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Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) is 
the umbrella term that comprises metabolic dysfunction-associated 
steatotic liver, or isolated hepatic steatosis, through to metabolic 
dysfunction-associated steatohepatitis, the progressive 
necroinflammatory disease form that can progress to fibrosis, cirrhosis 
and hepatocellular carcinoma. MASLD is estimated to affect more than 
one-third of adults worldwide. MASLD is closely associated with insulin 
resistance, obesity, gut microbial dysbiosis and genetic risk factors. 
The obesity epidemic and the growing prevalence of type 2 diabetes 
mellitus greatly contribute to the increasing burden of MASLD. The 
treatment and prevention of major metabolic comorbidities such as 
type 2 diabetes mellitus and obesity will probably slow the growth of 
MASLD. In 2023, the field decided on a new nomenclature and agreed on 
a set of research and action priorities, and in 2024, the US FDA approved 
the first drug, resmetirom, for the treatment of non-cirrhotic metabolic 
dysfunction-associated steatohepatitis with moderate to advanced 
fibrosis. Reliable, validated biomarkers that can replace histology for 
patient selection and primary end points in MASH trials will greatly 
accelerate the drug development process. Additionally, noninvasive 
tests that can reliably determine treatment response or predict 
response to therapy are warranted. Sustained efforts are required 
to combat the burden of MASLD by tackling metabolic risk factors, 
improving risk stratification and linkage to care, and increasing access 
to therapeutic agents and non-pharmaceutical interventions.
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comorbidities and who have failed medical management for weight 
reduction16. In March 2024, the US FDA approved resmetirom, a thyroid 
hormone receptor-β (THRβ) agonist, for the treatment of MASH17.  
Resmetirom is advised to be used along with diet and exercise18 and  
several other promising therapeutic agents have demonstrated positive  
results in late-stage trials19–21.

In 2023, MASLD has undergone a change in nomenclature and 
definition from the original term of nonalcoholic fatty liver disease 
(NAFLD)22 (Boxes 1 and 2). The new terminology of MASLD now requires 
the presence of steatosis and at least one cardiometabolic risk fac-
tor (Table 1). In addition, a separate category for liver disease with 
both metabolic and alcohol components, termed metabolic and 
alcohol-related/associated liver disease (MetALD), was proposed 
(Fig. 1). These changes have several important implications for the 
field in terms of disease awareness, stigma, drug development and the 
need for growing the community of practice and addressing MASLD 
as a public health threat.

In this Primer, which focuses on adults, we examine the change in 
nomenclature and definition of MASLD and its implications. We also 
discuss the epidemiology, mechanisms, natural history and public 
health context of MASLD. Additionally, we review the role of NITs in 
the diagnosis, prognosis and assessment of the treatment response 
in MASH. We also examine risk stratification strategies and emerging, 
including approved, therapies for MASH. Finally, we propose future 
directions including priorities for research and action, including in 
drug development23.

Epidemiology
The studies reported in the following section provide data on the preva-
lence, incidence and burden of MASLD. These studies were mostly 
performed before the nomenclature change in 2023. In the future, we 
anticipate that more studies will provide data detailing the similarities 
and differences in epidemiology between MASLD and MetALD.

Prevalence of MASLD
A systematic review and meta-analysis of 92 observational, 
population-based studies published in 2023 that included 9,361,716 

Introduction
With an estimated prevalence of 30% among adults, metabolic 
dysfunction-associated steatotic liver disease (MASLD) is the most 
common liver disease worldwide1. MASLD is the umbrella term encom-
passing metabolic dysfunction-associated steatotic liver (MASL), or 
isolated hepatic steatosis (which is considered benign in terms of 
liver-related prognosis), through to metabolic dysfunction-associated 
steatohepatitis (MASH), which may lead to progressive liver fibrosis 
and long-term clinical outcomes2,3. MASLD is characterized by hepatic 
steatosis among individuals who consume little or no alcohol and have 
metabolic risk factors and no other cause for hepatic steatosis or liver 
disease. MASH is the progressive necroinflammatory form of MASLD, 
defined histologically by the presence of lobular inflammation and 
ballooning4 (cellular enlargement, 1.5–2 times the normal hepatocyte 
diameter, with rarefied cytoplasm), which can progress to fibrosis, 
cirrhosis and hepatocellular carcinoma (HCC)5. People with MASLD 
have worse quality of life and higher comorbidity burden than people 
without MASLD6,7.

MASLD is a rapidly rising cause of liver-related morbidity and mor-
tality, including HCC, and a leading indication for liver transplantation8. 
The increasing prevalence of MASLD is in part owing to the grow-
ing prevalence of type 2 diabetes mellitus (T2DM) and obesity9,10. 
MASLD generally progresses slowly over years from steatosis to cir-
rhosis, but the presence of risk factors such as T2DM, certain genetic 
polymorphisms and obesity may accelerate disease progression11–13.

Histology is the reference standard for diagnosing MASLD; how-
ever, liver biopsy is invasive, has potential risks and is not appropri-
ate for widespread application. On the other hand, blood-based and 
imaging-based noninvasive tests (NITs) are helpful in MASLD diagnosis, 
risk stratification and disease progression prediction, and show promise  
for assessing treatment response14. The discovery of novel MASLD 
risk loci has led to the identification of disease modifiers, potentially 
allowing for better risk stratification and therapeutic exploitation15.

Lifestyle measures including dietary modifications, increment-
ing physical activity and weight reduction remain the cornerstone 
of MASLD management3. Bariatric surgery is a helpful option for 
people living with morbid obesity or people living with associated 

Box 1 | Need for a new nomenclature and proposal for a change in name to MAFLD
 

In 1980, a poorly understood disease that histologically resembled 
alcohol-associated hepatitis was described343.This study observed 
that people with this condition had moderate obesity and have type 2 
diabetes mellitus. The term nonalcoholic fatty liver disease (NAFLD) 
was developed to describe the presence of steatosis in at least 
5% of hepatocytes, in the absence of heavy alcohol consumption. 
Similarly, the term ‘nonalcoholic steatohepatitis’ was coined to refer 
to the subset of NAFLD with hepatocyte ballooning and lobular 
inflammation.

The original terms NAFLD and nonalcoholic steatohepatitis have 
several notable limitations, primarily that they describe what the 
disease is not, rather than what the disease is344. Furthermore, NAFLD 
was employed as a diagnosis of exclusion, suggesting a diseased liver 
without signs of other pathologies such as viral hepatitis or autoimmune 
liver disease, which may be inappropriate given that NAFLD is the most 
common liver disease worldwide and often coexists with other causes 
of chronic liver diseases1,345. Finally, the terms ‘alcoholic’ and ‘fatty’ in the 

name also had the potential to be associated with stigma among some 
patients and health-care providers346.

To address some of the limitations associated with the original 
terminology, a panel of hepatologists proposed a change in 
nomenclature from NAFLD to metabolic dysfunction-associated 
fatty liver disease (MAFLD)347. The definition of MAFLD allowed for the 
existence of concomitant liver diseases, such as alcohol-related or 
associated liver disease and viral hepatitis, which might accelerate 
disease progression compared with ‘pure’ NAFLD without other liver 
diseases. This proposal for a change in nomenclature drew several 
concerns348,349, such as blurring the lines between the pathogenesis 
and natural history of alcohol-related or associated liver disease 
and NAFLD350,351, and the possibility of perpetuating stigma with the 
continued us of the term ‘fatty’346. Some experts wondered whether 
the change in the disease definition might set back progress in 
drug and biomarker development. These issues set the stage for a 
multinational, multistakeholder consensus for a new nomenclature.
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individuals spanning six continents estimated the global prevalence 
of MASLD to be 30% (ref. 1). In this meta-analysis, trend analysis esti-
mated that the prevalence increased by 50%, from 25% in 1990–2006 to 
38% in 2016–2019 (Fig. 2). The estimated prevalence of MASLD ranged 
from 25% in Western Europe to 44% in Latin America. In the same study, 
the estimated prevalence of MASLD among people <45 years of age, 
45–49 years of age and >50 years of age was reported to be 30%, 31% 
and 29%, respectively. The authors of the study performed multiple 
subgroup analyses to account for differences in diagnostic modality, 
cut-points used for defining steatosis and varying thresholds used for 
alcohol. The estimates in this large meta-analysis were heterogeneous, 
hence caution must be exercised when interpreting the results.

In addition, data suggest that the prevalence of MASLD differs 
by ethnicity. A 2017 meta-analysis of 34 studies that included 368,569 
patients in the USA estimated a prevalence of MASLD of 22.9%, 14.4% 
and 13.0% in United States Hispanic, white and Black individuals,  
respectively24. However, data outside the USA are more limited.  
A meta-analysis of 392 studies and 2,054,554 individuals established 
that the prevalence of MASLD varied by ethnicity, with the highest 
prevalence in the Hui (53.8%; 95% confidence interval (CI) 26.7–80.8) 
and Uygur populations (46.6%; 95% CI 41.1–52.2), and in the northwest 
region of mainland China (33.8%; 95% CI 28.7–38.9)25.

Prevalence of MASH
As the diagnosis of MASH requires a liver biopsy, population-based 
estimates of its prevalence are limited. In the aforementioned 
meta-analysis1, the global prevalence of MASH was estimated by mul-
tiplying the proportion of MASH in patients with MASLD by the preva-
lence of MASLD in the general population. To reduce selection bias, 
only studies in which patients underwent voluntary biopsies instead of 
being referred for a biopsy based on a clinical indication were included 
in this calculation1. This study estimated that the global prevalence 

of MASH was ~5% in the general population, whereas the prevalence 
of MASH in individuals with MASLD was ~16% (ref. 1). These estimates 
require cautious interpretation given the limited number of studies 
that provided estimates for the prevalence of MASH; however, these 
estimates provide a helpful guide for care providers and health-care 
policymakers until more definitive studies can be performed.

Incidence of MASLD
A meta-analysis of 63 studies and >1.2 million individuals, with a median 
study year spanning from 2000 to 2016, estimated an incidence of 
4,613 cases of MASLD per 100,000 person-years26. The studies in this 
meta-analysis primarily analysed Asian populations and determined 
that MASLD incidence increased from ~2,000 per 100,000 person-years 
in 2000 to ~7,000 per 100,000 person-years in 2015. The incidence of 
MASLD nearly tripled in individuals with overweight or obesity com-
pared with those with a normal weight (8,417 per 100,000 person-years 
versus 3,358 per 100,000 person-years, P < 0.0001). MASLD incidence 
was higher in men than women (5,944 per 100,000 person-years versus 
3,672 per 100,000 person-years, P < 0.0001)26. The meta-analysis that 
included 12 studies in its MASLD incidence analysis, again mainly from 
Asia, reported comparable findings, estimating a pooled incidence of 
48.9 cases per 1,000 person-years1. This study reported an increase of 
58% in the incidence of MASLD from 1994–2006 to 2010–2014. Data on 
MASLD incidence outside Asia are limited. One study from Minnesota, 
USA, estimated that the incidence of MASLD increased from 62 to 329 
per 100,000 population over the study period 1997 to 2014 (ref. 27). 
Together, these findings strongly suggest an increase in the incidence 
of MASLD over time.

Burden of mortality associated with MASLD
Global estimates of mortality related to MASLD are limited. The Global 
Burden of Disease Study provides a comprehensive overview of the 

Box 2 | Development of the consensus statement for the term MASLD
 

Multiple concerns led to the development of a multistakeholder 
consensus Delphi statement led by the American Association for 
the Study of Liver Diseases, the European Association for the Study 
of the Liver and the Asociación Latinoamericana para el Estudio 
del Hígado337. An international panel of 236 panellists, including 
hepatologists, gastroenterologists, endocrinologists and patient 
group representatives from 56 countries participated in four online 
surveys and two hybrid meetings. The panel agreed to use the 
umbrella term steatotic liver disease to denote people living with 
hepatic steatosis337. Under this umbrella term, the name agreed 
upon to replace nonalcoholic fatty liver disease was metabolic 
dysfunction-associated steatotic liver disease (MASLD). The new 
definition of MASLD requires the presence of hepatic steatosis with 
at least one cardiometabolic risk factor (utilizing cardiometabolic 
criteria widely accepted by cardiology and metabolic societies)61. 
Under the new nomenclature, metabolic dysfunction-associated 
steatohepatitis replaces the previous term nonalcoholic 
steatohepatitis. Importantly, a new category called metabolic and 
alcohol-related or associated liver disease was defined, to account 
for people living with MASLD who consume increased daily amounts 
of alcohol (≥20 g to ≤50 g for women and ≥30 g to ≤60 g for men). 

