range: 27–
43)

SpO2 < 80 %
Intermittent
hypoxemia:
SpO2 < 80 %
during > 10 s
and < 5 min

Pulse oximetry
(Masimo, Radical 7,
Irvine, CA)

Averaging
time:
8 sSample
rate:1Hz

Parameters of hypoxemia
(frequency of intermittent
hypoxemia and percentage
of time < 80 %)

Two 6 h periods
post-blood draw

Martin, 2023, Germany Association of response
time and intermittent
hypoxemia in extremely
preterm infants

Prospective
cohort study

20 ≤ 28 Range: 11 – 37 Intermittent
hypoxemia:
SpO2 < 80 %
during ≥ 10 s

Averaging
time:
NA
Sample rate:
0.5 Hz

Response time and relative
intermittent hypoxic
frequency during rest

Six consecutive
24 h periods
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Table 1 (continued)

Study Title Study design n GA (w) PNA (d) Definition of
hypoxemia

Measurement Monitoring
specifications

Primary outcome Monitoring
period

Corp) with LNCS Neo
(Masimo Corp))

Mueller, 2022, Germany

Early cerebral hypoxia in
extremely preterm
infants and
neurodevelopmental
impairment at 2 year of
age: A post hoc analysis

The time spent
below target
limits multiplied
by the mean
deviation from
the lower (55 %)

Incidence of intermittent
hypoxemia increases
during clinical care and
parental touch in
extremely preterm
infants

Prospective
cohort study

20 ≤ 28 22 (range 11 – 37) Intermittent
hypoxemia:
SpO2 < 80 %
during ≥ 10 s

Pulse oximetry
(Masimo, Radical 7,
Yorba, CA, USA)

Averaging
time:
2 s
Sample rate:
1 Hz

Intermittent hypoxemia Six consecutive
24 h periods

Mitchell, 2013, USA Effects of daily kangaroo
care on cardiorespiratory
parameters in preterm
infants

RCT post hoc
analysis of one
arm

38 27 – 30 Enrollment: 5
Follow-up till: 10

SpO2 < 80 % Pulse oximetry
(Nellcor)

Averaging
time:
NA
Sample rate:
NA

Hourly means of oxygen
saturation

Starting at 5 days
of life and
continuing for
5 days

Morozoff, 2009, Canada Evaluation of three
automatic oxygen
therapy control
algorithms on ventilated
low birth weight
neonates

Prospective
cohort study

7 Range 25 – 31 Range 8 – 23 SpO2 < 90 % Pulse oximetry Averaging
time:
NA
Sample rate:
NA

Percent time spent at SpO2

target (92, 93, and 94 %)
NA

Morozoff, 2017, Canada Applying computer
models to realize closed-
loop neonatal oxygen
therapy

Prospective
cohort study

7 Range 25 – 31 Range 8 – 23 SpO2 < 90 % Pulse oximetry Averaging
time:
NA
Sample rate:
1 Hz

Duration in normoxemia ≥ 1 h of manual
oxygen therapy
and ≥ 1 h of
closed-loop
therapy

Ng, 2020, UK Burden of hypoxia and
intraventricular
haemorrhage in
extremely preterm
infants

Prospective
cohort study

44 < 28 Group 1:
6.92 (SD 3.04)
hours
Group 2: 6.54 (SD
3.00) hours

rStO2 < 55 % NIRO-200NX NIRS
monitor

Averaging
time:
NA
Sample rate:
NA

Percentage of time in
hypoxia and burden of
hypoxia below each
threshold

First 24 h of life

Noroozi-Clever, 2023,
USA

Preterm infants off
positive pressure
respiratory support have
a higher incidence of
occult cerebral hypoxia

Prospective
cohort study

174 ≤ 32 NA NIRS < 67 %,
SpO2 < 85 %

NIRS (ForeSight Elite,
Edwards LifeSciences,
Irvine, CA)
Pulse oximetry (Nellcor
OxiMax, Medtronic,
Minneapolis, MN)

Averaging
time:
NA
Sample rate:
0.5 Hz

Cerebral hypoxia Until 35 weeks
corrected age for 4
– 6 h per session

Petrova, 2006, Canada Near-infrared
spectroscopy in the
detection of regional
tissue oxygenation during
hypoxic events in
preterm infants
undergoing critical care

Observational
cross-sectional
study

10 24 – 32 Enrollment: 7 SpO2 ≤ 80 %,
during ≥ 4 s
rSO2C ≤ 44 %

GE DASH 4000 (GE
Healthcare, WI)
NIRS equipment
(INVOS 5100,
Somanetics
Corporation, Troy, MI)

Averaging
time:
NA
Sample rate:
0.2 Hz (SpO2)
0.08––0.1 Hz
(NIRS)

Association between
decreased SpO2 to 70–80 %
with reduction in cerebral
and renal tissue
oxygenation

A 2-hour period

Pirr, 2013, Germany Closed versus open
endotracheal suctioning
in extremely low-birth-
weight neonates: A
randomized, crossover
trial

Randomized
controlled
crossover trial

15 < 32 Mean 4 (range 2 –
27)

SpO2 < 85 %,
SpO2 < 80 %

Pulse oximetry
(Medcare Embletta
PDS)

