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ABSTRACT: Sports cardiology focuses on athletes’ cardiovascular health, yet sudden cardiac
death remains a significant concern despite preventative measures. Prolonged physical activity
leads to notable cardiovascular adaptations, known as the athlete’s heart, which can resemble
certain pathological conditions, complicating accurate diagnoses and potentially leading to
serious consequences such as unnecessary exclusion from sports or missed treatment
opportunities. Wearable devices, including smartwatches and smart glasses, have become
prevalent for monitoring health metrics, offering potential clinical applications for sports
cardiologists. These gadgets are capable of spotting exercise-induced arrhythmias, uncovering
hidden heart problems, and offering crucial information for training and recovery, to minimize
exercise-related cardiac incidents and enhance heart health care. However, concerns about
data accuracy and the actionable value of the obtained information persist. A major challenge
lies in the integration of artificial intelligence with wearables, research gaps remain regarding
their ability to provide real-time, reliable, and clinically relevant insights. Combining artificial
intelligence with wearable devices can improve how data is managed and used in sports cardiology. Artificial intelligence, particularly
machine learning, can classify, predict, and draw inferences from the data collected by wearables, revolutionizing patient data usage.
Despite artificial intelligence’s proven effectiveness in managing chronic conditions, the limited research on its application in sports
cardiology, particularly regarding wearables, creates a critical gap that needs to be addressed. This review examines commercially
available wearables and their applications in sports cardiology, exploring how artificial intelligence can be integrated into wearable
technology to advance the field.
KEYWORDS: sports cardiology, athlete, wearable devices, artificial intelligence, cardiovascular healthcare

1. INTRODUCTION
Sports cardiology is a growing discipline dedicated to the
cardiovascular health of athletes. Even with numerous efforts
to lower the occurrence of heart-related incidents in sports-
people, sudden cardiac death (SCD) continues to be a major
issue.1,2 Regular and prolonged physical activity can result in
significant adaptations to the cardiovascular system. The
athlete’s heart is characterized by increased wall thickness
and enlarged cardiac dimensions while maintaining normal
systolic and diastolic functions.3,4 Nonetheless, there is a ’gray
area’ where the heart’s physiological changes in athletes may
coincide with some medical conditions5−9 (Figure 1). These
conditions, which can mimic the adaptations seen in the
athlete’s heart, pose challenges in distinguishing between
normal physiological changes and potentially dangerous
pathology. This makes it challenging but crucial to accurately
differentiate between physiological and pathological cardiac
changes in athletes. For example, hypertrophic cardiomyopathy
may present with similar wall thickening as the athlete’s heart,
but without the normal functional adaptations, potentially
leading to misdiagnosis. Incorrect diagnosis can lead to
significant consequences, including unwarranted disqualifica-

tion from sports, misplaced confidence despite the threat of
SCD, and lost chances for proper medical interventions.
Wearable technology consists of small electronic gadgets or

portable computers that can wirelessly connect and are
embedded in accessories, devices, or apparel, designed to be
worn on the body. Intrusive types encompass microchips or
intelligent tattoos. Various types of wearables have been
developed, with smart glasses and smartwatches being among
the most common.10−12 The market for wearable gadgets is
consistently expanding, as these devices gather, send, and
interpret data from people or animals. Wearables vary from
basic mechanical devices to advanced mechatronic systems,
which are typically equipped with sensors, actuators, and
computational components. They aid in the early detection
and treatment of health issues, as well as in tracking vital signs
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such as body and skin temperature, electroencephalogram
(EEG), electrocardiogram (ECG), heart rate, and blood
pressure.13−15 These devices incorporate various technologies,
capabilities, and costs, requiring users to have certain skills to
operate them effectively.
Many sports enthusiasts and active individuals use devices

like Apple Watches, Garmin trackers, and Polar chest straps to
track health data and assess fitness and performance.16−18 As
these devices gain popularity, sports cardiologists are exploring
their clinical applications, such as detecting exercise-induced
arrhythmias, uncovering hidden heart problems, and offering
insights on training and recovery to reduce exercise-related
heart incidents and improve cardiovascular health.19,20

However, concerns about data accuracy and the actionable
value of the information remain. As sensor technologies
advance and wearables become more widespread, doctors must
understand their benefits and evaluate their limitations. For
example, false arrhythmia alerts could cause unnecessary worry,
lead to costly exams, and unjustifiably exclude people from
sports. The rise of wearables has significantly impacted
cardiovascular health monitoring, posing a challenge for sports
cardiologists to interpret independently collected data and
harness this technology for better healthcare outcomes for
athletes.
The growing volume of data in healthcare requires artificial

intelligence (AI) to enhance data management and utilization.
AI, as defined by Russell and Norvig, involves creating smart
agents that gather and process information to perform actions.
In sports cardiology, AI mimics human functions, often using
machine learning to analyze data. Machine learning, a subset of
AI, autonomously categorizes, forecasts, and derives insights
from data. These algorithms have been applied in healthcare
for diagnosing and monitoring diseases, and their integration
with wearable devices has the potential to transform patient
data usage. Previous studies have shown AI’s success in
managing long-term illnesses, including heart disease, cancer,
and brain disorders. The incorporation of AI in sports

cardiology, especially with the growing use of wearables,
shows great promise. However, few studies have explored the
integration of AI and wearable devices in this field. This review
examines widely used wearables and their potential applica-
tions in sports cardiology, as well as the integration of AI in
wearable devices for improving sports cardiology practice.