The presence of hepatic steatosis when alcohol consumption is 
>50 g and >60 g of per day in women and men, respectively, is now 
termed alcohol-related or associated liver disease on the basis 
that the course of the disease severity is mainly attributable to 
alcohol. However, an accurate assessment of alcohol intake may 
be challenging. Self-reported questionnaires, such as the Alcohol 
Use Disorders Identification Test–Consumption, may underestimate 
alcohol consumption in people with presumed MASLD, compared 
with biomarkers such as hair or urinary ethyl glucuronide, or whole 
blood phosphatidylethanol243. A phosphatidylethanol value of 
~25 ng/ml may be appropriate to detect alcohol consumption 
consistent with metabolic and alcohol-related or associated liver 
disease352,353.

A major concern was how any modification would impact 
biomarker and therapeutic development. Multiple studies354–357 
have since demonstrated high concordance between the old and 
new nomenclature and that the definition adjustments are unlikely 
to affect biomarker or therapeutic development, as the criteria 
for MASLD identify nearly the same population defined by the old 
definition. The terms nonalcoholic fatty liver disease and MASLD are 
thus widely used interchangeably.

http://www.nature.com/nrdp
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estimated mortality associated with MASLD (including cirrhosis)28. 
In 2019, 134,000 deaths were estimated to be associated with MASLD 
worldwide28,29. By contrast, hepatitis C, hepatitis B and alcohol con-
tributed to an estimated 395,000, 331,000 and 372,000 deaths, 
respectively, as a result of cirrhosis and chronic liver diseases28. Fur-
thermore, the absolute number of estimated deaths associated with 
MASLD ranged from 12,164 in the Eastern Mediterranean to 31,176  
in the Southeast Asia region, whereas age-standardized death rates 
(ASDRs) ranged from 0.8 to 3.5 per 100,000 population28 (Fig. 2 and 
Table 2). The dissociation observed between the high number of deaths  
associated with MASLD in Southeast Asia and the relatively low preva-
lence estimates may in part be related to underdiagnosis. ASDRs for  
MASLD ranged from 0.2 deaths per 100,000 population in Singapore to  
14.0 deaths per 100,000 population in Egypt28. However, these esti-
mates require cautious interpretation as the analyses did not account 
for the impact of MASLD as a common cofactor in other causes of 
chronic liver diseases. Where data for certain countries or regions were 
not available, findings depended on modelling and past trends, poten-
tially resulting in discrepancies in the accuracy of the data. Additionally,  
a substantial proportion of cases labelled as ‘other causes’ might have 
been due to MASLD, resulting in an underestimation of its burden. 
Furthermore, from 2009–2019, ASDRs related to MASLD increased 
(annual percentage change +1.33%)30, confirming that mortality rates 
associated with MASLD have increased.

Natural history of MASLD
MASH leads to fibrosis, cirrhosis, decompensation and HCC (Fig. 3). 
Several studies have shown that the major determinant of long-term 
outcomes in MASLD is the hepatic fibrosis stage, rather than the 

presence of MASH per se31. In a prospective United States study of 1,773  
participants with biopsy-confirmed MASLD from 2009 to 2019, partici-
pants were followed-up for a median of 4 years and monitored for the 
development of hepatic and extrahepatic complications32. The inci-
dence of liver-related events, including ascites, variceal haemorrhage 
and encephalopathy correlated with the hepatic fibrosis stage. Partici-
pants with stage 4 hepatic fibrosis had a higher incidence of T2DM and 
a greater decline in glomerular function than participants with stage 
0–2 fibrosis. Several meta-analyses have reported consistent findings 
regarding the increasing all-cause and liver-related mortality with each 
increment in fibrosis stage33,34. A systematic review and meta-analysis 
of 11 paired biopsy studies, including observational studies and ran-
domized trials, estimated that hepatic fibrosis progresses at a rate of  
~1 stage every 14 years (0.07 stages per year) in individuals with MASL 
and 1 stage every 7 years (0.14 stages per year) in individuals with 
MASH12. Variability and selection bias in observational studies owing 
to biopsies not being done according to standard protocol may explain 
some of the discrepancies in the estimates of fibrosis progression35. 
Several factors influence disease progression rates, notably histologic 
disease activity (NAFLD activity score), weight gain and the presence 
of T2DM36. In addition, MASLD is a dynamic disease, with fibrosis  
progressing in some individuals, fibrosis regressing in others and 
fibrosis persisting at the same stage without treatment, contributing 
to heterogeneity in the natural history37,38.

Insulin resistance is another major risk factor for MASLD pro-
gression. A large meta-analysis reported a high prevalence of MASLD 
(65%), MASH (32%) and advanced fibrosis (15%) in individuals with 
T2DM39. In a study of 447 participants with MASLD, those with T2DM 
had faster fibrosis progression on histology than those without T2DM38. 

Table 1 | Defining criteria of steatotic liver diseases

Features Type of liver disease

NAFLD MAFLD MASLD MetALD ALD

Hepatic steatosis Required Required Required Required Required

Cardiometabolic criteria Not required Either type 2 diabetes mellitus or 
overweight/obesity or two of the 
following:
High waist circumference
Hypertension or antihypertensive 
treatment
Elevated triglyceride levels or 
lipid-lowering treatment
Low HDL-cholesterol levels or 
lipid-lowering treatment
Prediabetes
Homeostasis model assessment 
of insulin resistance score ≥2.5
Plasma high-sensitivity C-reactive 
protein level >2 mg/l

At least one of the following:
Overweight/obesity or high 
waist circumference
Prediabetes or diabetes
Hypertension or 
antihypertensive treatment
Elevated triglyceride levels 
or lipid-lowering treatment
Low HDL-cholesterol levels 
or lipid-lowering treatment

At least one of the following:
Overweight/obesity or high 
waist circumference
Prediabetes or diabetes
Hypertension or 
antihypertensive treatment
Elevated triglyceride levels 
or lipid-lowering treatment
Low HDL-cholesterol levels 
or lipid-lowering treatment

Not required

Alcohol consumption <20 g/day for 
women and 
<30 g/day 
for men

No thresholds <20 g/day for women and 
<30 g/day for men

20–50 g/day for women and 
30–60 g/day for men

>50 g/day for 
women and 
>60 g/day for men

Viral hepatitis and other 
causes of liver disease

Excluded Allows for concomitant liver 
diseases, such as viral hepatitis

Allows for concomitant 
liver diseases, such as viral 
hepatitis

Allows for concomitant 
liver diseases, such as viral 
hepatitis

Allows for 
concomitant liver 
diseases, such as 
viral hepatitis

ALD, alcohol-related or associated liver disease; HDL, high-density lipoprotein; MAFLD, metabolic dysfunction-associated fatty liver disease; MASLD, metabolic dysfunction-associated 
steatotic liver disease; MetALD, metabolic and alcohol-related or associated liver disease; NAFLD, nonalcoholic fatty liver disease. Data from refs. 3,22,336–338.
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A study of 2,016 participants with MASLD characterized by magnetic 
resonance elastography (MRE) showed that T2DM was associated 
with a significantly increased risk of hepatic decompensation and 
HCC, even after adjusting for baseline liver stiffness40. However, only 
a fraction of people with T2DM will develop liver-related complica-
tions, influenced by the presence of advanced fibrosis or cirrhosis at 
baseline and age. In a cohort study from Belgium involving 1,068 adults 
(37–60 years of age) with diabetes mellitus (82% with T2DM and 18% 
with T1DM) without evidence of advanced liver disease at baseline, the 
cumulative incidence of hepatic decompensation or HCC at 20 years 
was 1.5% (ref. 41). A study from Hong Kong involving 7,028 individuals 
with MASLD (5% with cirrhosis) and T2DM reported that the 10-year 
cumulative incidence of hepatic decompensation ranged from 1.5% in 
those <40 years of age to 3.5% in those ≥50 years of age42. A nationwide 
study from Sweden of 406,770 individuals with T2DM determined that 
1.3% developed severe liver complications, defined here as cirrhosis, 
oesophageal varices, hepatic decompensation, HCC, liver transplan-
tation or liver-related death, after a median follow-up of 7.7 years43. 
In a nationwide population-based study of patients from outpatient 
clinics in Sweden, MASLD was associated with an increased risk of the 
development of microvascular diseases, defined in this study as chronic 
kidney disease, retinopathy or neuropathy, in individuals with T2DM44. 
A retrospective population-based study of prospectively collected data 
from 1996 to 2016 of 5,123 individuals with MASLD in Minnesota, USA, 
determined that the risk of progression from MASLD to cirrhosis was 
3% over 15 years11. Almost 8% of individuals with compensated cirrhosis 
developed decompensation annually, whereas the risk of progression 
to subsequent liver events or death was 32% annually among those with 
a first hepatic decompensation, defined in this study as a new onset 
of ascites, variceal bleeding, hepatic encephalopathy or jaundice11. 
The 20-year cumulative incidence of death was 22% in this cohort 
and the dominant causes of death were malignancy of any aetiology 
(26%) and cardiovascular disease (20%), whereas liver-related causes 
contributed ~6%.

A meta-analysis of 2,016 patients with MASLD characterized by 
MRE (mean liver stiffness measurement, a noninvasive test to estimate 
the severity of liver disease, on MRE of 6.75 kPa) at tertiary institutions 

from the USA, Japan and Turkey determined that 11% developed hepatic 
decompensation over a median follow-up of 3.2 years45. The develop-
ment of ascites was the most common presentation of first decompen-
sation and the median survival from first decompensation to death or 
transplant was ~2 years45. Collectively, these data demonstrate that, at 
a population level, MASLD is a slowly progressive disease, with a low 
number of afflicted individuals advancing to more severe stages of 
liver disease. Liver-related outcomes afflict a small proportion of those 
with MASLD; however, as one-third of the global adult population has 
MASLD, this limited proportion represents a considerable number of 
events and patients to manage46.

MASLD-related HCC
The prevalence of MASLD and MASLD-related HCC is increasing 
over time, keeping in line with increased incidence of obesity and 
T2DM47,48. From 2010 to 2019, MASLD-related liver cancer was the 
fastest-growing cause of liver cancer related deaths, in contrast to 
viral hepatitis-associated liver cancer, which has declined owing to 
optimized diagnosis and treatment49. In 2021, the estimated number 
of deaths linked to hepatitis B virus-related, hepatitis C virus-related 
alcohol-related and MASLD-related liver cancer were 181,000, 147,000, 
92,000 and 41,000, respectively50. Incidence and death rates from 
MASLD-related HCC in women are comparable to death rates in men, 
contrary to other aetiologies of HCC where the burden in men far higher 
than in women51. MASLD is now the leading cause of HCC-associated 
liver transplant candidates in the USA8. The incidence of HCC estimated 
to be 3.8 per 100 person-years in individuals with MASLD-related cir-
rhosis and 0.03 per 100 person-years among people with non-cirrhotic 
MASLD52. Over a third of MASLD-related HCC develops in individuals 
without cirrhosis, potentially because MASLD may have several inde-
pendent risk factors for HCC, such as T2DM or obesity53. Whether select 
individuals without cirrhosis, such as those with T2DM or those with 
genetic risk variants, may benefit from HCC surveillance is ambiguous 
owing to limitations in the available data5,54,55. The presence of MASLD 
may reduce the test performance of HCC surveillance with ultrasonog-
raphy, related to obesity and heterogeneity of the hepatic echotexture 
and, therefore, better imaging methods are required56. The burden of 

MASLD
Hepatic steatosis, determined 
either by imaging or histology

Alcohol consumption
• Up to 20 g/day and 30 g/day for  
 females and males, respectively

At least one of the following 
cardiometabolic criteria
• Overweight or obesity
• Prediabetes or diabetes
• Hypertension
• High triglycerides or lipid-    
 lowering treatment
• Low HDL cholesterol

MetALD ALD Cryptogenic 
SLD

Drug-induced 
liver injury

Monogenic 
diseases

Miscellaneous

Specific 
aetiology SLD

SLD

140/210 280210 350/420

Weekly alcohol intake (g)

20/30 4030 50/60

Average daily alcohol intake (g)

MASLD
predominant

ALD
predominant

Fig. 1 | The updated definition for SLD. Metabolic dysfunction-associated 
steatotic liver disease (MASLD) is defined by the presence of hepatic steatosis, 
limited alcohol consumption and the presence of at least one cardiometabolic 
criterion. Metabolic dysfunction-associated steatohepatitis represents the 
necroinflammatory subset of MASLD that can progress to liver fibrosis and 

hepatocellular carcinoma. The presence of medication for type 2 diabetes 
mellitus and hypertension count as fulfilling criteria for type 2 diabetes mellitus 
and hypertension, respectively. ALD, alcohol-related or associated liver disease; 
HDL, high-density lipoprotein; MetALD, metabolic and alcohol-related or 
associated liver disease; SLD, steatotic liver disease.
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MASLD-related HCC is projected to rise substantially within the next 
decade and MASLD is likely to eventually supersede viral hepatitis as 
the leading cause of HCC worldwide if current trends continue57–59.