Averaging
time:
NA
Sample rate:
NA

Frequency, duration and
severity of
hypoxemia < 85 %, < 80 %
and bradycardia < 80 bpm

Two 4-hour
periods

Plomgaard, 2017, France,
Denmark, Spain,
Ireland, The
Netherlands, Austria,
Italy, UK

Early biomarkers of brain
injury and cerebral hypo-
and hyperoxia in the
SafeBoosC II trial

RCT post-hoc
analysis

164 < 28 Follow-up till: 3 The time spent
below target
limits multiplied
by the mean
deviation from
the lower (55 %)
limit

NIRS Averaging
time:
NA
Sample rate:
NA

The burden of hypoxia and
hyperoxia

The first 72 h of
life

Plomgaard, 2022, France,
Denmark, Spain,
Ireland, The
Netherlands, Austria,
Italy, UK

RCT post-hoc
analysis

114 < 28 Follow-up till: 3 NIRS Averaging
time:
NA
Sample rate:
NA

Medical examination,
Bayley II or III test and the
parental Ages and Stages
Questionnaire

The first 72 h of
life
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able 1 (continued)

Study Title Study design n GA (w) PNA (d) Definition of
hypoxemia

Measurement Monitoring
specifications

Primary outcome Monitoring
period

of the SafeBoosC II trial limit
Poets, 1999, Germany

(continued on next page)

Effect of doxapram on
episodes of apnoea,
bradycardia and
hypoxaemia in preterm
infants

Prospective
cohort study

15 < 32 27 (Range 12 – 60) SpO2 ≤ 80 % Pulse oximetry
(Nellcor N200 in beat-
to-beat mode; Nellcor
Puritan Bennett,
Pleasington, Calif., USA)

Averaging
time:
NA
Sample rate:
beat-to-beat
recordings,
not
specifically
described

Rate of apnea,
desaturations, bradycardia

Four 6 h periods

Poets, 2015, 25 hospitals
in Canada, USA,
Argentina, Finland,
Germany, Israel

Association between
intermittent hypoxemia
or bradycardia and late
death or disability in
extremely preterm
infants

Post-hoc
analysis of data
from inception
cohort

1019 23 0/7 – 27 6/7 Enrollment:
17.8 (IQR 11.8–
22.1) hours

SpO2 < 80 % Pulse oximetry Averaging
time:
16 s
Sample rate:
0.1 Hz

Composite of death after
36 weeks’ postmenstrual
age, motor impairment,
cognitive or language
delay, severe hearing loss,
or bilateral blindness at
18 months’ corrected age

Until 36 weeks’
PMA, and
40 weeks when
receiving
supplemental
oxygen or any
other respiratory
support at
35 weeks’ PMA

Poets, 2020, Australia Oxygenation and
intermittent hypoxia in
supine vs prone position
in very preterm infants

Prospective
crossover study

14 < 32 29 (IQR 28 – 31) SpO2 < 80 % Pulse oximetry
(Masimo Radical,
Masimo Inc)

Averaging
time:
2 – 4 s
Sample rate:
1 Hz

Baseline oxygenation and
rates of intermittent
hypoxemia

Two 4-hour
periods

Poets, 2021, Australia Mask versus nasal prong
leak and intermittent
hypoxia during
continuous positive
airway pressure in very
preterm infants

RCT secondary
analysis

20 < 32 17 (IQR 14 – 24) SpO2 < 80 %,
during ≥ 10 s

Pulse oximetry
(Masimo Radical,
Masimo, Irvine,
California, USA)

Averaging
time:
2 – 4 s
Sample rate:
1 Hz

Episodes of intermittent
hypoxemia or bradycardia

Two 12 h periods

Raffay, 2019, USA Neonatal intermittent
hypoxemia events are
associated with diagnosis
of bronchopulmonary
dysplasia at 36 weeks
postmenstrual age

Retrospective
cohort study

137 < 28 Enrollment:
1
Follow-up till:
28

SpO2 ≤ 80 %,
during ≥ 10 –
≤180 s

Pulse oximetry
(Masimo Radical,
Irving, CA)

Averaging
time:
2 s
Sample rate:
0.5 Hz

Number of intermittent
hypoxemia episodes

From the first
postnatal day
until 28 days

Raffay, 2023, USA Hypoxemia events in
preterm neonates are
associated with urine
oxidative biomarkers

Prospective
cohort study

170 < 31 Group 1: 7 ± 3
Group 2: 30 ± 5
days

SpO2 < 80 %
Intermittent
hypoxemia:
SpO2 < 80 %
during > 10 s
and < 5 min

Pulse oximetry
(Masimo, Radical 7,
Irvine, CA)

Averaging
time:
8 s
Sample rate:
1 Hz

Hypoxemia events Two 24-hour
periods preceding
urine collection

Ramanand, 2023, USA Comparison of oxygen
supplementation in very
preterm infants:
Variations of oxygen
saturation features and
their application to
hypoxemic episode based
risk stratification

Secondary
analysis RCT

25 < 32 25 (IQR 4 – 86) Intermittent
hypemoxia:
SpO2 < 85 %
during > 10 s

Pulse oximetry Averaging
time:
7 s Sample
rate:NA

Dynamic measures of
oxygen saturation patterns

Four 24 h periods

Rantakari, 2021, Finland Early oxygen levels
contribute to brain injury
in extremely preterm
infants