2. BIOSIGNALS DETECTED BY WEARABLE SENSORS
Cardiovascular disease (CVD) symptoms vary by individual
and condition, with common signs including arrhythmia,
hypertension, coronary artery and valve damage, and stroke.
According to the World Health Organization, CVDs cause
over 17 million deaths annually, approximately half of the total
fatalities in the United States.21 Healthcare systems worldwide
are burdened with rising treatment costs. However, wearable
technology can significantly reduce these expenses by enabling
remote monitoring of athletes or individuals with pre-existing
heart conditions, while improving both health and perform-
ance. Wearable devices, combined with advancements in
telecommunications, offer an efficient solution for continuous,
nonintrusive medical tracking of athletes with heart conditions
or those at risk.22 These devices excel at real-time monitoring
of cardiovascular-related bioelectrical signals, biophysical
indicators, and biomarkers (Figure 2). The following sections
provide a summary of the biomedical factors relevant to CVD
monitoring, with Figure 3 illustrating the body parts linked to
these variables.
2.1. Biochemical Signals. 2.1.1. Interstitial Fluids.

Interstitial fluid makes up about 60−70% of the body’s fluids.
The cells surrounding it largely determine its composition.
Analyzing its composition and biophysical properties helps
assess the health status of adjacent cells, aiding in
cytopathology diagnosis. This fluid contains many chemicals
also found in the blood, such as urea, cortisol, lactate, glucose,
and cholesterol. Thus, monitoring these markers in interstitial
fluid can provide insights into their levels in the blood.

Figure 1. Differentiating between pathological and physiological cardiac adaptations to physical activity within the gray areas of athletes’ hearts
presents a challenge in diagnosis.
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Reverse iontophoresis utilizes the potential difference
between skin electrodes to extract substances. Charged ions,
like sodium, migrate under an electric field toward the cathode,
creating an electro-osmotic flow that induces water gradient
permeation. This water movement facilitates the concurrent
transport of neutral molecules, such as glucose and lactate,

from the interstitial fluid to the skin surface. Paz et al.
showcased a gentle skin adhesive patch that integrates a reverse
iontophoretic mechanism with an amperometric lactate sensor
on the anode, along with a porous hydrogel reservoir, enabling
simultaneous extraction and measurement of interstitial fluid
lactate through electrochemical detection (Figure 4A).23 The
device uses agarose hydrogels to prevent skin electrocution,
while a poly(vinyl alcohol)-based porous hydrogel facilitates
lactate movement to the biosensor. This flexible, skin-adhering
patch allows lactate monitoring in resting individuals without
physical exertion. For glucose monitoring via reverse
iontophoresis, pH levels in interstitial fluid are critical,
requiring further research. Zhu et al. designed a screen-printed
glucose biosensor with reverse iontophoresis electrodes to
extract interstitial fluid and monitor glucose levels24 (Figure
4B). Their study showed that pH influences glucose extraction
by altering the zeta potential, which affects iontophoretic
extraction rates. These advancements in reverse iontophoresis
sensors have significant implications for athlete cardiovascular
health monitoring, offering continuous, noninvasive glucose
and lactate data for managing energy levels and optimizing
performance.
The reverse iontophoresis method typically requires 5−10

min for interstitial fluid extraction and exhibits a slow rate,
which hinders real-time fluid monitoring. Advances in
microneedle technology have addressed this limitation by
facilitating continuous real-time detection. Teymourian et al.
developed a microneedle device capable of real-time ketone

Figure 2. Body parts and their related biomedical variables.
Abbreviation: BLL, Blood lipid level; PRV, Pulse rate variability;
HR, Heart rate; AHR, Average heart rate; BP, Blood pressure; BG,
Blood glucose; PA, Physical activity; SpO2: Peripheral capillary
oxygen saturation.

Figure 3. Categorization of vital signal monitoring by flexible wearable devices in sports cardiology. Abbreviation: ECL, electrochemiluminescence;
SERS, surface-enhanced Raman scattering; ECG, electrocardiogram; EMG, electrocardiogram.
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body detection, functioning effectively within a minimal
detection range (50 μm)25 (Figure 4C). This breakthrough
indicates the possibility of continuously tracking conditions
like ketoacidosis and diabetic ketosis in real-time. Additionally,
a new wearable epidermal system combines reverse ion
introduction with an ion-conductive microneedle-based
glucose sensor, significantly improving glucose extraction
from interstitial fluid. This advancement is expected to support
the long-term management of chronic conditions. Zhu et al.
unveiled a microneedle patch composed of cross-linked
methacrylated hyaluronic acid and dissolvable hyaluronic
acid, aimed at quickly and painlessly extracting interstitial
fluid26 (Figure 4D). This patch, which includes wax-patterned
test paper for color-based detection of metabolites such as pH,
cholesterol, lactate, and glucose, allows for simple, self-
conducted testing. The ability to quickly and accurately
monitor these biomarkers will be valuable for home-based
management of metabolic diseases and cardiovascular health in
athletes.
Pu et al. leveraged ultrasound to enhance skin permeability,

extracting interstitial fluid under vacuum conditions.27 They

incorporated three electrodes into a microfluidic chip, with the
working electrode composed of graphite and gold nano-
particles (AuNPs) for glucose detection. This technique,
referred to as sonophoresis, functions by using ultrasound to
create cavities that increase skin porosity, which is further
enhanced when vacuum pressure is applied. Despite generating
micropores during the process, the skin remains undamaged.
For athletes, this method is particularly advantageous for
monitoring cardiovascular health, providing noninvasive
biomarker detection to help manage energy levels and overall
health.
2.1.2. Sweat. Sweat is a vital bodily fluid that contains

various substances, including electrolytes, metabolites, and
proteins, which can provide significant insights into an
individual’s health status. Common components in sweat
include sodium, chloride, potassium, lactate, glucose, and C-
reactive protein (CRP). These substances can be detected and
monitored using a range of biochemical sensors integrated into
wearable devices, providing real-time data on metabolic and
physiological conditions. However, one major challenge in
sweat lactate measurement is the presence of air bubbles,