Comorbidities
A meta-analysis of 37 studies and 86,188 individuals estimated that 41% 
of people with MASLD have the metabolic syndrome, defined by three 

East Asia
29.71%

Western 
Europe
25.10%

North
America
31.20%

Australia
31.20%

Southeast
Asia
33.07%

MENA
36.53%

Latin
America
44.37%

Estimated death rates
(per 100,000 )
 0–0.9
 1.0–1.9
 2.0–2.9
 3.0–3.9
 4.0–4.9
 5.0–5.9
 6.0–6.9
 ≥7.0
 Not applicable 
 and/or no data

a

b

Fig. 2 | Prevalence and age-standardized mortality of metabolic dysfunction-
associated steatotic liver disease. a, The global prevalence of metabolic 
dysfunction-associated steatotic liver disease. Data were obtained from a large 
meta-analysis of 92 studies and the survey included studies from 1990 to 2019.  

b, The estimated age-standardized death rate for metabolic dysfunction-
associated steatotic liver disease, including cirrhosis, in 2019. MENA, Middle East 
and North Africa. Data from refs. 1,28.
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out of five of the following — elevated waist circumference, elevated 
triglycerides, reduced high-density lipoprotein cholesterol, elevated 
blood pressure and elevated fasting glucose60,61. A meta-analysis of 
156 studies estimated that 65% of people with T2DM have MASLD39. 
A prospective study of 539 participants with overweight or obesity, 
enrolled from primary care or community settings in the USA, deter-
mined a prevalence of MASLD of 67% (ref. 62). In particular, Asians 
may be more predisposed to central fat deposition at a lower BMI than 
Caucasians58,63–66. A meta-analysis of 33 studies estimated that the prev-
alence of lean MASLD, defined as MASLD those with a BMI <25 kg/m2 
and <23 kg/m2 in non-Asians and Asians, respectively, was the highest 
in Asia (4.8%, 95% CI 4.0–5.6%) and the lowest in Europe (2.2%, 95% CI 
0.2–4.2%), and was between 3% and 4% in North America (3.1%, 95% CI 
2.3–3.8%) and Oceania (3.5%, 95% CI 3.1–3.8%)67.

People with MASLD often have a substantial burden of comor-
bidities, including cardiovascular diseases, obstructive sleep apnoea, 
polycystic ovarian syndrome and chronic kidney disease68. Data regard-
ing association of MASLD and cardiovascular disease are conflicting. 
A meta-analysis of 34,043 individuals followed-up for a median of 
6.9 years determined that MASLD was associated with a 64% higher risk 
of fatal and non-fatal cardiovascular disease after adjusting for cardio-
vascular risk factors69. Another meta-analysis of 5,802,226 individuals 
followed for 6.5 years determined that the risk of cardiovascular disease 
increased with the severity and fibrosis stage of MASLD69,70. However, 
a cohort study of 17.7 million patients with MASLD did not find an 
association between MASLD and acute myocardial infarction or stroke, 
after adjusting for cardiovascular risk factors such as blood pressure, 
T2DM and dyslipidaemia71. This discrepancy is probably related to 
the heterogeneous definitions used to define MASLD, the severity of 
MASLD and the completeness of follow-up. Regardless, nearly 50% of 
individuals with MASLD have coronary heart disease and more than a 
third have carotid artery atherosclerosis72,73. Data regarding the impact 
of MASLD on people who already had a cardiovascular event are limited. 
In a study of 4,165 Dutch patients who had a myocardial infarction, the 
presence of fatty liver index ≥60 (suggestive of MASLD) was associated 
with an increased risk of cardiovascular mortality74. People with MASLD 
are also at an increased risk of stroke, based on a meta-analysis of  
30 studies and 7,961 individuals75. The major cause of mortality in 
MASLD, before the onset of cirrhosis, is cardiovascular disease, 
followed by extrahepatic cancer76,77.

Mechanisms/pathophysiology
Despite the increasing prevalence, the factors influencing MASLD 
development are not completely understood. The pathogenesis of 
MASLD involves excess energy delivery, adipocyte dysfunction, insulin 
resistance leading to free fatty acid release and de novo lipogenesis 
generating toxic lipid species that induce hepatocellular injury and cell 
death, leading to chronic inflammation and fibrogenesis78.

Excess energy delivery and de novo lipogenesis
The presence of MASLD reflects an excess of energy delivery to the 
liver, from increased dietary intake or related to increased free fatty 
acid release into the circulation, exceeding the liver’s capacity for 
oxidation and export (Fig. 4). Obesity is associated with the expan-
sion of adipocytes, and insulin resistance in adipose tissue leads to 
dysregulated lipolysis and increased fatty acid delivery to the liver79. 
Lipolysis in peripheral adipose tissue or dietary sugars or amino acids 
that are converted to saturated fatty acids via hepatic de novo lipo-
genesis contributes to the formation of intrahepatic triglycerides80,81. 

Fructose and sucrose are common activators of de novo lipogene-
sis pathways82. Fructose is an important component of table sugar 
(sucrose) and high-fructose corn syrup83. The intake of added sugars 
comprises ≤15% of the total energy intake in Western diets, with the 
majority coming from table sugar and high-fructose corn syrup83. The 
entry of fructose into the liver is rapid and is almost completely metabo-
lized by the liver84,85. Fructose metabolism results in a transient drop 
in intracellular phosphate and ATP levels86. The depletion of cellular 
stores of ATP by excessive fructose delivery blocks protein synthesis, 
induces oxidative stress and mitochondrial dysfunction83,87. Unlike in 
glucose metabolism, no negative feedback mechanism regulates fruc-
tose phosphorylation87. Nearly all fructose in portal blood undergoes 
phosphorylation and subsequent de novo lipogenesis.

Insulin resistance
The presence of insulin resistance impairs the suppression of hepatic 
glucose production, leading to hyperglycaemia and hyperinsulinaemia, 
and promotes persistent chronic excess delivery of free fatty acids to 
the liver88. In people with MASLD, skeletal muscle and hepatic insulin 
resistance are present even in individuals with normal weight and with-
out T2DM, resulting in only partial suppression of hepatic gluconeo-
genesis and adipose tissue lipolysis, despite increased insulin secretion 
by the pancreas, reduced hepatic insulin clearance and compensatory 
portal vein hyperinsulinaemia89. SREBP-1 and ChREBP are transcrip-
tion factors activated by insulin and carbohydrates, respectively, and 
regulate enzymes that promote de novo lipogenesis90. Impaired insulin 
suppression of very-low-density lipoprotein (VLDL) production leads 
to overproduction of triglycerides and low high-density lipoprotein91. 
The presence of intrahepatic lipid accumulation is strongly associated 
with hepatic insulin resistance, and current findings have highlighted 
the role of lipid intermediates such as ceramides, which induce endo-
plasmic reticulum stress and mitochondrial dysfunction, and probably 
mediate insulin resistance81.

Fatty acid metabolism
Fatty acids derived from the lipolysis of adipose tissue, diet and intra-
vascular hydrolysis are delivered to the liver and undergo oxidation 
and ketogenesis or esterification into hepatic triglycerides92. In people 
with MASLD, nonesterified fatty acids are the major source of excess 

Table 2 | Estimated deaths associated with MASLD in 2019 
by region

MASLD

Region Deaths (95% UI) ASDR per 100,000 
population (95% CI)

Global 134,240 (96,483–176,920) 1.7 (1.2–2.2)

Africa 14,693 (10,135–20,481) 3.1 (2.1–4.3)

Europe 22,494 (16,328–30,132) 1.5 (1.1–2.1)

Southeast Asia 31,176 (22,146–41,585) 1.9 (1.4–2.5)

The Americas 31,143 (22,777–40,641) 2.5 (1.8–3.2)

Western Pacific 22,102 (15,742–29,568) 0.8 (0.6–1.1)

Eastern Mediterranean 12,164 (7,986–17,434) 3.5 (2.3–5.0)

Data for the global and regional number of deaths estimated by the Global Burden of Disease 
study 201928 were obtained from the GBD Results Tool, which is maintained by the Institute 
for Health Metrics and Evaluation. ASDR, age-standardized death rate; MASLD, metabolic 
dysfunction-associated steatotic liver disease; UI, uncertainty interval.
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hepatic triacylglycerol, compared with de novo lipogenesis and the 
spillover pathway93. The type of fat impacts intrahepatic triglyceride 
accumulation, with saturated fat substantially increasing intrahepatic 
triglycerides more than polyunsaturated fat and high-sugar diets92. 
Saturated fat enters the liver as saturated fatty acyl-coenzyme A, which 
is metabolized and stored in the liver as lipid droplets or exported as 
(VLDL) triglycerides94. Alternatively, saturated fatty acyl-coenzyme A  
may undergo β-oxidation or terminal oxidation in the tricarboxylic acid  
cycle. These processes may be altered in opposite directions and are very  
difficult to measure in vivo in humans95. In fatty liver, owing to the PNPLA3  
I148M variant, β-oxidation seems to be increased, but whether this is 
the case in insulin resistance-associated MASLD is still unknown96–98. 
Mitochondrial β-oxidation generates a substantial amount of reac-
tive oxygen species and therefore, oxidative stress, predisposing the 
liver to chronic inflammation99. The increased accumulation of toxic 
lipid intermediates, such as palmitate, sphingolipids (including cera-
mides) and sphingosine 1-phosphate in people with MASLD contrib-
utes to endoplasmic reticulum stress, hepatocellular injury and death, 
activation of inflammasomes (such as NLRP3) and toll-like receptors, 
immune cell-mediated inflammation and fibrosis100–102. Activation of 
the inflammasome occurs in response to danger-associated molecular 
patterns produced by toxic lipid intermediates and damaged cells, and 
pathogen-associated molecular protein from the portal circulation.  
In MASH, the assembly of a cytosolic protein complex called the NLRP3 
inflammasome complex activates the protease, caspase-1, which 
cleaves pro-IL-1β and pro-IL-18, converting them to their active forms, 
thereby promoting local and systemic inflammation103,104.

In addition to oxidation, the export of triglycerides via packaging 
into VLDL particles is the only other way to reduce hepatic triglyceride 
content99. In people with MASLD, the export of hepatic triglycerides 
seems to increase initially, but reaches a plateau when intrahepatic 
triglyceride content exceeds 10% and may even diminish with more 
extensive steatosis105,106. Together, the presence of hepatic insulin 
resistance along with excess energy delivery to the liver in the form of 

fatty acids, carbohydrates or amino acids, overwhelming the hepatic 
capacity to export triglycerides, promotes the accumulation of hepatic 
triglycerides, toxic lipid intermediates, all of which result in hepato-
cyte injury, macrophage-mediated inflammation, activating hepatic  
stellate cells and promoting fibrosis100.