Retrospective
cohort study

73 < 28 Follow-up till:
3

Cumulative
SpO2 < 85 %,
cumulative
SpO2 < 90 %

NA Averaging
time:
120 s
Sample rate:
0.1 Hz

White matter injury,
secondary cortical
somatosensory processing
in
magnetoencephalography,
Hempel neurological
examination, and
developmental quotients
of Griffiths Mental
Developmental Scales

During the first 3
postnatal days
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Table 1 (continued)

Study Title Study design n GA (w) PNA (d) Definition of
hypoxemia

Measurement Monitoring
specifications

Primary outcome Monitoring
period

Reher, 2008, Germany

Occurrence of oxygen Prospective 36.5 (SD 1.6) SpO2 < 90 %, Pulse oximetry Averaging Percentage of the feeding 5 min before and

Randomised crossover
trial of different postural
interventions on
bradycardia and
intermittent hypoxia in
preterm infants

Randomized
controlled
crossover trial

18 ≤ 32 29 (Range 11 – 56) SpO2 < 85 % Pulse oximetry
(Radical, Masimo Inc,
USA)

Averaging
time:
2 s
Sample rate:
NA

Combined event rate of
desaturations (SpO2 < 85 %)
and bradycardias (heart
rate < 80 bpm)

three 4-hour
periods

Reynolds, 2019, UK Randomised cross-over
study of automated
oxygen control for
preterm infants receiving
nasal high flow

Randomized
controlled
crossover trial

30 Range 23 – 32 29 (IQR
18 – 53)
(Range 5 – 109)

SpO2 < 90 %,
during ≥ 60 s,
SpO2 < 80 %,
during ≥ 60 s

Pulse oximetry
(Masimo, Irvine, USA)

Averaging
time:
8 s
Sample rate:
NA

Percent of time spent
within target SpO2 range

Two 24-hour
periods

Rhein, 2014, USA Effects of caffeine on
intermittent hypoxia in
infants born prematurely:
A randomized clinical
trial

RCT 95 < 32 Enrollment:
Group 1:
35.6 (SD 1.1)
Group 2: 35.4 (SD
1.1)

SpO2 decrease of
at least 5 % from
the baseline to
less than 90 %,
during ≥ 5 s

Pulse oximetry
(Masimo Rad 8, USA)

Averaging
time:
2 s
Sample rate:
NA

Number of intermittent
hypoxemia events per hour
of recording and seconds
with SpO2 < 90 % per hour
of recording

Monitoring
continued until
the infant was
home for at least
one week and had
reached a PMA of
at least 40 weeks

Ruiz, 2014, USA Transcribed oxygen
saturation vs oximeter
recordings in very low
birth weight infants

Retrospective
cohort study

51 < 30 NA SpO2 between 80
– 84 %

Pulse oximetry
(Masimo Radical 7 SET
oximeters, Masimo
Corporation, Irvine, CA,
USA)

Averaging
time:
8 s
Sample rate:
0.5 Hz

Proportion of SpO2 values
recorded by the oximeter
at each saturation value
between 80 and 100 %
compared to the
proportion of hand-
transcribed values at the
same saturation value

from birth
through 36 weeks
PMA

Salverda, 2023, The
Netherlands

Comparison of two
automated oxygen
controllers in oxygen
targeting in preterm
infants during admission:
an observational study

Retrospective
cohort study

186 24 – 29 Follow-up till:
30 weeks PMA

SpO2 < 80 %,
SpO2 80 % –84 %,
SpO2 85 % –90 %,
SpO2 ≤ 90 %

Pulse oximetry
(Masimo SET, Irvine,
CA, USA)

Averaging
time:
2 – 4 s
8 s
Sample rate:
0.5 Hz

Time spent within SpO2

target range (91–95 % for
either epoch) and other
SpO2 ranges

Up to 30 weeks
PMA

Sher, 2002, USA Effect of nursing in the
head elevated tilt position
(15 degrees) on the
incidence of bradycardic
and hypoxemic episodes
in preterm infants

Randomized
controlled
crossover trial

12 26 – 31 Range 6 – 38 SpO2 < 80 % Pulse oximetry Averaging
time:
NA
Sample rate:
NA

Number of events
(hypoxemic, bradycardic,
mixed)

48 h

Tabacaru, 2017, USA Impact of caffeine boluses
and caffeine
discontinuation on apnea
and hypoxemia in
preterm Infants

Retrospective
cohort study

302 ≤ 32 Group 1:
36 ± SD 24
Group 2:
39 ± SD 21
Group 3:
39 ± SD 24

SpO2 < 88 %,
SpO2 < 75 %

Pulse oximetry Averaging
time:
8 s
Sample rate:
0.5 Hz

Number of apnea,
bradycardia, desaturation
events (central apnea of at
least 10 s with associated
decline in heart rate
to < 100 bpm and oxygen
saturation to < 80 %)

Around the time
of serum caffeine
levels, caffeine
boluses while on
maintenance
therapy, and
caffeine
discontinuation

Thewissen, 2021, Ireland,
Belgium, Czech
Republic, Canada

Cerebral oxygen
saturation and
autoregulation during
hypotension in extremely
preterm infants

Prospective
cohort study
within a RCT

89 < 28 NA rScO2 < 63 % INVOS 5100 and the
neonatal OxyAlert
NIRSensor (Covidien,
Mansfield, MA)
neonatal monitors
(IntelliVue MP70,
Philips Healthcare,
Best, The Netherlands,
or equivalent).