Figure 4. Interstitial fluid detection. A. Conceptual design of a noninvasive, wearable, enzyme-based patch for monitoring interstitial fluid lactate.23

Copyright 2023 Elsevier. B. Illustration depicting glucose extraction through the skin using RI, featuring a screen-printed biosensor for
electrochemical glucose detection in interstitial fluid.24 Copyright 2023 Elsevier. C. Diagram of a dual-indicator HB/GL detection system on a
microneedle sensor array.25 Copyright 2019 American Chemical Society. D. Diagram showing the creation and use of test-paper integrated
microneedle patches (TP-MNPs).26 Copyright 2022 Elsevier.
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which can disrupt the fluid flow in microfluidic sensors, causing
signal inconsistencies and unreliable readings. Air bubbles form
due to the variable nature of sweat secretion rates, particularly
in low-sweat-rate individuals, leading to interruptions in
continuous lactate monitoring. To address this issue,
researchers have explored microchannel designs that facilitate
the removal of trapped air, thereby enhancing measurement
stability. For example, Shitanda et al. designed a lactate sensor
with a microchannel to overcome the issue of air bubbles
interfering with sweat lactate measurement, enabling con-
tinuous monitoring of lactate levels28 (Figure 5A). This sensor
can be worn for extended periods, making it useful in both
medical and sports contexts. Additionally, a comprehensive
sweat lactate monitoring system was developed for real-time
perspiration analysis, confirmed by thorough on-body testing
with top-tier athletes engaged in cycling and kayaking under

regulated environments29 (Figure 5B). A positive relationship
was discovered among sweat lactate concentrations, blood
lactate, perceived fatigue (assessed using the Borg scale), heart
rate, and the respiratory quotient.
The longevity of signals in wearable electrochemical

biosensors is greatly influenced by the enduring stability of
functional materials on the flexible base, variations in sweat
pH, and signal inconsistencies caused by sensor flexing. Jiang et
al. suggested a lactate-detecting biosensor with a membrane
primarily made of Prussian blue (PB), reduced graphene oxide
(rGO), gold nanoparticles (AuNPs), and lactate oxidase
(LOx)30 (Figure 5C). The spin-coating technique ensured a
stable PB/GO film on the electrode surface while integrating
spiky gold particles and LOx-enhanced electron flow from the
enzyme’s active site to the electrode. This biosensor was
successfully used on volunteers’ skin to continuously monitor

Figure 5. Sweat electrochemical detection. A. Lactate sensor and microfluidic design.28 Copyright 2023 American Chemical Society. B. Principle
behind the wearable lactic acid sensor.29 Copyright 2023 American Chemical Society. C. Illustration of the fabricated wearable electrochemical
lactate biosensor.30 Copyright 2022 Elsevier. D. A wearable biosensor that provides automatic, wireless, and noninvasive tracking of inflammation
through electrochemical methods.31 Copyright 2023 Springer Nature.
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sweat, yielding results similar to commercial lactate sensors.
Additionally, Tu et al. created a wireless, wearable patch for
real-time electrochemical monitoring of the inflammatory

marker CRP in sweat31 (Figure 5D). The device combines
iontophoretic sweat collection, microfluidic pathways for
analysis, and a graphene sensor array to measure CRP levels.

Figure 6. Sweat optical detection. A. Photographs illustrating the process of making and the mechanical adaptability of the sweat patch.32

Copyright 2020 Elsevier. B. Diagram illustrating the design of a colorimetric sensor pattern (a) and the creation process of a textile-integrated
colorimetric sensor for concurrent monitoring of sweat pH and lactate levels (b).34 Copyright 2019 Elsevier. C. Schematic showing the method of
sweat collection in Janus fabrics, laser light entering the center of the grapefruit optical fiber, and the gathering of backscattered Raman signals.35

Copyright 2023 American Chemical Society.
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It uses a gold nanoparticle-coated electrode with anti-CRP
antibodies and monitors ionic strength, pH, and temperature
for calibration. High CRP levels detected by the patch
correlated with serum levels in individuals with chronic
obstructive pulmonary disease, infections, or heart failure.
These wearable devices for real-time inflammatory protein
detection could significantly assist in managing chronic
illnesses and tracking cardiovascular health in athletes.
Wearable sensors that use optical detection techniques are

also used for sweat analysis, alongside electrochemical sensors.
Chloride, pH, lactate, and glucose concentrations in sweat
were detected using an optical wearable sensor based on
cellulose32 (Figure 6A). The device was also combined with a
fluorescence imaging module on a smartphone and a custom-

built app for in situ and noninvasive multisensing of sweat
biomarkers. Colorimetric sensors, a common type of optical
sensor for sweat analysis, offer visual detection capabilities.
Zhou et al. developed a gold nanoparticle (AuNP) colloid-
based sweat sensor capable of distinguishing dehydration from
overhydration through color changes.33 Fabric-based colori-
metric sensors detect pH and lactic acid levels34 (Figure 6B).
The pH of sweat was evaluated with a mix of methyl orange
and bromocresol green, whereas lactic acid concentrations
were determined through particular enzymatic processes.
Further advancements have integrated sensors into wearable
fabrics, creating smart clothing with embedded sensing
capabilities. Han et al. developed a wearable Janus fabric for
efficient sweat collection, integrating a grapefruit optical fiber