Heritability and genetics
Several studies have demonstrated the heritability of MASLD and 
fibrosis107. Prospective studies of twins and first-degree family mem-
bers have determined familial clustering of steatosis and fibrosis108. 
The novel MASLD familial risk score, comprising age and family his-
tory of advanced fibrosis, T2DM and obesity, has been externally vali-
dated and may be a simple alternative to the Fibrosis-4 (FIB-4) index 
(a simple score recommended by several major society guidelines 
for staging fibrosis) if further validated109,110. A nationwide multigen-
erational cohort study of family members of Swedish adults with 
biopsy-proven MASLD determined that first-degree relatives had a 
higher risk of liver-related outcomes and HCC than matched controls 
from the general population111. Multiple studies have highlighted the 
association of the single-nucleotide polymorphism (SNP) in PNPLA3, 
c.444 C > G SNP, which encodes the I148M variant, with progressive 
hepatic fibrosis and HCC112–114. PNPLA3 (I148M) is a gain-of-function 
mutation that possibly facilitates hepatic steatosis by accumulating 
lipid droplets and inhibiting ATGL-mediated lipolysis in an adipose 
triglyceride lipase-dependent manner115. In addition, several other 
genetic loci have been implicated in MASLD. For example, the variant 
TM6SF2 rs58542926 C > T codes for a loss-of-function E to K substitu-
tion at position 167 and is associated with elevated levels of alanine 
transaminase (ALT) and hepatic steatosis116,117. TM6SF2 usually promotes 
VLDL secretion and individuals with loss-of-function variants related to 
rs58542926 C > T, with an estimated minor allele frequency of 7%, have 
increased hepatic triglyceride content114,117. An exome-wide association 
study of plasma lipids in >300,000 participants determined that SNPs 
in TM6SF2 were associated with hepatic steatosis and an increased risk 

Isolated hepatic steatosis MASH Cirrhosis HCCHealthy

15–30% 12–40% 15–25% 7%

• Di�use fibrosis
• Severe dysfunction

• Fat in ≥5% of 
hepatocytes

• Steatosis 
• Ballooning
• Inflammation
• Fibrosis

• Fat in <5% of  
 hepatocytes

MASH MASH with fibrosis

Fig. 3 | The progression of MASLD. The spectrum of metabolic dysfunction-
associated steatotic liver disease (MASLD) and representative histology images. 
MASLD is a slowly progressing disease11. The presence of metabolic dysfunction-
associated steatohepatitis (MASH) predisposes to fibrosis and potential 

progression to advanced fibrosis, cirrhosis, hepatic decompensation and 
hepatocellular carcinoma (HCC). More than 30% of MASLD-related HCC occurs  
in people without cirrhosis5.
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for T2DM118. This study determined that variants in PNPLA3 and TM6SF2 
were associated with higher liver fat and a greater risk for T2DM, but 
lower blood lipid levels and a lower risk for coronary artery disease 
than the general population118. A variant in MBOAT7 at rs641738, with 
an estimated minor allele frequency of 45%, was associated with an 
increased risk of steatosis and fibrosis in MASLD119,120. MBOAT7 cataly-
ses acyl-chain remodelling of phosphatidylinositols and the common 
variant, MBOAT7 rs641738, is associated with increased free polyun-
saturated fatty acids121. By contrast, an exome-wide association study 
in 2018 determined that a splice variant (rs72613567) in HSD17B13, with 
an estimated minor allele frequency of 18%, disrupts mRNA splicing 
and generates unstable proteins with reduced activity, which confers 

a protective effect against the development of MASH and advanced 
fibrosis122,123. Although variants in HSD17B13 are generally protective 
against MASH progression, they do not prevent the development of 
steatosis124. Furthermore, a large genome-wide association study of 
MASLD defined by CT, MRI and International Classification of Dis-
eases codes identified 17 loci, including new variants (for example, in 
TOR1B, fat mass and obesity-associated COBL or GRB14, INSR, SREBF1 
and PNPLA2) implicated in mitochondrial and cholesterol metabolism, 
as well as in de novo lipogenesis15. Phenome-wide association analyses 
performed in this study suggested that these novel disease-modifying 
variants may be helpful for risk stratification in the future. Advances 
in sequencing technologies and whole-exome sequencing have 
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Fig. 4 | Pathogenesis of metabolic dysfunction-associated steatotic 
liver disease. Excess energy intake promotes increases in intramyocellular 
lipids, promoting skeletal muscle insulin resistance and a decrease in muscle 
glycogen synthesis. The presence of hyperinsulinaemia and the diversion 
of glucose to the liver stimulates sterol regulatory element-binding protein 
1c and carbohydrate-responsive element-binding protein, which are 
transcription factors activated by insulin and carbohydrates, respectively, 
leading to increased de novo lipogenesis. Saturated fat enters the liver as 
saturated fatty acyl-coenzyme A, which can be metabolized and either stored 
or exported as very-low-density lipoprotein (VLDL) triglycerides. Saturated 

fatty acyl-coenzyme A can alternatively undergo β-oxidation, which generates 
damage-associated molecular patterns (DAMPs) that can activate stellate 
cells. The accumulation of toxic lipid intermediates promotes hepatocellular 
injury, endoplasmic reticulum (ER) stress, hepatocellular injury, activation 
of the inflammasome, immune cell-mediated inflammation, hepatic stellate 
cell activation and fibrosis100,101,341,342. GCKR, glucokinase regulatory protein; 
HSD17B13, hydroxysteroid 17-β-dehydrogenase 13; MBOAT7, membrane-bound 
O-acyltransferase 7; PAMPs, pathogen-associated molecular patterns; PNPLA3, 
patatin-like phospholipase domain-containing 3; TM6SF2, transmembrane 6 
superfamily member 2.
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demonstrated the association of rare variants in APOB, MTTP, GPAT3, 
mitochondrial GPAM,CIDEB and ATG7, with progressive disease125–128. 
Despite the increasing awareness of genetic variants and their links 
with MASLD risk or progression, polygenic risk scores are currently not 
utilized in routine clinical practice, partly related to their modest accu-
racy for prognostication, the lack of calibration in different settings 
and in vitro diagnostic device labelling, difficulties in reimbursement, 
a lack of knowledge and guidance among disease specialists, and the 
influence of epigenetics and environmental factors129–131.

Gut microbial dysbiosis and the gut–liver axis
Multiple studies have demonstrated an association between gut 
microbial dysbiosis and the development and severity of MASLD and 
hepatic fibrosis132,133. The gut microbiome may contribute to MASLD 
through several potential mechanisms, including increased gut per-
meability that induces lipopolysaccharide translocation triggering 
systemic inflammation, decreased gut microbial diversity, disruptions 
in energy regulation, and the generation of microbial metabolites (such 
as ethanol, lactate and trimethyl N-oxide) and endotoxins134. Specific 
microbial signatures, such as an increase in Akkermansia, Ruminococ-
cus and Bacteroides are associated with MASLD, whereas an increased 
abundance of Veillonella, Shigella and Bacillus is associated with hepatic 
fibrosis133,134. However, whether gut microbial dysbiosis in humans is 
causally linked to MASLD progression remains unclear. In addition, sub-
stantial discrepancy is observed in microbial signatures between stud-
ies, probably resulting from variations in geography, sequencing tools, 
definitions used for disease states, drug consumption and ethnicity.

Bile acids are predominantly synthesized from cholesterol in the 
hepatocytes and secreted into the small intestine, where they facilitate 
the emulsification and absorption of fat and fat-soluble vitamins135. In 
the small intestine, bile acids undergo deconjugation and dehydroxy-
lation by gut bacteria, forming secondary bile acids, which are then 
mostly reabsorbed and transported back to the liver via the enterohe-
patic circulation, where they act on the farnesoid X nuclear receptor 
(FXR) to regulate glucose and lipid metabolism136,137. Bile acids also 
activate FXR in the ileum, leading to the expression of FGF19, which 
regulates bile acid homeostasis and hepatic glucose metabolism138. 
Bile acids activate the Takeda G-protein-coupled receptor 5 in L cells 
in the intestine, stimulating GLP-1, increasing insulin synthesis and 
decreasing appetite139. In addition, bile acids modulate the abundance, 
diversity and metabolic activity of the gut microbiome and may be 
promising targets for drug development140.

Diagnosis, screening and prevention
Most people living with MASLD are asymptomatic, especially when 
advanced fibrosis is absent, or patients may have nonspecific symp-
toms such as fatigue, pruritus or right upper abdominal discomfort141. 
MASLD is diagnosed in many people incidentally, based on abdominal 
imaging performed for other indications, or in some cases, may present 
with elevated liver enzymes.

Histology remains the gold standard for the diagnosis of stea-
tosis, fibrosis and MASH. However, its use in routine clinical practice 
is limited by availability, cost and the risk of uncommon but serious 
complications. In addition, liver biopsy is associated with sampling 
variability and inter-reader and intra-reader variability142. NITs include 
blood-based biomarkers and imaging, and help to identify the presence 
of hepatic steatosis or hepatic fibrosis. NITs are risk free, some tests 
have reasonable accuracy for steatosis and fibrosis, especially when 
following clinical practice guidelines, and many have been validated 

in large cohorts143,144. Whereas histology only evaluates a small fraction 
of the liver, imaging-based NITs, such as MRE, have the potential to 
examine larger areas of the liver than biopsies. This advantage has led 
to a growing acceptance of NITs for the diagnosis and prognostication 
of MASLD145. Despite the growing clinical utility of NITs in the evaluation 
of patients with MASLD, liver biopsy remains useful in specific situa-
tions, such as when NITs show highly discordant results or to exclude 
alternative aetiologies of liver disease, such as autoimmune hepatitis.

Identification of steatosis
Although conventional ultrasonography can reliably detect 
moderate-to-severe steatosis, its sensitivity for mild steatosis is 
limited146,147. The American association for the study of liver diseases 
(AASLD) does not recommend conventional ultrasonography as a 
tool to identify hepatic steatosis owing to its low sensitivity for mild 
degrees of steatosis and instead recommends the controlled attenu-
ation parameter (CAP) to assess and quantify steatosis3,148. CAP is a 
noninvasive technique that measures the increased attenuation of 
ultrasound waves when travelling through steatotic hepatic tissue 
compared with normal liver. CAP is well validated for detecting mild 
hepatic steatosis and is increasingly utilized to provide point-of-care 
assessment of liver steatosis149,150. In a prospective study, CAP provided 
an area under the receiver operating curve (AUC) of 0.80 for detecting 
hepatic steatosis (MRI proton density fat fraction (PDFF) ≥5%), with the 
optimal threshold determined at 288 dB/m (ref. 150). An individual 
patient data meta-analysis of 2,735 patients with liver histology and CAP 
data determined that the AUC of CAP for the detection of any hepatic 
steatosis was 0.82 (ref. 149). Several manufacturers are developing ultra-
sonography techniques for steatosis quantification with promising 
results and have demonstrated a good correlation with MRI–PDFF and 
histology151,152. These techniques utilize data from ultrasound beams to 
estimate liver fat, and include the attenuation coefficient (the rate of 
the amplitude loss of the ultrasound beam travelling through tissue), 
backscatter coefficient (the portion of scattered ultrasound energy 
reflected back to the transducer) and the speed of sound, which slows 
in fatty tissue153.

Multiple studies have determined that MRI–PDFF provides an 
accurate, noninvasive, quantitative and precise estimation of liver 
fat content154,155. In a prospective, head-to-head study of 104 partici-
pants with MASLD who underwent liver biopsy, MRI–PDFF and CAP, 
MRI–PDFF identified steatosis (grades 1–3 versus grade 0) with an 
AUC of 0.99, compared with an AUC of 0.85 with CAP156. Despite the 
superiority of MRI–PDFF over CAP, its utility is currently limited by 
cost and availability.

Identification of hepatic fibrosis
The nonalcoholic steatohepatitis (NASH) Clinical Research Network 
grades fibrosis as follows — stage 0, none; stage 1, perisinusoidal 
fibrosis or portal/periportal fibrosis; stage 2, perisinusoidal and 
portal/periportal; stage 3, bridging fibrosis; stage 4, cirrhosis157. Impor-
tantly, the NASH clinical research network scoring system was devel-
oped to assess disease progression, but not regression or treatment 
response, and may inadequately quantify perisinusoidal fibrosis158. 
Furthermore, liver biopsy is limited by its invasive nature, assessment 
of a limited fraction of the liver and potential for inter-observer and 
intra-observer variability142.

Simple blood-based biomarkers. Risk assessment for hepatic fibrosis 
is indicated in people living with steatosis, T2DM or obesity or those 
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a family history of cirrhosis3. Multiple blood-based biomarkers can 
reliably identify hepatic fibrosis159. These can be broadly classified into 
simple and specialized biomarkers. Simple biomarkers include the 
aspartate aminotransferase–platelet ratio index, FIB-4 index, BARD 
score (comprising BMI, the aspartate transaminase to ALT ratio and the 
presence of diabetes mellitus) and NAFLD fibrosis score. Specialized 
biomarkers consist of the Hepascore (comprising bilirubin, γ-glutamyl 
transferase, hyaluronic acid, α2-macroglobulin, age and sex), Fibro-
Meter (involving age, sex, aspartate transaminase, urea, platelets, 
prothrombin time, γ-glutamyl transferase and α2-macroglobulin) and 
the Enhanced Liver Fibrosis (ELF) score, which utilizes direct markers 
of fibrogenesis and fibrinolysis160–162. In clinical practice, the FIB-4 
index seems to have better diagnostic accuracy than other simple 
biomarkers and is recommended by the American Gastroenterological 
Association, the AASLD and the European Association for the Study of 
the Liver (EASL) as an initial screening step for advanced fibrosis (Fig. 5), 
followed by either vibration-controlled transient elastography (VCTE) 
or specialized blood-based markers3,110,163–166.