Averaging
time:
NA
Sample rate:
NA

Difference in
rScO2 between dopamine-
and placebo-treated
hypotensive infants, for a
period of 2 h following
commencement of the
study drug

2-hour epochs
before, after start,
and after stop of
the study drug

Thoyre, 2003, USA 22 Range 25 – 32
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Table 1 (continued)

Study Title Study design n GA (w) PNA (d) Definition of
hypoxemia

Measurement Monitoring
specifications

Primary outcome Monitoring
period

desaturation events
during preterm infant
bottle feeding near
discharge

cohort study range 33.5 – 40 during ≥ 1 s
Mild:
SpO2 85 – 89 %
Moderate:
SpO2 81 – 84 %
Severe:
SpO2 ≤ 80

(Ohmeda Biox 3700,
Boulder, CO)

time:
lowest
response
averaging
time
Sample rate:
NA

time with SpO2 < 90 %,
number of desaturation
events

throughout an
entire bottle
feeding

Van Zanten, 2014, The
Netherlands

The risk for
hyperoxaemia after
apnoea, bradycardia and
hypoxaemia in preterm
infants

Retrospective
cohort study

56 < 32 NA SpO2 ≤ 80 % NA Averaging
time:
NA
Sample rate:
0.017 Hz

Occurrence of apnoea,
bradycardia, cyanosis

NA

Van Zanten, 2017, The
Netherlands

The effect of
implementing an
automated oxygen
control on oxygen
saturation in preterm
infants

Prospective
cohort study

42 < 30 NA SpO2 ≤ 80 % Pulse oximetry
(Masimo Radical,
Masimo Corporation,
Irvine, California, USA)

Averaging
time:
8 s
Sample rate:
NA

Percentage of time spent
with SpO2 within the
intended target range (90–
95 %) when FiO2 was > 0.21

Starting from
receiving
respiratory
support by the
AVEA ventilator
and supplemental
oxygen, until a GA
of 32 weeks

Van Zanten, 2017, The
Netherlands

Improving manual
oxygen titration in
preterm infants by
training and guideline
implementation

Prospective
cohort study

136 < 30 NA SpO2 ≤ 80 % Pulse oximetry
(Masimo SET Radical
pulse oximeter,
software version 46.02,
Masimo Radical,
Masimo Corporation,
Irvine CA, USA)

Averaging
time:
NA
Sample rate:
0.017 Hz

Time spent within the
SpO2 target range (85–
95 %)

During respiratory
support

Van Zanten, 2018, The
Netherlands

Effect of a smaller target
range on the compliance
in targeting and
distribution of oxygen
saturation in preterm
infants

Prospective pre–
post
implementation
study

104 < 30 NA SpO2 < 80 % Pulse oximetry
(Masimo pulse
oximeter, Masimo
Radical, Masimo, Irvine,
California, USA)

Averaging
time:
8 s
Sample rate:
0.017 Hz

Percentage of time spent
with SpO2 levels between
90 % and 95 %when
FiO2 > 0.21

Monitoring was
continued until
infants were
transferred out of
NICU or to another
hospital

Variane, 2023, Brazil Cerebral oxygen
saturation in neonates: a
bedside comparison
between neonatal and
adult NIRS sensors

Prospective
cohort study

44 < 32 6 (Range 0 – 100) NIRS < 55 %
SpO2 < 80 %

NIRS (INVOSTM

OxyAlertTM Infant/
Neonatal NIRSensor, IS,
Medtronic and INVOSTM

Small Adult
SomaSensors, SAFB-
SM, Medtronic)

Averaging
time:
NA
Sample rate:
0.3 – 0.14 Hz

rScO2 values between the
neonatal sensor
measurement and the
adult sensor measurement

Two 3-hour
periods

Vesoulis, 2019, USA Early hypoxemia burden
is strongly associated
with severe intracranial
hemorrhage in preterm
infants

Prospective
cohort study

645 < 32 Follow-up til:
7

SpO2 ≤ 70 % Pulse oximetry
(Masimo, UVA and
CUMC)
Nellcor (WU)

Averaging
time:
8 s
Sample rate:
0.5 Hz

High-grade ICH From birth
through 7 days

Waitz, 2015, Germany Effects of automated
adjustment of the
inspired oxygen on
fluctuations of arterial
and regional cerebral
tissue oxygenation in
preterm infants with
frequent desaturations

Randomized
controlled
crossover trial

15 < 30 34 (Range, 19 – 74) SpO2 < 80 % Pulse oximetry
(Radical, Masimo,
Irvine, California, USA)

Averaging
time:
8 s
Sample rate:
0.5 Hz

Time within the
SpO2 target range (88 %-
96 %) and the area under
the curve above and below
a defined SctO2 range (±5%
of the individual SctO2

median of each infant)

Two 24-hour
periods

Zanardo, 1995, Italy Oxygen saturation in
premature neonates with
bronchopulmonary
dysplasia in a hammock