Figure 7. Tear detection. A. Procedure for creating the contact lens biosensor: (I) A 200 nm platinum working electrode and a 300 nm silver/silver
chloride counter/reference electrode were deposited onto a 70 μm polydimethylsiloxane (PDMS) membrane; (II) These pliable electrodes were
attached to the PDMS contact lens surface with PDMS.GOD was subsequently fixed onto the electrode’s sensing area with PMEH, and ultimately,
the enzyme layer was coated with PMEH.46 Copyright 2011 Elsevier. B. Diagram of the wearable contact lens device, incorporating both a glucose
monitors and an intraocular pressure gauge.47 Copyright 2017 Springer Nature. C. (i) Images and diagrams of the fluidic apparatus embedded with
wireless electronics on an eyeglasses frame, illustrating the process of enzymatic alcohol sensing and signal transmission, where (a) denotes the
initial state, (b) signifies the current variation from collected tears, (c) displays the detected alcohol signal, and (d) indicates the drying phase of the
device. (ii) Exploded view of the fluidic device: (1) top polycarbonate membrane, (2) double adhesive spacer, (3) paper outlet, (4) electrochemical
(bio)sensor, and (5) bottom polycarbonate membrane. Tears stimulation: (a) Menthol tear stick, (b) Volunteer applying the tear stick under the
left eye, (c) Tear entering the device inlet. Fluidic device construction: (d) Adhesive spacer detached from PET base, (e) Spacer positioned on the
lower membrane, (f) Electrode and outlet arranged atop the spacer, followed by the upper membrane, (g) Completed device mounted on
eyeglasses nose pad.48 Copyright 2019 Elsevier. D. (i) Diagram illustrating the assay procedure with the eye patch biosensor (AA for ascorbic acid,
Alb for albumin, and Glu for glucose), (ii) Evaluation through a semiquantitative card or precise measurement using a smartphone, showing
wireless data transmission to a cloud service.49 Copyright 2022 American Chemical Society.
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embedded with silver nanoparticles as a sensitive surface-
enhanced Raman scattering (SERS) probe35 (Figure 6C). The
fabric has a water-repellent inner layer and hydrophilic outer
zones, enabling unidirectional sweat transport. Grapefruit
optical fibers with sharp tips penetrate transparent dressings,
using capillary forces to extract sweat with nanoliter-level
volume requirements. Plasmonic hot spots along the fiber
amplify the Raman signal of sweat components, enabling
highly sensitive detection of sodium lactate and urea at
subphysiological levels. This sensor facilitates real-time sweat
analysis, aiding in personalized health monitoring, sports
performance tracking, and cardiovascular health assessment in
athletes.
Sweat analysis is essential for assessing exertion levels,

optimizing training programs, and supporting cardiovascular
health. Cai et al. developed an electroluminescence-based lactic
acid sensor using luminol as a signaling substance.36 The
sensor quantifies lactic acid levels by detecting light emission
from enzymatic hydrogen peroxide production, identifying the
exertion threshold. Excessive sweating disrupts electrolyte
balance, leading to dehydration. Jain et al. created a sweat rate
detection patch that collects sweat chronologically and
provides real-time, in situ testing.37 A color-changing tip
indicates sweat rate and dehydration levels, and the low-cost
patch is suitable for mass production. Regular lactic acid
monitoring helps assess the lactate threshold, optimizing
training for athletes, rehab patients, seniors, and high-intensity
professionals like firefighters.38 Kim et al. developed a
multifunctional sweat sensor measuring vitamin C, glucose,
cortisol, and sweat rate.39 Sweat rate is tracked via changes in
electrical resistance, glucose, and vitamin C via fluorescence,
and cortisol via an anticortisol antibody-AuNPs system. Near-
field communication enables wireless monitoring.
Sweat is lost quickly, necessitating its storage. One common

solution is incorporating sweat storage areas on sensor patches,
as confirmed by McCaul et al.40 Additionally, lithography and
screen-printing techniques were employed to develop a skin-
adhering microfluidic electrochemical detection system,
enhancing the collection of sweat and the identification of
metabolites.41 This device features an electrode array,
microfluidic pathways, sensing chambers, and medical
adhesives, forming an efficient natural perspiration pump. Its
design ensures stable skin contact for rapid sweat collection
while eliminating initial contaminant metabolites. These
advancements are crucial for athletes’ cardiovascular health,
offering insights into hydration and metabolic responses.
However, traditional sensors may not suit individuals who
sweat minimally, such as certain patients. For these cases,
artificial stimulation of sweating, like pilocarpine iontophoresis
(a method in which pilocarpine is delivered via electrical
current to stimulate sweat production), is employed. This
process works by activating muscarinic receptors on sweat
glands, triggering the release of sweat through a mechanism
that mimics the natural action of acetylcholine. Most current
sweat sensors are limited to passive detection, with few capable
of active intervention. Developing more sensors with closed-
loop control functions would enhance real-time monitoring
and management of athletes’ cardiovascular health.
2.1.3. Tears. Tears, valued as an excellent noninvasive

diagnostic fluid, are widely recognized for their effectiveness in
monitoring physiological conditions due to their strong
correlation with blood components.42−44 Flexible wearable
tear biosensors have become increasingly important in the field

of sports medicine. The rising fascination is fueled by
advancements in technology and the heightened demand for
instant tracking of athletes’ physical well-being, especially
regarding heart health.
Flexible wearable devices crafted for tear monitoring offer