Specialized blood-based biomarkers.  Among specialized 
blood-based biomarkers, the AASLD recommends the ELF score 
as a secondary assessment in people living with a FIB-4 index ≥1.3, 
with an ELF score >9.8 denoting a high risk of advanced fibrosis3. The 
EASL recommends that collagen-related blood constituents, such as 
the ELF score, can be used as an alternative to liver elastography to 
rule in or rule out advanced fibrosis in people living with a FIB-4 >1.3 
(refs. 2,163,167,168). An algorithm called ADAPT, which combined 

PRO-C3 (a marker of type III collagen formation) with age, T2DM and 
platelet count, demonstrated superior performance to the aspartate 
aminotransferase–platelet ratio index, FIB-4 and NAFLD fibrosis score 
for detecting advanced fibrosis, but requires further validation169. 
In a diagnostic accuracy study including people with biopsy-proven 
MASLD from the Liver Investigation: Testing Marker Utility in Stea-
tohepatitis (LITMUS) project, the only blood-based biomarkers to 
exceed the predefined AUC threshold of 0.8 for acceptable accuracy to 
detect advanced fibrosis were the SomaSignal test (an aptamer-based 
proteomics platform) and ADAPT, in 264 and 444 patients evaluated, 
respectively170. A study of people with biopsy-proven MASLD from 
France utilized machine learning-optimized multitargeting to develop 
new NITs: FIB-9 (comprising aspartate transaminase, ALT, γ-glutamyl 
transferase, alkaline phosphatases, bilirubin, albumin, platelets, pro-
thrombin index or international normalized ratio and urea), FIB-11 
(adding hyaluronate and α2-macroglobulin to FIB-9) and FIB-12 (adding 
liver stiffness measurement to FIB-11)171. FIB-9, FIB-11 and FIB-12 were 
developed in a derivation cohort of 637 people, and validated in a 
separate cohort of 414 people, with AUCs of 78.7%, 80.2% and 83.3% for 
detecting advanced fibrosis, respectively. By contrast, the FIB-4 index 
and liver stiffness measurement by VCTE had AUCs of 68.6% and 75.4%, 
respectively, for detecting advanced fibrosis in the validation cohort.

Liver elastography. Elastography techniques can quantify the stiff-
ness associated with hepatic fibrosis by assessing the speed of a shear 
wave or tissue displacement172. VCTE utilizes a mechanical driver to 
generate a shear wave and measures its speed using a sonographic 

All individuals
• Management of    
 metabolic comorbidities
• Weight loss/management
• Optimize physical 

activity levels
• Diet control
• Assess alcohol intake
• Determine appropriate 

intervention as neededFIB-4

<1.3 >2.67  

Repeat FIB-4 in 1–3 years depending 
on metabolic risk

• Hepatology review
• Further NITs
• Resmetirom for MASH with moderate to  
 advanced fibrosis, without cirrhosis

LSM <8.0 kPa
ELF ≤9.8

LSM ≥8.0 kPA
ELF >9.8

VCTE
ELF

1.3–2.67

• Type 2 diabetes
• Obesity
• Hepatic steatosis
• Family history of MASLD cirrhosis
• Unexplained raised liver enzymes

Fig. 5 | Proposed risk stratification algorithm for MASLD. The Fibrosis-4 (FIB-4)  
index may be utilized as a first step in the evaluation of people with hepatic 
steatosis on imaging, those with type 2 diabetes mellitus, obesity, family history 
of metabolic dysfunction-associated steatotic liver disease (MASLD), cirrhosis 
or unexplained raised liver enzymes. All individuals should undergo lifestyle 
interventions and assessment of alcohol consumption. People with a FIB-4  
<1.3 may be monitored every 1–3 years, depending on their metabolic risk profile. 
People with a FIB-4 1.3–2.67 should undergo a secondary risk assessment with 
vibration-controlled transient elastography (VCTE) or Enhanced Liver Fibrosis 

(ELF), if available, or referred to hepatology. Those with a FIB-4 >2.67 should 
be referred to hepatology for a secondary risk assessment and assessment for 
suitability for pharmacological treatments. Resmetirom may be considered for 
people with MASLD and a liver stiffness measurement (LSM) on VCTE ≥10 kPA, 
LSM on magnetic resonance elastography ≥3.3 kPA or ELF ≥9.2, but avoided when 
noninvasive tests (NITs) are suggestive of cirrhosis (LSM on VCTE ≥20 kPA, LSM 
on magnetic resonance elastography ≥5.0 kPA, ELF >11.3)262. MASH, metabolic 
dysfunction-associated steatohepatitis.
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Doppler, and it is the most commonly used elastography technique 
to measure liver stiffness173,174. VCTE is recommended by the American 
Gastroenterological Association, the AASLD, the EASL and the Asian 
Pacific Association for the Study of the Liver (APASL) to assess the risk 
of advanced fibrosis in people with MASLD2,3,110,148,163. The AASLD and the 
EASL suggest using a cut-point of <8 kPa to rule out advanced fibrosis, 
whereas AASLD suggests using a cut-point of ≥12 kPa (a threshold with 
increased sensitivity, albeit a modest positive predictive value) to rule 
in advanced fibrosis3,159,163. Liver stiffness measurements by VCTE are 
increased in the setting of inflammation, recent food intake, heart 
failure and obesity, and scan failure rates of 3–5% have been reported 
when the extra-large probe, catered for individuals with obesity, was 
used, but up to 14% when only the M probe was used174–176. The Agile 
3+ and Agile 4 scores combine a liver stiffness measurement by VCTE 
with readily available clinical parameters and laboratory tests and 
improve the identification of stage 3 or stage 4 fibrosis in people with 
MASLD177. Point shear wave elastography and two-dimensional shear 
wave elastography measure liver stiffness based on tissue displacement 
from acoustic compression pulses and has comparable diagnostic per-
formance to transient elastography, but requires technical expertise 
and is complicated by differing shear wave speeds between vendors, 
limiting comparison between studies178,179.

MRE examines a large proportion of the liver, is less prone to sam-
pling error and seems to be less susceptible to scan failure in people 
with severe obesity180,181. MRE has the highest accuracy for detecting 
hepatic fibrosis among elastography methods, with a meta-analysis 
determining AUCs of 0.83 and 0.91 for VCTE and MRE, respectively, for 
the detection of stage 2–4 fibrosis, and 0.85 and 0.92, respectively, for 
the detection of stage 3–4 fibrosis156,179,182. However, the availability of 
MRE is limited in many parts of the world.

Identifying at-risk MASH
Participants with at-risk MASH, defined as a combination of NAFLD 
activity score ≥4 and stage 2 fibrosis or higher, may benefit from phar-
macological therapy. Although liver biopsy is the reference for the 
diagnosis, several elastography-based scores have been developed to 
noninvasively identify at-risk MASH, including the FibroScan–aspartate 
transaminase (FAST) score, MRE plus FIB-4 (MEFIB) index and MRI– 
aspartate transaminase score, with AUCs ranging from 0.68 to 0.81 
(refs. 183–186). Iron-corrected T1 on MRI reflects regional tissue water 
content and is an emerging modality to detect at-risk MASH but requires 
further validation187. Elevated expression levels of microRNA 34a-5p 
are associated with the presence of at-risk MASH188. NIS2+ is a combi-
nation of two biomarkers (microRNA 34a-5p and YKL-40 (also known 
as CHI3L1)) and was shown in a retrospective simulation analysis to 
reduce the need for unnecessary liver biopsies, but prospective stud-
ies are required189,190. The metabolomics-advanced steatohepatitis 
fibrosis score comprises 12 lipids, BMI, aspartate aminotransferase 
and ALT, and demonstrated an AUC of 0.79 in an external validation 
cohort for identifying at-risk MASH191. MACK-3 is a blood test combin-
ing aspartate transaminase, homeostasis model assessment of insulin 
resistance and cytokeratin-18, validated in a multicentric cohort of 
1,924 biopsy-proven patients with MASLD, with AUC of 0.79 for fibrotic 
MASH and accuracy comparable to that of FAST192. The SomaSignal test 
had an AUC of 0.81 for fibrotic MASH when evaluated in 264 patients 
from the LITMUS project170. The Fibrotic NASH Index was developed 
in a cohort of individuals with severe obesity and combined aspartate 
transaminase, high-density lipoprotein cholesterol and haemoglobin 
A1c, and displayed AUCs of 0.80–0.95 in external validation cohorts for 

detecting at-risk MASH193. Future prospective, head-to-head studies are 
warranted to help determine the comparative utility of these scores in 
identifying at-risk MASH.

Role of NITs in prognostication
A meta-analysis of individual participant data (25 studies including 
2,518 individuals) determined that NITs performed as well as his-
tology in prognosticating people with MASLD143. In this study, the 
time-dependent AUC for developing hepatic decompensation was 
0.72 for histology, 0.76 for liver stiffness measurement by VCTE, 0.74 
for FIB-4 and 0.70 for NAFLD fibrosis score, suggesting that NITs have 
comparable prognostic value to histology. Several studies have high-
lighted the utility of the ELF score for determining the risk of hepatic 
decompensation194,195. A study of four randomized trials of participants 
with biopsy-proven MASH with advanced fibrosis determined that a 
baseline liver stiffness measurement by VCTE of ≥30.7 kPa was strongly 
associated with liver-related outcomes196. An individual participant data 
meta-analysis (6 cohorts including 2,018 individuals) of people with 
MASLD characterized by MRE determined that liver stiffness measure-
ment by MRE was strongly associated with liver-related events197. In this 
study, the 3-year risk of hepatic decompensation increased from 1.6% in 
those with MRE <5 kPa to 17% among those with MRE 5–8 kPa, and 19% 
among participants with MRE ≥8 kPa. In addition, elastography-based 
scores, such as the FAST score, MEFIB index, MRI–aspartate transam-
inase score, Agile 3+ and Agile 4 scores are reasonably accurate at 
predicting liver-related events in patients with MASLD198–202. A study 
of 1,057 patients with MASLD determined that a stepwise approach 
of FIB-4 followed by VCTE was able to accurately stratify the risk of 
liver-related events203. An international study of 16,603 patients with 
MASLD who underwent VCTE determined that the Agile 3+ scores and 
Agile 4 scores had higher AUCs for predicting liver-related events than 
fibrosis stage and other NITs for fibrosis such as liver stiffness meas-
urement by VCTE and FIB-4 (ref. 199). These results demonstrate that 
the sequential combinations of NITs currently recommended by inter-
national guidelines, which define a pathway for the case-finding and 
diagnosis of advanced fibrosis in MASLD, accurately identify patients 
requiring specialized management because of an impaired liver prog-
nosis. A major advantage of NITs, unlike biopsy, is they can be very 
easily repeated over time to monitor patients.

Longitudinal changes in NITs correlate with liver-related 
outcomes204. A study from Sweden including 40,729 people from the 
general population determined that an increase in FIB-4 was associated 
with an increased risk of developing severe liver disease (defined as 
cirrhosis, HCC, liver failure, decompensation or liver-related death)205. 
Similarly, an analysis of 202,139 patients from the Veteran’s Administra-
tion hospitals in the USA determined that longitudinal changes in FIB-4 
were strongly associated with progression to cirrhosis and HCC206.  
In the aforementioned study of four randomized trials in patients with 
MASH, a 20% increase in liver stiffness measurement by VCTE was 
associated with progression to cirrhosis in those with stage 3 fibrosis196.  
A study of 1,039 people with biopsy-confirmed MASLD with advanced 
fibrosis or baseline liver stiffness measurement >10 kPa determined 
that a ≥20% increase in liver stiffness measurement was associated with 
developing liver-related outcomes (including HCC and liver-related 
mortality)207. In addition, a decline in Agile scores was associated with 
a decreased risk of liver-related events199. Similarly, a study of 128 par-
ticipants with MASLD and serial MREs determined that a change of ≥19% 
in liver stiffness measurement by MRE was associated with decompen-
sation or death208. By contrast, in a longitudinal observational study 
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from the United States NASH clinical research network, a ≥30% decline 
in liver stiffness measurement was associated with a 60% reduction in 
the risk of liver-related events209. Similarly, a study of 20,433 patients 
from primary care in the United Kingdom with T2DM and/or obesity 
and at least two FIB-4 measurements demonstrated that a decline in 
FIB-4 was associated with a decreased risk of liver-related events210.