Prospective
cohort study

15 Range 27 – 30 Range 33 – 48 SpO2 < 85 % Pulse oximetry
(Ohmeda B105 3760
Pulse Oximeter)

Averaging
time:
NA
Sample rate:
NA

Differences in SpO2 values 15 min before
during, and after
hammock
‘containing’
position

Overview of the included articles with a hypoxemia definition. cFTOE = fractional cerebral oxygen extraction; d = days; FiO2 = fraction of inspired oxygen; GA = gestational age; IQR = interquartile range; n = number; min = minutes;
NICU = neonatal intensive care unit; NIRS = near-infrared spectroscopy; PMA = post menstrual age; PNA = postnatal age; RCT = randomized controlled trial; rStO2 = regional tissue oxygen saturation; rcSO2 = regional cerebral tissue
oxygenation saturation; rSO2C = regional cerebral tissue oxygen saturation; s = seconds; SD = standard deviation; SctO2 = cerebral tissue oxygen saturation; SpO2 = oxygen saturation measured with pulse oximetry; StO2 = cerebral
tissue oxygen saturation; TcPO2 = transcutaneous partial pressure of oxygen; w = weeks.
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Fig. 2. a. Frequency graph on the different hypoxemia definitions (threshold, threshold with time limit, percentage from baseline, interval and intermittent) for NIRS, pulse
oximetry and transcutaneous blood gas monitoring. b. Histogram of pulse oximetry definition based on a threshold or a threshold with a specific time limit.

Fig. 3. a. Frequency graph on the different hyperoxemia definitions (threshold, threshold with time limit) for NIRS, pulse oximetry and NIRS/pulse oximetry ratio. b.
Histogram of pulse oximetry definition based on a threshold or a threshold with a specific time limit.
increased risk of ROP, mortality, BPD, neurodevelopmental impair-
ment, and the combined outcome of death and disability. A higher
burden of hyperoxemia was related to an increased risk of ROP and
overall mortality. However, the evidence on clinically relevant def-
initions remains sparse, due to the retrospective nature of most
studies and relatively small samples sizes.

Definitions of hypoxemia and hyperoxemia were most fre-
quently reported for pulse oximetry, likely due to its widespread
use in neonatal clinical care and its non-invasive aspect. Upon
application, SpO2 levels are available almost within seconds. How-
ever, the accuracy and reliability of pulse oximetry is affected by
incorrect sensor placement, motion artefacts, skin pigment, or
low blood perfusion and can decrease even further during periods
of hypoxemia and hyperoxemia [30,97]. During anemic periods
pulse oximetry readings might appear within normal ranges, while
hypoxemia occurs at a tissue level. Given the shape of the oxygen
hemoglobin dissociation curve, pulse oximetry has certain limita-
tions when measuring hyperoxemia, as exposure of tissue to high
oxygen levels is frequently underestimated [97]. Measurement of
14
hypoxemia is also underestimated as low levels of oxygen might
not be visible in pulse oximetry measurements due to the S-
shaped curve [97]. Varying pulse oximeter averaging times and
sample rates were applied in the identified studies, which influ-
ences the estimation of the actual burden of hypoxemia and hyper-
oxemia by inaccurate assessment of oxygen fluctuations [98,99].
Due to the absence of both a safe range of cerebral oxygenation
as well as evidence for clinical benefits on the reduction of the
cerebral burden of hypoxemia and hyperoxemia, NIRS monitoring
is not commonly applied in neonatal care [6,100]. Transcutaneous
oxygen monitoring is limited by the degree of arterialisation of the
skin, relatively slow response times, and the need for frequent cal-
ibrations [97]. Inaccurate oxygen measurements can result in an
underestimation or overestimation of the burden of hypoxemia
and hyperoxemia, hampering adequate interventions.

Our study shows a broad spectrum of definitions of hypoxemia
and hyperoxemia, which included other variables such as time
within the definition [8,10,11,13–16,18,19,22–24,26,28,32,34–
37,39,40,42,48,49,53,61,64,70,76,77,80,81]. It has been hypothe-
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able 2
ssociation of defined hypoxemia or hyperoxemia with neonatal outcomes.

T
A

Exposure Association Remarks Article

ROP requiring treatment/severe ROP
Hypoxemia Cumulative exposure to hypoxemia (SpO2 < 80 %) Higher risk No association after adjustment for confounders Afshar, 2018

Desaturation events: a drop in arterial oxygen saturation (SpO2)
of ≤ 80 % for ≥ 10 s and ≤ 3 min duration

Higher risk Di Fiore, 2010

IH: SpO2 ≤ 80 %, ≥10 s and ≤ 3 min Higher risk Associated with duration of IH, variability of the time interval
between IH, IH nadir, time interval between IH of 1–20 min, and
spectral power in the range of 0.002–0.008 Hz

Di Fiore, 2012

Number of times the saturation was below the targeted range
(alarm limits were set at 83 % while
infants required oxygen supplementation and 85 %for neonates in
room air)

Higher risk The cumulative amount of time spent below an accepted targeted
range of oxygen saturations correlates with the incidence of
threshold ROP. The duration of hypoxemia was associated with
the future development of threshold ROP or mortality.