significant benefits in sports settings, particularly due to their
positioning around the eye, ensuring they remain lightweight
and do not hinder movement. Nonetheless, applying these tear
biosensors in athletic settings presents specific difficulties. The
first model, a bendable strip intended to gauge glucose
concentrations in tears, was developed by applying poly-
dimethylsiloxane fixed onto poly(MPC-co-DMA).45 Even with
this advancement, keeping a secure position on the iris was
challenging, reducing its practicality for daily use, especially
during vigorous sports. Chu and colleagues developed a
biosensor resembling a contact lens to enhance comfort and
usability46 (Figure 7A). This breakthrough entailed attaching a
glucose oxidase sensor to a flexible strap, allowing for
prolonged use. To improve comfort, later studies employed
sophisticated materials like graphene-silver nanowire (AgNW)
composites and titanium dioxide sol−gel films47 (Figure 7B).
These advancements led to the creation of biosensors similar
to contact lenses, providing improved compatibility with the
iris. However, direct ocular contact with these sensors raises
concerns about potential eye disorders, particularly those
stemming from heat generated by wireless transmission
modules. To mitigate these hazards, Sempionatto and his
team developed a frame-mounted wearable sensor for tears48

(Figure 7C). This novel design demonstrated the feasibility of
detecting extraocular tears for the first time. This sensor,
designed to gather tears from the eye’s edge, can identify both
alcohol and external tears through a bioenzyme−substrate
reaction, without touching the eye directly. In addition, Xu et
al. designed an innovative noninvasive wearable biosensor
capable of simultaneously analyzing multiple crucial bio-
markers in human tears49 (Figure 7D). This sensor, uniquely
fashioned as an easy-to-use eye patch, comfortably fits beneath
the eyes. Different regions on the eye patch are coated with
particular color-changing chemicals to specifically identify
glucose, vitamin C, proteins, and pH levels in tears. The
examination needs only one teardrop (approximately 20 μL)
and provides outcomes in under half a minute.
We evaluated devices for monitoring tears, interstitial fluid,

and sweat, comparing tear detection products with those
designed for sweat and interstitial fluid (Table 1), and
discovered that advancements in sensor technology have
mainly boosted the sensitivity of existing products. Most
monitoring limitations arise from changes in biomarker
composition. Despite significant advancements in enhancing
sensor comfort, safety, and effectiveness, especially during
physical activities, their susceptibility remains a subject for
further investigation.
2.1.4. Blood. Blood holds numerous health-related sub-

stances. In medical practice, blood tests are considered a gold
standard for diagnosing health conditions. Typically, these tests
involve invasive methods, such as drawing a blood sample.
However, recently developed devices enable noninvasive
testing. These devices primarily measure blood pressure,
blood glucose, and blood oxygen levels.
Pulse oximetry, a widely utilized commercial blood oxygen

testing device, necessitates precise mounting and usage.
Nonetheless, its substantial dimensions and significant energy
usage limit its use for real-time, remote surveillance.50
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Plethysmography (PPG)--based sensors, consisting of light-
emitting diodes and photodetectors (PD), facilitate blood
oxygen detection in opaque tissues.51 These devices can detect
transmitted or reflected light from tissues, which is then
converted into electrical signals. Flexible organic photo-
detectors (OPD) provide superior skin conformity and
comfort compared to stiff PPG sensors. For instance, Bae et
al. created a hybrid gadget integrating micro-LEDs, organic
photodetectors, and heaters embedded in polydimethylsiloxane
(PDMS), demonstrating robust emissions and 50% stretch-
ability, employed to track vital signs like heart rate, deep
breathing, coughing, and blood oxygen levels.52 Kim et al.
combined flexible electronics with near-field communication to
create an ultracompact, wearable earlobe sensor for continuous
blood oxygen monitoring for up to three months, though
motion artifacts remain a challenge.53 To address miniatur-
ization, Abdollahi et al. used free-form 3D printing to design
personalized pulse oximeters with red/infrared LEDs, pressure
sensors, and flexible circuits, achieving accuracy at rest but
facing issues during movement due to pressure-induced
contact variations.54 A wearable ambient light oximeter
(ALO) that uses various ambient light sources eliminates the
need for LEDs.55 By integrating spectral filters and optical path
differences, this apparatus gauged blood oxygen levels on the
index finger across various lighting environments, matching the
reliability of commercial pulse oximeters.55 These advance-
ments in noninvasive monitoring technologies are particularly
relevant for athletes, as they provide continuous and accurate
blood oxygen levels crucial for cardiovascular health and
performance optimization during training and competition.
Blood glucose is a key health indicator, but traditional

testing methods are invasive, relying on electrochemical
detection. Noninvasive optical sensing, using PPG sensors
with near-infrared (NIR) and Raman spectroscopy, provides a
more comfortable alternative. Yang et al. developed a NIR
serum glucose monitoring device combining photoacoustic
spectroscopy with machine learning algorithms.56 This system
uses a continuous-wave laser (1500−1630 nm) to excite
glucose in aqueous solutions, with deep neural networks
enhancing accuracy compared to other NIR methods. For
other biomarkers like blood lactate, innovative noninvasive
sensors are emerging. Mason et al. created a microwave-range
electromagnetic lactate sensor that correlates well with invasive
testing (R2 = 0.78, 13.4% error within 0−12 mmol/L).57