Assessment of treatment response
Emerging data suggest that NITs may help identify MASH resolution 
under therapy. A secondary analysis of a randomized trial of obet-
icholic acid in participants with MASH identified that a decline in ALT 
at week 24 by ≥17 U/l (ALT response) was associated with a histologic 
response211. A meta-analysis of seven studies with paired MRI–PDFF and 
liver biopsy at two timepoints determined a ≥30% decline in MRI–PDFF 
(MRI–PDFF response) was associated with an increased likelihood of 
MASH resolution212. A decline in MRI–PDFF in the MAESTRO-NASH trials 
of resmetirom was associated with histologic response213. A post hoc 
analysis of a randomized trial of semaglutide in MASH determined that 
a reduction in the FAST score identified MASH resolution with an AUC of 
0.69 (ref. 214). In the phase III trial of obeticholic acid for MASH, changes 
in NITs, such as liver stiffness measurement by VCTE, were associated 
with fibrosis regression, but thresholds have not been developed215.

Current data suggest that a combination of NITs may identify 
treatment response better than individual NITs alone. A combination 
of MRI–PDFF and ALT response was associated with an odds ratio of 
11.3 (95% CI 2.18–58.30, P = 0.004) for histologic response in MASH216. 
This finding led to the development of a novel index, the MASH Reso-
lution Index, comprising MRI–PDFF, ALT and aspartate transaminase, 
which outperformed absolute changes in MRI–PDFF and ALT, and had 
an AUC of 0.83 for identifying MASH resolution without worsening 
fibrosis in an external validation cohort217. Non-invasive assessment 
of treatment response may possibly be specific to the mode of action 
of individual therapeutic agents and, therefore, these data require 
further validation.

Management
In general, the goals of management include weight loss by nutritional 
and lifestyle interventions, treatment of metabolic comorbidities, risk 
stratification of liver disease, liver-directed therapy and management 
of advanced liver disease if present.

Models of care
Comprehensive care models may help streamline the integration of 
care within health-care systems for individuals with MASLD218. A model 
of care provides a tailored framework for managing patients at each 
point of the spectrum of the disease. Clearly defined care pathways 
that tailor care specifically for each disease stage of MASLD are likely 
to help risk stratify and establish access to specialist care for those at 
the highest risk of disease progression and may be distinct from other 
related metabolic diseases, such as obesity. Defining the inclusion 
criteria for the care pathways and establishing measurable outcomes, 
including health-related quality of life via patient-reported outcomes 
and long-term outcomes, will help assess the performance of these 
treatment pathways219. Of particular importance is the establishment 
of defined roles for primary care providers and effective coordination 
of care within the multidisciplinary team. Implementing a consist-
ent clinical care pathway in the community may be challenging, but 
automated fibrosis score calculation in at-risk populations may miti-
gate some of the difficulties in identifying individuals at high risk of 

advanced fibrosis220. Given the high and rising prevalence of MASLD, 
early integration of care pathways in health-care systems may reduce 
the burden of MASLD221.

Importantly, care model development must account for the com-
mercial and social determinants of health as these influence people’s 
wellbeing. Industry strategies for the manufacturing, price setting and 
marketing of items such as ultraprocessed foods, tobacco and alco-
hol impact the burden of conditions such as cardiovascular diseases, 
T2DM, obesity and MASLD222. As for the social determinants of health, 
food insecurity, driven in part by food swamps (neighbourhoods satu-
rated with unhealthy food choices) and deserts (neighbourhoods with 
low access to reliable food), is associated with MASLD development 
and progression223–225. Unfortunately, health-care professionals are 
often limited in their ability to assess and address such commercial and 
social determinants of health. Social prescribing aims to fill this gap 
by connecting people to relevant non-medical resources that promote 
wellbeing226. It encompasses a variety of interventions to promote life-
style changes relating to factors such as diet, physical activity, tobacco 
smoking and alcohol consumption, including community gardening, 
local exercise groups and support groups for smoking and alcohol 
cessation. To effectively leverage social prescribing interventions, 
social nutrition, which explores how an individual’s culture, ideology 
and support networks influence what, when, how and why one eats and 
explores the nutritional consequences of factors such as globalization, 
impoverishment, nutritional education and policy, must be taken 
into consideration, as these all impact health outcomes such as the  
likelihood of developing MASLD227.

Lifestyle measures
Weight reduction. Weight loss remains the cornerstone of the man-
agement of people with MASLD. A prospective paired biopsy study of 
261 participants in Cuba with biopsy-confirmed MASH determined 
that among those who achieved a weight loss of ≥10%, 45% had regres-
sion of fibrosis and 90% had resolution of MASH228. A total of 58% of 
those who achieved a weight loss of ≥5% achieved MASH resolution.  
A randomized trial from Hong Kong determined that 97% of partici-
pants with weight loss >10% developed MASLD remission (defined by an 
intrahepatic triglyceride content of <5% by proton magnetic resonance 
spectroscopy) and even a weight reduction of 3–4% was associated 
with 41% of participants achieving MASLD remission229. Major society 
guidelines from the USA, Europe and Asia recommend weight loss in 
people with MASLD and generally recommend ~5–10% reduction of 
body weight3,148,230–232. Of note, weight loss may be beneficial in people 
with non-obese MASLD, with a randomized trial in Hong Kong demon-
strating that a 3–5% weight reduction in individuals with normal weight 
achieved similar results in terms of MASLD remission to a 7–10% weight 
reduction in individuals with obesity233. A phase IIa trial of retatrutide, a 
triple agonist of the GIP, GLP-1 and glucagon receptors, demonstrated 
that ~20% weight loss was associated with a near-maximal reduction 
in liver fat, with a plateau beyond 20% weight loss234. Despite the clear 
benefits of weight loss, only a third of patients achieve a ≥5% weight 
loss and a quarter or even less maintained it235.

Diet. A hypocaloric diet of 1,200 kcal/day for women and 1,400–
1,500 kcal/day for men is recommended to achieve weight loss231. 
Among the many diet regimens available, the Mediterranean diet seems 
to have cardiovascular benefits and promotes fat mobilization from the 
liver, heart and pancreas, and is recommended by major societies in 
the USA, Europe and Asia for people with MASLD148,236,237. A systematic 

http://www.nature.com/nrdp


Nature Reviews Disease Primers |            (2025) 11:14 14

0123456789();: 

Primer

review determined the heterogeneity in access and utilization of  
the Mediterranean diet and a paucity of data from Asia238. This review 
highlighted increasing food costs, seasonal availability, culture (such as 
a cultural predisposition to eating large amounts of red meat), a lack of 
nutrition education and a lack of willpower as some of the contributing 
barriers to adherence to the Mediterranean diet. Coffee consumption 
is associated with beneficial effects on the liver, including reduced 
liver stiffness and decreased mortality linked to cirrhosis and HCC239.

Exercise. Physical activity is associated with an improved cholesterol 
profile, reduction in hepatic and adipose fat, improvements in liver 
enzymes and a decreased thrombotic risk in people with MASLD, and 
these benefits may occur independent of weight loss240,241. The AASLD, 
the EASL and the APASL recommend that exercise should be individual-
ized and increased to the extent possible. In addition, the EASL specifies  
that a minimum of 150 min per week of moderate-intensity physical 
activity or 75 min per week of vigorous-intensity physical activity is 
preferred2,3,148,242. In patients who have difficulty performing aerobic 
exercises owing to joint and cardiopulmonary comorbidities, resist-
ance training is an acceptable alternative, whereas a mixture of aerobic  
and resistance training is recommended among physically able 
individuals232.

Alcohol. Consumption of alcohol is common in people with presumed 
MASLD. In a prospective study of 186 participants, 29% of partici-
pants with presumed MASLD were found to have moderate (defined 
in this study as ≥10 g of alcohol per day) to excess (defined as ≥60 g 
of alcohol per day) alcohol consumption based on ethylglucuronide 
in their hair and urine243. The consumption of even low-to-moderate 
amounts of alcohol seems to increase the risk of decompensation and 
mortality among people with MASLD, especially in women, and the 
AASLD has recommended that people with MASLD and fibrosis stage 
≥2 abstain completely from alcohol, whereas the EASL recommends 
that all alcohol consumption should be stopped completely in people 
with advanced fibrosis2,244–246. The APASL recommends that alcohol 
avoidance should be advised and, if that is not possible, to recommend 
minimizing consumption148. The implications of alcohol consumption 
in people with MASLD have been reviewed elsewhere247.

Bariatric surgery
Bariatric surgery is associated with improved mortality, remission 
of T2DM, sustained weight loss and reduced liver-related adverse 
outcomes248. The prevalence of MASLD and MASH is high in people with 
morbid obesity, with one study of 1,000 patients who underwent liver 
biopsies before weight loss surgery reporting that 66% had steatosis 
and 14% had MASH and/or fibrosis249. These prevalence estimates in 
bariatric cohorts may be an underestimation, given that many indi-
viduals undergoing bariatric surgery undergo a prolonged period of 
very-low-calorie diet before surgery. A retrospective cohort study of 
1,158 patients with severe obesity who underwent liver biopsy deter-
mined that bariatric surgery was associated with a lower risk of major 
adverse liver outcomes and major adverse cardiovascular events than a 
non-surgical control group16. A prospective study of 180 patients with 
severe obesity with MASH who underwent bariatric surgery observed 
sustained MASH resolution in 84% of participants, whereas fibrosis 
improved in 70% (ref. 250). The indications for bariatric surgery vary 
by country or region, with societies in the USA recommending a BMI 
≥35 kg/m2 or BMI ≥30 kg/m2 with T2DM, those from Europe recom-
mending a threshold of BMI ≥40–50 kg/m2 or BMI ≥35 kg/m2 with 

comorbidities, whereas several Asian societies such as the Korean Soci-
ety for the Management of Obesity and the Chinese Diabetes Society 
have proposed lower BMI thresholds (≥27.5 kg/m2) in the presence of 
comorbidities251–254. The BRAVES trial randomized 288 participants with 
biopsy-confirmed MASH to lifestyle modification plus best medical 
care, Roux-en-Y gastric bypass or sleeve gastrectomy, and determined 
that the proportion of participants who met the primary end point of 
MASH resolution without worsening fibrosis at 1-year follow-up was 
16%, 56% and 57%, respectively (all P < 0.0001)255. Endoscopic bariatric 
therapies have been developed as an alternative to bariatric surgery 
and are associated with improvements in histology, liver enzymes and 
insulin resistance, but more definitive data are required256,257. The rela-
tive lack of randomized data comparing bariatric surgery with standard 
management in people with MASLD currently precludes bariatric sur-
gery from being recommended as a standard treatment for people with 
MASLD, although obesity societies are starting to recognize MASLD as 
a metabolic comorbidity and an indication for surgery.

Pharmacological therapy
Resmetirom. After years of failed trials, in 2024 the US FDA approved 
resmetirom, a THRβ agonist, for the treatment of MASH17. Although the 
extrahepatic actions of thyroid hormones are predominantly mediated 
through THRα, THRβ is the dominant form of thyroid receptor in the liver, 
and stimulation of hepatic THRβ is associated with a reduction in liver 
fat240. People with MASH have reduced levels of hepatic thyroid hormone 
activity, which impairs hepatic function258. THRβ activation stimulates 
the mobilization of free fatty acids from triacylglycerols and increases 
their β-oxidation258. Despite improving hepatic steatosis, clinical trials 
did not demonstrate any improvement in glycaemic control among 
participants who received THRβ agonists259. THRβ activation increases 
hepatic low-density lipoprotein receptor expression and increases serum 
cholesterol clearance260. A phase III trial of resmetirom achieved both 
its primary end points in MASH resolution and fibrosis regression213. In 
this trial of 966 participants with biopsy-confirmed MASH and stage 1b,  
stage 2 or stage 3 fibrosis, resmetirom (100 mg) resulted in a 29.9% 
MASH resolution without worsening of fibrosis, compared with 9.7% of 
participants receiving placebo213. A total of 24.2% of participants who 
received resmetirom achieved fibrosis improvement without worsening 
of MASH, compared with 14.2% among those who received a placebo. 
The most common side effect was diarrhoea compared with placebo 
(33.4% versus 15.6%), thought this was mild and did not prompt treatment 
discontinuation. The incidence of serious adverse events was similar 
to that of placebo. Resmetirom is now indicated and FDA approved for 
patients with MASH and stage 2 or stage 3 fibrosis and is to be used along 
with diet and exercise18. Based on the FDA label, NITs are implied to be 
sufficient to establish the presence of moderate-to-advanced fibrosis 
without the need for a liver biopsy. The AASLD recommends that a liver 
stiffness measurement on VCTE of 8–15 kPa or a liver stiffness measure-
ment of 3.1–4.4 kPa on MRE may be used to identify patients who may 
benefit from resmetirom, although some experts feel that a higher liver 
stiffness measurement on VCTE threshold of 10 kPa will provide a higher 
positive predictive value261,262 (Fig. 5). However, some insurers in the 
USA still require biopsy-proven stage 2 or stage 3 fibrosis for patients to 
be eligible for resmetirom. The FDA label highlighted the potential for 
drug-induced liver injury and gallbladder-related adverse events, which 
were statistically higher in participants who received resmetirom than 
those received placebo, although the exposure-adjusted incidence rates 
were <1 in 100 person-years. Long-term data determining the impact of 
resmetirom on clinical outcomes are awaited. Importantly, the duration 
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of treatment and criteria for non-response has not been established and 
further studies with long-term follow-up are required263. Validation of 
scores to identify MASH resolution, such as the MASH Resolution Index 
or the FAST score, is awaited. The approval of resmetirom is an important 
breakthrough that finally provides a useful pharmacological option for 
patients with MASH, while the field awaits the approval of more effica-
cious drugs and combination therapies18,264,265. However, at the point 
of writing of this manuscript, resmetirom is not available for purchase 
outside of the USA, and liver-directed pharmacological therapeutic 
options in other regions remain limited266.