Kaufman, 2014

SpO2 of < 85 % No association No significant differences between two oxygen saturation target
ranges

Klevebro, 2019

The time spent below target limits multiplied by the mean
deviation from the 55 % limit (NIRS)

No association OR 95 %CI between 0.1–10 Plomgaard, 2017

Pulse oximeter oxygen saturation < 80 % Higher risk RR 1.95 (95 % CI 1.22–3.11) Poets, 2015
Hyperoxemia Hyperoxemic events: SpO2 increase of > 95 % for ≥ 10 s Lower risk Di Fiore, 2010

The time spent above the target limits multiplied by the mean
deviation from the upper limit of 85 % (NIRS)

No association OR 95 %CI between 0.01–10 Plomgaard, 2017

Percentage of the total SpO2 exceeding defined thresholds 90/93/
95 %

No association Vesoulis, 2016

Percentage of the total FTOE exceeding defined thresholds 20/15/
10 % (NIRS)

Higher risk Association with severe ROP at the 15 % (p = 0.04) and 10 %
(p = 0.03) thresholds

Vesoulis, 2016

Cerebral (rcSO2 NIRS) and arterial (SpO2) hyperoxia, defined as the
percentage of time spent at saturation thresholds exceeding 85
and 90 %, respectively

Higher risk
(cerebral), no
association
(arterial)

Adjusted OR (95 % CI)
> Cerebral: 1.50 (1.09–2.06) > Arterial: 0.86 (0.62–1.21)

Richter, 2019

Death within 90 days after birth/overall mortality
Hypoxemia IH: SpO2 < 80 % for ≥ 20 s and ≤ 5 min (hypoxemia < 80 %) Higher risk Only in SGA infants.

> Shorter IH (HR 6.1; 95 % CI, 3.2–11.8, p < 0.0001, interaction
p = 0.0255) > Longer IH (HR 3.6; 95 % CI, 2.0–6.3, p < 0.0001,
interaction p = 0.1747)

Di Fiore, 2017

Number of times the saturation was below the targeted range
(alarm limits were set at 83 % while
infants required oxygen supplementation and 85 %for neonates in
room air)

Higher risk Greater number of desaturation, as well as longer duration of time
belowthe saturation limits.

Kaufman, 2014

SpO2 of < 85 % No association No significant differences between two oxygen saturation target
ranges

Klevebro, 2019

The time spent below target limits multiplied by the mean
deviation from the 55 % limit (NIRS)

Higher risk OR 95 %CI between 1–10 Plomgaard, 2017

SpO2 ≤ 70 % No association Vesoulis, 2019
Hyperoxemia Number of times the saturation was above the targeted range

(alarm limits were set at 93 % while
infants required oxygen supplementation and 100 %for neonates
in room air)

Higher risk Greater number of high saturation events, as well as longer
duration of time above the saturation limits.

Kaufman, 2014

SpO2 of > 95 % No association No significant differences between two oxygen saturation target
ranges

Klevebro, 2019

The time spent above the target limits multiplied by the mean
deviation from the upper limit of 85 % (NIRS)

No association OR 95 %CI between 0.1–10 Plomgaard, 2017

(Severe) bronchopulmonary dysplasia
Hypoxemia Hypoxemia: SpO2 values < 80 %; hypoxemic episodes: SpO2 < 80 %

for ≥ 1 min
Higher risk Adjusted RR (95 % CI)

> Frequency of intermittent hypoxemic episodes: 1.72 (1.55–1.90)
at the 2nd decile and 20.40 (12.88–32.32) at the 10th decile > The
proportion of time per day with SpO2 < 80 %: 1.69 (1.52–1.88) at
the 2nd decile and 14.90 (9.51–23.36) at the 10th decile

Jensen, 2021



Table 2 (continued)

Exposure Association Remarks Article

The time spent below target limits multiplied by the mean
deviation from the 55 % limit (NIRS)

No association OR 95 %CI between 0.1–10 Plomgaard, 2017

SpO2 of ≤ 80 % for ≥ 10 s and ≤ 180 s duration
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Higher risk Increased IH event frequency and durations, and elevated IH
nadirs In infants with BPD

Raffay, 2019

Hyperoxemia The time spent above the target limits multiplied by the mean
deviation from the upper limit of 85 % (NIRS)

Lower risk OR 95 %CI between 0.1–1 Plomgaard, 2017

Neurodevelopmental impairment at 2 years of age
Hypoxemia The time spent below target limits multiplied by the mean

deviation from the 55 % limit (NIRS)
No association Moderate or severe neurodevelopmental impairment, OR 1.95

(0.61–6.02)
Plomgaard, 2022

Cumulative time SpO2 < 85 % and < 90 % Higher risk More SpO2 measurements < 85 % and higher cumulative times
when having SpO2 < 85 %

Rantakari, 2021

Death and disability/neurodevelopment impairment (combined)
Hypoxemia Hourly StO2 average of 67/StO2 threshold of 67 % (NIRS) Higher risk StO2 < 67 was the only predictor for death or neurodevelopmental

impairment (OR 2.75, 95 % CI 1.006, 7.5132, p = 0.049)
Katheria, 2021

rcSO2 total area below 55 %, and increased thresholds by 5 % for
the very preterm group (NIRS)

Higher risk a greater degree of hypoxia for the moderate compared to the
normal outcome group and moderate compared to the severe
outcome group.