Moreover, NIR-based devices such as the BSX Insight can
track blood lactate levels during workouts to estimate the
lactate threshold.57 These advancements in noninvasive
monitoring are particularly beneficial for athletes. Continuous
and accurate measurement of blood glucose and lactate levels
is crucial for optimizing training regimes and ensuring
cardiovascular health, as these biomarkers directly influence
energy metabolism and performance.
2.2. Biophysical Signals. 2.2.1. Paths of Movement. In

athletic contexts, the accelerometer is a crucial device utilized
in numerous areas, including practice, competitive events,
wellness tracking, and recreational activities. By accurately
measuring acceleration and trajectory, it offers athletes and
regular users an enhanced, individualized sports experience,
contributing to better cardiovascular health monitoring and
performance optimization.
Flexible wearable devices use accelerometers and various

sensing mechanisms�capacitance, piezoresistivity, triboelec-
tricity, and piezoelectricity�to monitor movement and

cardiovascular health. These sensors offer high sensitivity,
durability, and flexibility. Wang et al. developed self-sticking
strain sensors with a water-based polyurethane adhesive to
track neck, wrist, and ankle movements, enhancing sensitivity
and minimizing motion interference.58 Bi et al. improved upon
this by integrating conductive textiles with rGO/carbonate
ink/PVA, enabling posture correction for elite athletes.59 Zhao
et al. advanced the field further with a transparent, flexible
ionic skin system that detects hand gestures and transmits
them wirelessly for sign language interpretation.60 Additionally,
some researchers have specifically designed accelerometers for
foot movement. For example, Mao and colleagues created an
intelligent sock incorporating a TENG, signal processing
circuits, and a microcontroller equipped with a wireless
transmitter.61 This sock efficiently tracks foot pressure and
employs neural network algorithms to assess and observe
walking patterns and balance, which is essential for athletes’
heart health and performance enhancement.61,62

In summary, wearable sensor technology has evolved from
simple tracking mechanisms to sophisticated systems with
enhanced sensitivity, supporting applications in sports training
and motion analysis. With continued advancements in AI,
flexible wearables equipped with accelerometers and advanced
algorithms offer intelligent monitoring solutions, overcoming
challenges like movement artifacts and perspiration, partic-
ularly in tracking cardiovascular health in athletes.
2.2.2. Heart Rate and Pulse. In order to achieve precise and

sensitive monitoring of cardiovascular health with minimal
interference from body movements, advancements in flexible
devices have combined electrical, pressure, and optical sensing
technologies. These techniques allow for gathering heart rate
and pulse data from locations such as the fingers, neck, chest,
and wrist.
Flexible gadgets now enable real-time, remote tracking of

heart rate, breathing, and electrocardiograms, essential for
athletes’ heart health. These devices use electrical sensing
methods like peak detection and ECG signal averaging,
supported by hybrid electronic systems.63−65 Pressure sensors,
such as those developed by Rasheed et al., use piezoelectric
designs and amorphous silicon bigate TFTs for multipoint
heart rate monitoring.66 Chen et al. created flexible
piezoresistive sensors for pulse detection,67 offering highly
sensitive tracking with minimal resistance and greater comfort.
A more user-friendly approach for monitoring employs
photoelectric PPG to detect blood flow volume changes
through the skin, thereby extracting heart rate data. Scardulla
et al. analyzed the interaction of contact pressure between the
PPG sensor and the skin.68 Building on this, Wang et al.
developed a PI interface sensor that integrates a platinum film
thermistor with a reflective PPG sensor to gauge the contact
pressure between the sensor and the skin.69 Advancements in
PPG technology have resulted in more efficient sensor designs,
guaranteeing that flexible wearable devices retain their
pliability, comfort, softness, and mechanical compatibility,
which are crucial for extended use, particularly in sports
settings. Overall, the evolution of heart rate and pulse
monitoring in flexible wearables has moved from simple
electrical detection to advanced pressure and optical sensing,
enhancing sensitivity and accuracy. These developments
ensure reliable cardiovascular health monitoring for athletes
during physical activities.
2.3. Bioelectrical Signals. 2.3.1. Heart Function. Tradi-

tional ECG machines, which use wet electrodes, provide
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accurate heart activity readings but are designed for short,
stationary assessments. Their complexity and size make them
unsuitable for dynamic environments like sports, where
continuous cardiovascular monitoring is crucial. To address
this, Kim et al. developed a flexible wearable ECG device using
thin-film electronics and ultraelastic elastomers, allowing for
continuous data collection during physical activities.70 This
design optimizes accuracy while minimizing user disruption.
Expanding on this, Li et al. have advanced the precision of
exercise state detection in wearable technology by enhancing
denoising methods for ECG and EMG signals.71 Their method
combines an enhanced Variational Mode Decomposition
(VMD) with the Improved Sparrow Search Algorithm and
Second-Generation Wavelet Transform (ISSA-VMD-SWT),
using chaos mapping to improve the algorithm’s initial
population. This technique effectively minimizes noise while
retaining critical fatigue-related indicators. Testing with data
from 32 individuals revealed accuracy levels of 93.05%, 95.16%,
and 93.25% for classifying “Tired”, “Transition,″ and “Easy”
exercise states, respectively, demonstrating substantial im-
provements over traditional denoising methods. Furthermore,
Li and Yang et al. focused on detecting minute heart rate
fluctuations, with their efforts aimed at overcoming the
challenges of skin resistance and perspiration accumulation
during exercise, resulting in degradation of the interfacial
conformality and adhesion, causing signal artifacts and unstable
biopotential measurements.72,73 These advancements have led
to more compact and user-friendly ECG monitors for sports,
progressively reducing external interference and enhancing
their suitability for the active demands of athletic environ-
ments.