GLP-1 RAs/dual GLP-1 and GIP agonists. GLP-1 receptors are mainly 
located in the ileum, colon, pancreas and central nervous system267. 
GLP-1 receptor agonists (GLP-1 RAs) enhance insulin secretion from the 
pancreas, suppress glucagon release, slow gastric emptying, induce 
satiety and reduce body weight265. Several GLP-1 RAs are approved for the 
treatment of T2DM and obesity and have the additional benefit of reduc-
ing major cardiovascular and renal events in those with T2DM and estab-
lished cardiovascular disease268,269. In a phase IIb trial of biopsy confirmed 
MASH with stage 1–3 fibrosis, participants who received a once-daily 
dose of semaglutide (0.4 mg) achieved a 59% MASH resolution, com-
pared with 17% in those who received placebo20. The trial failed to meet 
the end point of fibrosis improvement, but fewer patients experienced 
fibrosis progression in the semaglutide group. Durable tolerability  
can be difficult for some patients; a greater proportion of participants 
who received semaglutide experienced gastrointestinal side effects 
compared with placebo, including nausea (42% versus 11%), vomiting 
(15% versus 2%), abdominal pain (7% versus 4%) and gallbladder-related 
disorders (7% versus 2%). Preliminary results from the phase III trial of 
once-weekly semaglutide (2.4 mg) in 800 participants with MASH and 
stage 2 or stage 3 fibrosis demonstrated a statistically significant and 
superior improvement in liver fibrosis (37.0% versus 22.5%) with no 
worsening of steatohepatitis, as well as resolution of steatohepatitis 
with no worsening of liver fibrosis (62.9% versus 34.1%) compared with 
placebo at 72 weeks. A phase II trial of once-weekly semaglutide (2.4 mg) 
in 71 participants with biopsy-proven MASH cirrhosis demonstrated no 
difference in fibrosis improvement nor MASH resolution compared 
with placebo, although no new safety signals were raised270. Tirzepatide  
is a dual GLP-1 RA and GIP agonist approved for T2DM and weight man-
agement. In a substudy of the phase III SURPASS-3 trial, participants 
with T2DM and a BMI ≥25 kg/m2 were randomized to once per week of 
tirzepatide 5 mg, 10 mg or 15 mg, or subcutaneous injection once per 
day of titrated insulin degludec271. The absolute reduction in liver fat 
content, determined by MRI–PDFF, in the tirzepatide 10 mg and 15 mg 
pooled group was −8.1%, compared with −3.4% in the insulin degludec 
group. In a phase IIb trial including 190 patients with biopsy-proven 
MASH and stage 2–3 fibrosis, 52 weeks of treatment with tirzepatide 
5 mg, 10 mg and 15 mg resulted in MASH resolution without fibrosis 
worsening in 44%, 56% and 62% of patients, respectively, significantly 
higher than the 10% observed in the placebo group (P < 0.001 for all 
three comparisons)272. A higher proportion of patients treated with 
tirzepatide achieved fibrosis improvement without worsening of MASH 
compared with placebo (51–55% versus 30%). Similarly, a phase II trial of 
survodutide, a dual agonist of GLP-1 and glucagon receptor, in 293 peo-
ple with biopsy-proven MASH and stage 1–3 fibrosis determined that 
improvement in MASH without worsening fibrosis was higher in those 
who received 2.4 mg, 4.8 mg and 6.0 mg, compared with placebo (47%, 
62%, 43% and 14%, respectively, P < 0.001)273. Importantly, weight loss in 
people who receive GLP-1 RAs or SGLT2 inhibitors is not solely related 

to losses in fat mass, with declines in lean body mass contributing to 
between 20% and 50% of the weight lost, with no clear differences in the 
decline of lean body mass between therapies274. Strategies to preserve 
lean body mass and improve physical function are required in people 
with MASLD who receive GLP-1 RAs.

Of note, GLP-1 RA withdrawal is associated with substantial regain 
of lost weight, suggesting that long-term treatment may be needed, but 
long-term adherence may be challenging given that real-world stud-
ies have demonstrated that >30% of people withdraw from treatment 
within the first year275–277. Nevertheless, some studies that analysed 
large health insurance databases of different countries have shown 
that GLP-1 RA prescription is associated with decreased incidence 
of liver-related complications278–282. An emulated trial in the Swedish 
health-care register found that patients with chronic liver disease 
and T2DM who adhered to GLP-1 RA therapy experienced fewer major 
adverse liver-related outcomes282.

Together with GLP-1 RAs, newer combinations of glucagon ago-
nists have been evaluated and demonstrated synergism in achieving 
weight loss, reductions in oxidative stress and hepatic steatosis, and 
improvements in insulin profile283. Despite the promising early data, 
GLP-1 RAs have not been specifically approved for MASH, as data from 
phase III trials in MASH are not yet available. However, GLP-1 RAs can be 
utilized in patients with MASH and T2DM or obesity, given their ben-
eficial effects on MASH, favourable cardiovascular profile and proven 
efficacy for improving glycaemic control and weight loss.

Pioglitazone. Pioglitazone, a thiazolidinedione, activates peroxisome 
proliferator-activated receptor-γ (PPARγ), which increases insulin sen-
sitivity in liver, fat and skeletal muscle cells, increases peripheral and 
splanchnic glucose uptake, and decreases hepatic glucose output284. In 
the PIVENS trial involving participants without T2DM, pioglitazone did 
not significantly improve the histologic features of MASH compared 
with placebo (34% and 19%, respectively, P = 0.04), and no difference 
in fibrosis improvement was observed (P = 0.12)285. However, a sub-
sequent randomized trial of 101 participants with T2DM determined 
that participants who received pioglitazone for 18 months were more 
likely to achieve the primary outcome of a ≥2-point reduction in NAFLD 
activity score, without worsening of fibrosis, than placebo (58% versus 
17%, P < 0.001)285,286. Fibrosis progression was observed in a lower pro-
portion of those who received pioglitazone than those in the placebo 
group (12% versus 28%, P = 0.039). Despite these encouraging results, 
the utilization of pioglitazone for treating MASH in people with T2DM 
is tempered by the potential for weight gain287.

Vitamin E. Vitamin E is an antioxidant that has histologic benefits in 
people with MASH. A randomized trial (PIVENS) of 247 participants with 
MASH and without T2DM assigned participants to pioglitazone, vitamin E  
or placebo for 96 weeks and determined that vitamin E significantly 
improved histologic features of MASH compared with placebo (43% 
versus 19%, P = 0.001), but had no significant impact on fibrosis285. In a 
retrospective study of patients with biopsy-proven MASH and advanced 
fibrosis, 90 patients who consumed Vitamin E for ≥2 years were pro-
pensity matched to 90 patients who did not consume vitamin E288.  
After adjustment for confounders such as fibrosis stage and year of 
enrolment, Vitamin E consumption was associated with reduced risk 
of death, liver transplantation and hepatic decompensation. Although 
there were concerns about an increased risk of mortality, prostate 
cancer and haemorrhagic stroke related to vitamin E, these have not 
been substantiated in high-quality studies289–291.
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Phase III trials in MASH
Multiple phase III trials failed to achieve their primary end points before 
the FDA approval of resmetirom292–294. The major challenges to drug 
development include the use of liver histology as the primary end point 
for MASH trials, related to sampling variability, poor intra-reader and 
inter-reader reliability, a lack of standardization across clinical trials and 
uncertainty about optimal trial durations295,296. Several phase III trials 
for the treatment MASH are ongoing (Table 3). Other novel candidates 
undergoing phase II evaluation and combination therapies are beyond 
the scope of this review and have been reviewed elsewhere297–299. The 
mode of action of novel pharmaceutical candidates for MASH has been 
previously reviewed299 and are summarized in Fig. 6.

Obeticholic acid. The phase III REGENERATE trial of obeticholic acid, 
a first-in-class FXR agonist, included 931 participants with MASH 
and stage 2 or stage 3 fibrosis and achieved its end point of fibrosis 
improvement (P = 0.0002), but did not achieve the end point for MASH 

resolution300. The FDA decided against conditional approval for obet-
icholic acid, citing a concerning benefit–risk profile, such as a high pro-
portion of dyslipidaemia and pruritus, which led to the discontinuation  
of this drug’s development for MASH.

Semaglutide. Following the success of the aforementioned phase IIb 
trial of semaglutide for MASH, the phase III ESSENCE randomized 
controlled trial was launched in April 2021 (ref. 20). Although tol-
erability related to gastrointestinal side effects remains a concern, 
semaglutide has well-established efficacy in the management of T2DM 
and obesity, and has demonstrated renal and cardiovascular mortality 
benefits301,302. The preliminary results of the phase III ESSENCE trial have 
been reported, with the trial meeting both co-primary end points, and 
the full results are awaited.

Pegozafermin. FGF19 and FGF21 are hormones that regulate energy 
expenditure and glucose and lipid homeostasis303. Pegozafermin is a 

Table 3 | Recently completed and ongoing phase III trials in metabolic dysfunction-associated steatohepatitis

Therapy Mode of action NCT name Dosing Patient population Treatment 
duration

Outcomes or outcome measures

Completed

Obeticholic 
acid300,339

Farnesoid X receptor 
agonist

NCT02548351
REGENERATE

Once daily, oral 931 participants 
with MASH and 
stage 2 or 3 fibrosis

18 months Improvement in fibrosis without worsening 
of MASH with 25 mg obeticholic acid versus 
placebo (23% versus 12%, P = 0.0002). MASH 
resolution end point not met
Incidence of pruritus (54.2% versus 24.2%) 
and dyslipidaemia (47.2% versus 23.4%) 
were higher with 25 mg obeticholic acid 
than placebo

Resmetirom213 Thyroid hormone 
receptor-β agonist

NCT03900429
MAESTRO-NASH

Once daily, oral 966 participants 
with MASH and 
stage 2 or 3 fibrosis

52 weeks MASH resolution without worsening of 
fibrosis with 100 mg resmetirom versus 
placebo (30% versus 10%, P < 0.001)
Improvement in fibrosis without worsening 
of MASH with 100 mg resmetirom versus 
placebo (26% versus 14%, P < 0.001)
Diarrhoea was commonest adverse effect 
with 100 mg resmetirom versus placebo 
(33.4% versus 15.6%)

Semaglutide340 GLP-1 receptor 
agonist

NCT04822181
ESSENCE

Once weekly, 
subcutaneous

1,200 participants 
with MASH and 
stage 2 or 3 fibrosis

72 weeks MASH resolution without worsening of 
fibrosis with 2.4 mg semaglutide versus 
placebo (62.9% versus 34.1%)
Improvement in fibrosis without worsening 
of MASH with 2.4 mg semaglutide versus 
placebo (37.0% versus 22.5%)

Ongoing

Pegozafermin19 Long-acting 
glycopegylated 
fibroblast growth 
factor 21

NCT06318169
ENLIGHTEN

Once weekly, 
subcutaneous

1,000 participants 
with MASH and 
stage 2 or 3 fibrosis

52 weeks MASH resolution without worsening 
of fibrosis
Improvement in fibrosis without worsening 
of MASH

Efruxifermin305 Long-acting 
Fc–fibroblast growth 
factor 21 fusion 
protein

NCT06215716
SYNCHRONY

Once weekly, 
subcutaneous

1,000 participants 
with MASH and 
stage 2 or 3 fibrosis

52 weeks MASH resolution without worsening 
of fibrosis
Improvement in fibrosis without worsening 
of MASH

Lanifibranor21 Pan-peroxisome 
proliferator-activated 
receptor agonist

NCT04849728
NATiV3

Once daily, oral 1,000 participants 
with MASH 
according to the 
Steatosis, Activity, 
Fibrosis score and 
stage 2 or 3 fibrosis

72 weeks MASH resolution without worsening 
of fibrosis
Improvement in fibrosis without worsening 
of MASH

MASH, metabolic dysfunction-associated steatohepatitis; NCT, National Clinical Trial.
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long-acting glycopegylated recombinant FGF21 analogue developed 
for the treatment of MASH and is administered subcutaneously once 
weekly304. In a phase IIb randomized trial of participants with MASH and 
stage 2 or stage 3 fibrosis, pegozafermin met both primary end points — 
achieving fibrosis regression without worsening of MASH (27% versus 
7%, 95% CI 5–35%) and MASH resolution without worsening of fibrosis 
(26% versus 2%, 95% CI 10–37%) after 24 weeks of treatment compared 
with placebo19. The most common side-effects were nausea (19%) and 
diarrhoea (14%). On the basis of these results, the phase III ENLIGHTEN 
trial was initiated in 2024 and is expected to recruit ~1,000 participants.