Kenosi, 2018

Pulse oximeter oxygen saturation < 80 % Higher risk RR 1.53 (95 % CI 1.21–1.94) Poets, 2015
Neurodevelopmental impairment or death (combined)
Hyperoxemia rcSO2 total area above 85 %, and increased thresholds by 5 % for

the very preterm group (NIRS)
No association Kenosi, 2018

Composite of death after 36 weeks’ PMA, motor impairment, cognitive or language delay, severe hearing loss, or bilateral blindness at 18 months’ corrected age.
Hypoxemia Pulse oximeter oxygen saturation < 80 % Higher risk RR 1.53 (95 % CI 1.21–1.94) Poets, 2015
Cognitive or language delay
Hypoxemia SpO2 < 80 % Higher risk RR 1.47 (95 % CI 1.13–1.90) Poets, 2015

Time with SpO2 < 75 % Higher risk and no
association resp.

Rho = − 0.237, p = 0.034 (cognitive delay)Rho = − 0.078, p = 0.333
(language delay)

Dassios, 2022

Motor impairment
Hypoxemia SpO2 < 80 % Higher risk RR 3.59 (95 % CI 2.02–6.40) Poets, 2015

Time with SpO2 < 75 % Higher risk Rho = − 0.243, p = 0.031 Dassios, 2022
Early intraventricular haemorrhage or death (combined)
Hypoxemia % time rScO2 < 63 % Higher risk OR 1.027 (95 % CI 1.004–1.051)No significance after correcting for

GA
Thewissen, 2021

Intraventricular haemorrhage
Hypoxemia Threshold of 55 % and reference values from 60 %–87 % were

investigated in conjunction with the threshold from our Χ2
analysis to calculate burden of hypoxia and percentage of time
spent below each threshold

Higher risk With a threshold of 71 %, percentage of time in hypoxia was lower
by 12.2 % with a 95 % CI of (−25.7 to 1.2) (p = 0.073), and the
burden of hypoxia was lower by 29.2 %hour (%h) (95 %CI − 55.2
to − 3.1)%h (p = 0.012) in infants without IVH than those with IVH.

Ng, 2020

The time spent below target limits multiplied by the mean
deviation from the lower (55 %) limit

Higher risk OR 95 %CI between 1–10 Plomgaard, 2017

SpO2 ≤ 70 % Higher risk OR 6.56 Vesoulis, 2019
Hyperoxemia The time spent above the target limits multiplied by the mean

deviation from the upper limit (85 %)
No association OR 95 %CI between 0.1–10 Plomgaard, 2017

proportion of measured SpO2 samples > 95 % Lower risk Vesoulis, 2019
Necrotising enterocolitis
Hypoxemia The time spent below target limits multiplied by the mean

deviation from the lower (55 %) limit
No association OR 95 %CI between 0.1–10 Plomgaard, 2017

Hyperoxemia The time spent above the target limits multiplied by the mean
deviation from the upper limit (85 %)

No association OR 95 %CI between 0.01–10 Plomgaard, 2017

Symptomatic childhood wheezing requiring prescription asthma medication
Hypoxemia Intermittent hypoxemia: SpO2 ≤ 80 % for ≥ 10 s and ≤ 180 s Higher risk Adjusted RR (95 % CI)

> Day 1–3: 1.01 (1.004, 1.01)
> Day 1–7: 1.01 (1.01,1.02) > Day 1–28: 1.00 (1.00, 1.00)

Di Fiore, 2019

Bronchopulmonary dysplasia-associated pulmonary hypertension (BPD-PH)
Hypoxemia IH: defined as SpO2 < 80 % and < 70 % Higher risk IH events of longer duration threshold < 80 % (6; IQR, 5–8 vs. 7;

IQR, 6–8; P = 0.03) or < 70 % (58; IQR, 41–89 vs. 105; IQR, 54–150;
P = 0.008)

Gentle, 2022

Overview of the association between hypoxemia and hyperoxemia definition and clinical outcome. IH = intermittent hypoxemia; ROP = retinopathy of prematurity; SGA = small for gestational age; FTOE = fractional tissue oxygen
extraction; NIRS = near-infrared spectroscopy; rcSO2 = regional cerebral tissue oxygen saturation; StO2 = tissue oxygen saturation; SpO2 = oxygen saturation measured with pulse oximetry; CI = Confidence interval; RR = relative
risk; OR = odds ratio.
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sized that the harmful effects of intermittent hypoxemia depend
on the frequency, timing, severity, and duration of hypoxemic
events [101]. Using these parameters, high risk oxygenation pat-
terns can be distinguished from low risk oxygenation patterns to
identify the cumulative burden of hypoxemia and hyperoxemia.
Multiple studies calculated other compound parameters as sec-
ondary outcomes, including the number of episodes above or
below a certain threshold, a relative or absolute time spent at a
threshold, area under or above a threshold, time between events,
and variability in oxygenation [4,8–10,12–20,22,24,25,28–30,32,
33,35–39,41,42,46,48–51,53–56,59,61,64–67,70–75,77,78,80–82,
85–87,89–96]. In the case of hyperoxemia, measurements need to
be corrected for the administration of supplemental oxygen. Mea-
sured hyperoxemia without additional support is likely to be less
damaging than hyperoxemia while breathing more than 21 % oxy-
gen. Although these compound parameters could provide more
insight into the actual burden of hypoxemia and hyperoxemia,
their clinical relevance and the applicability of these methods are
unknown. This is complicated by the constantly evolving postnatal
course of oxygenation in preterm infants [34].