3. TYPES AND CAPABILITIES OF WEARABLES
3.1. Movement Sensors. Wearable devices use motion

sensors like biaxial or triaxial accelerometers to capture activity
parameters such as walking, running, and cycling. These
accelerometers are often combined with. Global positioning
satellite (GPS) for spatial positioning, barometers to detect
altitude changes, and gyroscopes to measure angular motion,
offering valuable insights for sports cardiology. Pedometers are
a fundamental type of motion sensor, measuring steps when
vertical acceleration exceeds a set threshold. Although limited
in competitive environments, pedometers are useful for
tracking daily physical activity, and promoting cardiovascular
health in athletes.74,75 Accelerometers and gyroscopes,
integrated with microchips, are key in analyzing athletic
performance and optimizing exercise regimes. MEMS tech-
nology enables compact, multidimensional sensors that
estimate energy expenditure and assess training intensity.
These devices are widely used in consumer products like FitBit
and Jawbone Up, providing real-time data on heart rate, calorie
burn, and performance across various sports.76−78 In Australian
football, accelerometer data highlight positional differences in
physical demands across various levels of competition,79

offering insights crucial for cardiovascular health management
in athletes. GPS devices offer an alternative to accelerometers
for tracking positional data in sports and exercise physiology.
GPS technology has been extensively utilized in sports like
football, orienteering, cross-country skiing, and field hockey to
monitor athlete speed and position. In elite sports like
Australian football and rugby, GPS-enabled gadgets such as
Garmin’s Vivofit and Vivoactive, Polar’s M400, and FitBit’s
Surge offer live data on various metrics including distance,

steps, pace, calories burned, altitude, and speed.80,81 These
devices also facilitate performance tracking through software
programs. This capability is particularly valuable for monitor-
ing cardiovascular health and ensuring athletes are training
within safe parameters. However, the applicability of GPS in
court-based sports with shorter distances and higher intensities
remains an area requiring further validation. Additionally, force
sensors, including force-sensitive resistors and load cells,
measure applied forces.82,83 These sensors are crucial in
understanding movement dynamics, balance, and muscle
performance. Force-sensitive resistors are often used in
footwear insoles to assess foot pressure, while in the upper
limbs, they measure muscle contractions.84,85 These sensors
are integral to monitoring cardiovascular health, enhancing
performance, and preventing injuries in athletes.
3.2. Physiologic Sensors. Currently available wearables

monitor various physiological measurements, including skin
temperature, peripheral capillary oxygen saturation (SpO2),
respiratory rate, heart rate variability, and heart rate. Advanced
devices can also estimate maximal oxygen uptake (VO2 max),
which assesses aerobic capacity, offering valuable insights into
cardiovascular health and exercise performance.
Most wearables utilize PPG technology to measure SpO2

and heart rate, employing optical techniques to assess changes
in blood volume within microvessels.86 By emitting light (e.g.,
365 nm wavelength LED) onto the capillary bed, PPG
measures the light intensity either transmitted through or
reflected from the tissue, detected by a photodiode.87 In
resting conditions, commercial wearables show comparable
performance to traditional clinical vital signs monitors across a
broad heart rate range.88 During aerobic exercise, these
wearables generally correlate well with standard ECG
monitoring.89 Chest strap monitors, such as the Polar H7,
show the greatest consistency with ECG readings (r = 0.99)
among different groups, while wrist-worn heart rate monitors
that use optical technology display varying levels of accuracy
depending on the model (r = 0.52−0.92).90,91 Notably, wrist-
worn devices perform less reliably during activities like
elliptical training with arm levers (r < 0.80).92 In comparison,
the Apple Watch Series III exhibits a high correlation with
ECG readings during treadmill use (r = 0.96), whereas other
devices such as the Fitbit Iconic, Garmin Vivosmart heart rate,
and TomTom Spark 3 show a marginally lower correlation (r =
0.89).93 The precision of wrist-worn monitors can be
influenced by elements like skin tone, hydration levels, and
body art.94,95 For example, darker skin tones (and tattoos),
which absorb greener light due to melanin, can reduce light
reflection and impact signal accuracy.94 Additionally, hydration
levels, which affect skin resistance, can also influence the
performance of wrist-worn monitors, as skin resistance
decreases with increasing hydration.96 Overall, given the
inconsistent accuracy of wrist-worn devices, it is recommended
to exercise caution when analyzing their data. For more
accurate heart rate monitoring during physical activity, chest
strap monitors are suggested, especially for clinical or
performance-related purposes.
With recent progress, smartwatches now include direct ECG

electrode recording to monitor heart rate and rhythm.97

Gadgets such as the Apple Watch and Fitbit Sense employ
electrodes located on the sides and back of the device to record
a rhythm strip similar to lead I. Users can initiate a single-lead
ECG by touching the digital crown with a finger from the
opposite hand. By moving the watch to the ankle and
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positioning either hand on the crown, additional techniques
allow for the capture of leads II and III. Device adjustments
can also be used to acquire precordial leads. This feature allows
for continuous PPG heart rhythm monitoring with the
flexibility to perform single-lead ECG monitoring as required,
enhancing monitoring capabilities in both clinical and personal
fitness settings.98,99

4. BENEFITS OF WEARABLE TECHNOLOGY IN
SPORTS CARDIOLOGY

Sports teams constantly seek ways to enhance athlete
performance and safety to gain a competitive edge. In the
last ten years, techniques like video capture and digital
computer analysis have been utilized to track human motion
and enhance athletic performance.100−102 Although these
methods were once advanced, they faced challenges such as
questionable data validity, labor-intensive data collection,
manual notation, and an inability to track vital metrics like
biosignals, physiological parameters, and biochemical data,
which are crucial for real-time health and performance insights.
Recent developments in wearable sensor technology have
provided new opportunities to address these issues and are
now being adopted by teams worldwide. Table 2 outlines the
different available technologies in the field of wearable device-
driven sports cardiology.
One significant challenge in the wearables field is translating