Efruxifermin. Efruxifermin is a bivalent Fc–FGF21 analogue that rep-
licates FGF21 agonism. A phase IIb trial of 128 participants with MASH 
and stage 2 or 3 fibrosis met its primary end point of fibrosis improve-
ment after 24 weeks of treatment (41% versus 20%, risk ratio (RR) 2.2, 
P = 0.036) and its secondary end point for MASH resolution (76% ver-
sus 15%, RR 5.2, P < 0.001), compared with placebo305. On the basis of 
these data, the phase III SYNCHRONY trial programme was initiated in 
2024. Preliminary results of the SYMMETRY phase IIb study, evaluating 
efruxifermin for treating compensated cirrhosis related to MASH, dem-
onstrated that 39% of those receiving efruxifermin showed significant 

Steatosis

Gastric
emptying

Myofibroblast

Mitochondria

Galectin 3 
inhibitor

FGF19 analogue

FDA approval of a drug
within this class

Phase III trials of drugs
within this class have
been completed

Phase II trials of drugs
within this class have
been completed

Gut microbial 
dysbiosis

Bile acids

FXR and/or TGR5

VLDL

FXR agonist

FGF19

SREBP1c

FFA

Collagen
deposition

ACC

ROS

ACC inhibitor

Vitamin E

β-Oxidation

Dietary sugars

Insulin resistance

GLP-1 and/or GIP RAGlucagon RA GLP-1 RA

DGAT2 inhibitor

THRβ agonist

DNL

• ACC1 inhibitor
• FASN inhibitor
• SCD1 inhibitor

PPAR agonist

• Adiponectin
• TNF

SHP

FGF21 analogue

FGF21

Fig. 6 | Mode of action of current and novel therapeutic agents for metabolic 
dysfunction-associated steatohepatitis. An overview of the mode of action of 
emerging and approved therapies. Resmetirom, a thyroid hormone receptor-β 
agonist (THRβ) agonist has received FDA approval for the treatment of metabolic 
dysfunction-associated steatohepatitis with moderate-to-advanced fibrosis. 
Glucagon-like peptide 1 (GLP-1) receptor agonists (RAs) (semaglutide) and GLP-1 
and/or gastric inhibitory polypeptide (GIP) RAs (tirzepatide) have received FDA 
and European Medicines Agency approval for several cardiometabolic indications. 

ACC, acetyl-coenzyme A carboxylase; DGAT2, diacylglycerol acyltransferase 
2; DNL, de novo lipogenesis; FASN, fatty acid synthase; FFA, free fatty acid; 
FGF, fibroblast growth factor; FXR, farnesoid X receptor; PPAR, peroxisome 
proliferator-activated receptor; ROS, reactive oxygen species; SCD1, stearoyl-
CoA desaturase 1; SHP, small heterodimer partner; SREBP1c, sterol regulator 
element-binding protein 1c; TGR5, Takeda G protein-coupled receptor 5; THRβ, 
thyroid hormone receptor-β; TNF, tumour necrosis factor; VLDL, very-low-density 
lipoprotein. Adapted with permission from ref. 299, Elsevier.
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improvement in fibrosis without worsening MASH, compared with 15% 
for the placebo group306.

Lanifibranor. PPARs are nuclear receptors that regulate whole-body 
lipid and glucose metabolism and inflammation307,308. The phase IIb 
trial of Lanifibranor, a pan-PPAR agonist, in people with non-cirrhotic 
MASH met its primary end point of a decrease of at least two points 
in the SAF-A score (the activity part of the Steatosis, Activity, Fibrosis 
(SAF) scoring system that includes scores for ballooning and inflam-
mation) without worsening of fibrosis after 24 weeks of treatment 
(55% versus 33%, RR 1.69, P = 0.007)21. This phase III trial is unique as 
it utilized the SAF score, rather than the NASH Clinical Research Net-
work score utilized in the other phase III trials. The trial also met its 
secondary end points of MASH resolution without worsening of liver 
fibrosis (49% versus 22%, RR 2.2), fibrosis improvement without MASH 
worsening (48% versus 29%, RR 1.68), and MASH resolution and fibrosis 
improvement (35% versus 9%, RR 3.95). On the basis of these findings, 
the sponsor initiated the NATiV3 phase III trial in 2021, and results are 
anticipated in 2024.

Given the largely modest proportion of treatment responders 
in phase III trials of MASH, combining therapies that target distinct 
metabolic aspects may increase the proportion of responders, the 
magnitude of response and limit side effects309. For example, combin-
ing an already approved drug for obesity or T2DM, such as semaglutide 
or tirzepatide, with a novel agent specifically targeting MASH or fibrosis 
may be a promising approach.

Quality of life
The health-related quality of life (HRQOL) of people with MASLD is 
diminished compared with the general population6,310. Several vali-
dated questionnaires are available, generic ones, such as the EuroQol 
5-dimensional (EQ-5D), and the Short Form 36, and liver-specific ones, 
such as the Chronic Liver Disease questionnaire (CLDQ) have been 
utilized to assess the quality of life in MASLD311.

A study of 713 participants with biopsy-confirmed MASLD from 
the United States NASH Clinical Research Network determined that 
participants with MASLD reported lower physical and mental health 
scores than the general population312. Individuals with MASLD may 
suffer from mental health issues, contributed by stigma and obesity, 
and physicians need to assess this on a case-by-case basis3. In a prospec-
tive UK study of 513 people with MASLD, matched for age, sex, BMI and 
T2DM with the general population by propensity score matching, the 
EQ-5D index was significantly lower in patients with MASLD than the 
general population6.The quality of life scores were low even in those 
without advanced fibrosis. Further, prevalence of T2DM was higher in 
the MASLD cohort than the general population even after matching; 
however, the presence of MASLD remained an independent predic-
tor of a low EQ-5D index even after adjustment for T2DM. Notably, 
no difference in HRQOL indices was observed among people with 
MASLD with and without advanced fibrosis. By contrast, HRQOL indices 
were lower among those with cirrhosis than those without cirrhosis, 
among people with MASLD6. More data are needed to conclusively 
determine the impact of metabolic comorbidities and cirrhosis on 
HRQOL in people with MASLD. In a post hoc analysis of the STELLAR 
3 and STELLAR 4 trials of selonsertib conducted in participants with 
MASLD and advanced fibrosis, 33% and 27% had fatigue and pruritus141. 
In this post hoc study, fatigue and pruritus were associated with low 
patient-reported outcome scores, assessed by Short Form 36, CLDQ, 
EQ-5D and Work Productivity and Activity Impairment instruments. 

A survey of 2,117 people with MASLD from 24 countries determined 
that 9% of study participants reported stigma due to MASLD and 
26% due to obesity, and stigmatization was associated with reduced 
HRQOL scores313. A systematic review of patients’ perspectives deter-
mined several overarching themes that impacted their quality of life, 
including emotional distress, and physical and financial burden314. In a 
study of 1,338 matched individuals with MASLD and advanced fibrosis, 
compared against 1,338 matched individuals with chronic hepatitis C 
and advanced fibrosis, those with MASLD had lower HRQOL scores, 
assessed by the EQ-5D-5L315.

In a prospective cohort study of 151 patients with MASLD, weight 
loss of at least 5% was associated with a 0.45 improvement in CLDQ, 
compared with 0.003 in those who did not lose 5% of body weight316. 
In the MAESTRO-NASH trial of resmetirom in stage 1–3 MASH fibrosis, 
participants who achieved histologic end points were more likely to 
experience improvements in HRQOL scores than those who did not 
meet the end points317. Data assessing the impact of HRQOL on survival 
are limited. Taken together, these data indicate that people with MASLD 
have an impaired quality of life, physical symptoms, emotional distress 
and financial burden. However, weight loss and liver-directed therapies 
may improve the quality of life of people with MASLD.

Outlook
Given the high and growing prevalence of MASLD318,319 generally, as 
well as observed inequities in patients with MASLD, members of the 
global community of practice have highlighted several focus areas in 
the contexts of public health and policy through successive consensus 
processes319. Three areas are noteworthy with respect to epidemiology, 
natural history, diagnosis and treatment of adults living with MASLD. 
First, as MASLD is nearly absent from almost all national, regional and 
international non-communicable disease strategies, concerted efforts 
are recommended for MASLD global health agenda setting320. This 
effort includes closing the gap observed in health systems prepared-
ness indexing321. Second, an extensive set of research priorities has been 
advanced, with emphasis on several aspects addressed earlier in this 
Primer, as well as considerations regarding the expansion of patient 
centredness and community perspectives in the context of MASLD 
research23. Third, a multidisciplinary, global panel of experts has also 
advanced a prioritized action agenda, including the development of 
national and international investment cases to inform evidence-based 
action and advocacy on fatty liver disease322. Taken together, the devel-
opment of national and regional multidisciplinary strategies and poli-
cies are essential in effecting systemic change, eliminating disparities 
and combatting the growing burden of MASLD.

A growing body of evidence suggests that NITs are comparable 
to biopsy for the diagnosis of at-risk MASH and fibrosis. Prospective, 
head-to-head studies are needed to establish the clinical utility of NITs 
for each clinical scenario. NITs have been designed using liver biopsy 
as the reference standard. With the increasing availability of outcomes 
data, the next generation of NITs may be developed with clinical out-
comes, rather than histology, as the reference. Although major society 
guidelines generally recommend using FIB-4 followed by VCTE in the 
risk assessment for people with steatosis or metabolic comorbidities, 
FIB-4 results in a substantial proportion of false negatives and false 
positives, and VCTE may not be widely available323–325. Although there 
is a clear need to identify people with advanced fibrosis and hopefully 
slow progression to hepatic decompensation, current risk stratification 
strategies may result in a substantial false positive rate and unnecessary 
burden to the health-care system. Coupled with the slowly progressive 
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nature of the disease, these may dampen the uptake of risk stratification 
strategies for people with MASLD in the general population11. Despite 
these concerns, several studies have demonstrated that the strategy 
of FIB-4 followed by VCTE being cost effective in the USA, South Korea 
and Japan326,327. The three largest consortia for biomarker discovery in 
MASH: LiverAIM — a Biomarker-Based Platform for Early Diagnosis of 
Chronic Liver Disease to Enable Personalized Therapy328 — and LITMUS 
in Europe and Non-invasive Biomarkers of Metabolic Liver Disease 
(NIMBLE) in the USA will contribute to better risk stratification tools 
in the future. Currently, risk assessment for hepatic fibrosis is only 
indicated in people living with steatosis, T2DM or obesity, or those with 
a family history of cirrhosis3. Population-based screening for MASLD 
may not be cost effective; however, the development of testing plat-
forms such as intelligent liver function testing, an automated digital 
pathway that enhances liver disease diagnosis by interpreting liver 
function tests, triggering reflex testing and providing clinical decision 
support for early intervention and of novel risk scores targeting certain 
high-risk groups seems promising171,329–331. With the approval in 2024 of 
resmetirom in the USA and the potential for more approved therapeutic 
agents for MASH, there is an unmet need for NITs that can reliably deter-
mine treatment response or predict response to therapy and facilitate 
prescribing. The incorporation of artificial intelligence-assisted digital 
pathology is likely to reduce variability in the assessment of liver his-
tology in clinical trials332–334. Reliable, validated biomarkers that can 
replace histology for patient selection and primary end points in MASH 
trials will greatly accelerate the drug development process. Treating 
T2DM and obesity with pharmacological therapies that also have ben-
eficial effects on the liver, such as GLP-1 RAs and incretin polyagonists, is  
likely to be an important strategy for people with MASH. Combination  
therapies, coupled with non-pharmaceutical interventions, are likely to 
become the cornerstone of treatment for MASH by targeting synergistic  
pathways and lowering toxicity335.
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