Strengths and limitations

The results of this systematic review can guide the application
of definitions for hypoxemia and hyperoxemia in current guideli-
nes and future research. Using a systematic approach, this study
provides a thorough overview of the available literature defini-
tions. It allows for a step towards clinical integration of scientifi-
cally used definitions for hypoxemia and hyperoxemia. Evidence
on the relationship between exposure to hypoxemia, hyperoxemia
and adverse outcomes is still scarce and limited to studies with
mostly small sample sizes and thus remains uncertain. The median
sample size of the included studies investigating associations with
adverse outcomes was 117, with the studies of Poets et al., Di Fiore
et al., and Jensen et al. as outliers with more than 1000 participants
[4,36,53]. In addition, while numerous definitions were found, a
limited number was associated with neonatal outcome. As a result,
the clinical relevance and therefore the shortcomings could not be
sufficiently investigated. The heterogeneity of the presented
hypoxemia and hyperoxemia definitions, with varying monitoring
techniques and settings, may misdirect the search for clinically rel-
evant quantifications of harmful and beneficial levels of oxygena-
tion. No hyperoxemia definition using transcutaneous blood gas
monitoring was identified in the systematic search, which can be
explained by our inclusion and exclusion criteria, including studies
with a gestational age ≤ 32 weeks, while some studies used birth
weight for subject inclusion [102,103]. Less definitions of hyperox-
emia were related to neonatal outcome, while, among others, stud-
ies investigating pulse oximetry target ranges, such as the STOP-
ROP and BOOST trials have shown the link between high SpO2 tar-
gets and poor outcome. Previous reviews suggested an upper limit
of 80 torr for transcutaneous oxygen monitoring [97,104]. Studies
reporting relevant associations between exposure to hypoxemia
and hyperoxemia and adverse outcome could have been missed
or excluded if no quantifiable definition was provided. The avail-
ability of a quantifiable definition was the main outcome of this
systematic review, which could have resulted in these omissions.

Implications for clinical care and future research directions

In current clinical care, oxygen therapy is mostly titrated based
on pre-set target ranges, although the optimal SpO2 target ranges
are still uncertain and adherence is suboptimal as shown in the
NeOProM studies [105]. It is also unknown what alarm settings
should be applied to reach optimal adherence to target ranges.
17
The patient-specific hypoxemia and hyperoxemia burden is not
commonly quantified for clinical use and guidelines provide no
information for management based on the burden, despite the
known associations between the oxygen burden and adverse out-
comes. Introducing new methods to maintain oxygen levels within
the specific range could lead to better, more efficient and individ-
ualized neonatal care. Monitoring techniques should be combined
to increase the measurement accuracy of the hypoxemic and
hyperoxemic burden. Respiratory interventions should not be
based on alarm limits and target ranges only, the hypoxemic and
hyperoxemic burden should be accounted for. The data infrastruc-
ture of NICUs needs to allow for processing and integrating cur-
rently available data streams. This is essential to achieve
quantification of hypoxemia and hyperoxemia. Quantification of
hypoxemia and hyperoxemia should at least be based on the most
frequently used definitions in former studies (i.e. threshold
of < 80 % and > 95 % for pulse oximetry, < 40 torr and > 80 torr
for transcutaneous blood gas monitoring, and < 55 % and > 85 %
for NIRS). The feasibility and added value of the use of more com-
pound parameters to determine the hypoxemic and hyperoxemic
burden needs to be investigated. The association between expo-
sure to hypoxemia or hyperoxemia and short-term and long-
term outcomes needs to be investigated more extensively to iden-
tify optimal oxygen management in neonatal care. Future studies
should be conducted in a structured manner to enhance the knowl-
edge on clinically relevant oxygenation levels and the hypoxemic
or hyperoxemic burden and to enhance development of guidelines
for interventions.
CONCLUSION

In the large range of hypoxemia and hyperoxemia definitions in
preterm infants we found similarities, most frequently a threshold
of < 80 % and > 95 % for pulse oximetry, < 40 torr and > 80 torr for
transcutaneous blood gas monitoring, and < 55 % and > 85 % for
cerebral NIRS. Exposure to hypoxemia and hyperoxemia is found
to be associated with the development of adverse outcomes,
including ROP, mortality, BPD, neurodevelopmental impairment,
and the combined outcome of death and disability. The findings
of our review suggest that the relation between clinical application
of found definitions and adverse neonatal outcomes is insufficient
for direct implementation.
Future directions for research

Detailed analysis on the duration, frequency, timing and sever-
ity of hypoxemic and hyperoxemic events is required to define
the actual burden.

•

• Clinical guidelines that uniformly apply a single definition and
method to determine the burden of hypoxemia and hyperox-
emia are required for early interventions that could potentially
improve neonatal outcomes.
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