data into actionable insights within its clinical domain.
Inquiries such as ’how should the data be utilized’ or ’what
is the significance of the data’ have obstructed the efficient
application of this technology. To overcome these obstacles,
sports teams have started hiring “sports scientists” whose roles
include translating sensor data into comprehensible metrics for
coaches, trainers, players, and other stakeholders. These sports
scientists utilize various frameworks such as the “Performance
Profiling Methodology” and “Data-driven Decision-Making
Models” to ensure that the data gathered from wearables is
analyzed accurately and converted into actionable strategies.
For instance, the “Performance Profiling Methodology” allows
coaches to create individual performance profiles for each
athlete, incorporating data from wearables to identify strengths
and weaknesses, while data-driven models offer predictive
analytics to adjust training regimens in real-time. This
integration aims to enhance rehabilitation therapies and
improve athlete health and performance. For instance,
wearable device data on player movement can inform coaches
about workout loads, identifying athletes at higher risk for soft-
tissue injuries or those needing rest during intense training
periods.103,104 One National Football League (NFL) coach
highlighted that using such technology, combined with
insightful analytics and tailored recovery protocols, signifi-
cantly reduced soft-tissue injuries over two years.105

Monitoring an athlete’s position and movement is critical for
developing improved training regimens to maximize individual
performance. The accuracy of devices like pedometers has
been questioned and recently studied. Scientists evaluated the
precision of step-counting capabilities in smartphone ped-
ometer applications (Galaxy S4Moves App, iPhone 5s Moves
App, iPhone 5s Health Mate App, iPhone 5s Fitbit App) and
wearable gadgets (Nike Fuelband, Jawbone UP24, Fitbit Flex,
Fitbit One, Fitbit Zip, and Digi-Walker SW-200) by comparing
them to direct step count observations.106 The findings
indicated a relative variance in the mean step counts between
actual and reported data: −0.3% to 1.0% for pedometers and
accelerometers, −22.7% to −1.5% for wearables, and −6.7% to
6.2% for smartphone apps. These variations were credited to
the strength of integrated circuit technology and the software
algorithms employed to identify a step.106 Accurate step counts
are essential for calculating other physical activity metrics like
distance covered or calories burned, which is vital for
customizing training programs for top-tier athletes.
Wearable sensors in athletics are still in their infancy, with

the majority of gadgets now tracking movement-related
metrics such as distance, speed, and acceleration. A substantial
necessity persists to ’measure the athlete’ through the
assessment of biochemical indicators like electrolytes, analytes,
and neuropeptides, which reflect physical effort, fitness levels,
exhaustion, and cognitive sharpness. Integrating these
advanced measurements into sports cardiology and perform-
ance analysis could revolutionize athlete training and health
management.
4.1. Wearables to Screen for Cardiovascular Disease

in Athletes. With advancements in sensor technology and
algorithm development, wearables are now evolving to not
only track athletic performance but also detect potential health
issues, particularly cardiovascular concerns. Wearable devices
in sports cardiology could play a crucial role in evaluating and
preventing SCD in athletes. High-intensity physical activity can
induce ventricular arrhythmias in individuals with hidden
cardiac conditions linked to SCD. Although the precise rate of
SCD in athletes varies by factors such as age, gender, and type
of sport, it is noted to be as high as 1 in 15,000 among young
male soccer players.107,108 In the future, it is possible that
wearables could aid in identifying previously undetected
exercise-induced arrhythmias in athletes with cardiovascular
issues. With advancements in algorithm development,
wearables might eventually predict health events automatically,
pinpointing at-risk athletes who might otherwise be missed by
standard screening processes. These technological strides could
enable the early detection of conditions tied to SCD,
potentially allowing for interventions that reduce SCD risk in
affected athletes. In the context of sports performance,
wearable technology can monitor vital signs and physiological

Table 2. Mechanisms, Applications, and Constraints of Wearable Devicesa

BCG PPG ECG

Mechanisms Measure the body’s motion caused by the abrupt expulsion of
blood with every heartbeat.

Identify variations in microvascular blood
volume.

Assess the heart’s electrical
activity using electrodes placed
on the skin’s surface.

Applications Beneficial for monitoring essential physiological signs. Sufficient for detecting heart rate. The benchmark for measuring
heart rate and variability.

Constraints The accuracy can be influenced by the placement on the body
and is dependent on the individual’s posture, such as whether
they are sitting or lying down.

In cases of arrhythmias with reduced pulse
generation, such as atrial fibrillation, heart
rate may be underestimated.

The quality of the signal is
influenced by the electrode-
skin contact.

aBCG, Ballistocardiograms; PPG, Photoplethysmography sensors; ECG, electrocardiogram.
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responses during training and competition. This data can be
used to optimize training programs, enhance performance, and
ensure athlete safety. Wearable devices offer immediate
information about an athlete’s heart health, aiding in the
prevention of negative incidents and enhancing overall
performance.
Long QT syndrome is a heart rhythm disorder, characterized

by prolonged QT intervals on an ECG, which increases the risk
of arrhythmias. It is a major factor contributing to SCD in
young sports players. Some research indicates that the Apple
Watch Series 4 can accurately measure QT intervals in 85% of
patients with normal heart rhythm by using ECG equivalents
of leads I, II, and V6. The primary limitations are the quality of
ECG tracings and T-wave amplitude.109 Despite its promising
potential, the clinical application of wearable ECG devices such
as the Apple Watch for diagnosing Long QT syndrome is still
hindered by several factors. First, these devices may not always
provide accurate readings due to factors such as movement
artifacts, poor electrode contact, and the limited number of
leads used, which may miss subtle abnormalities. Additionally,
the interpretation of ECG data from wearables requires
expertise, and it is challenging to ensure consistency across
different users and environments. In clinical practice, these
devices may need to be used alongside traditional ECGs or
other diagnostic tests for confirmation, particularly in the case
of at-risk populations. While systematic preparticipation
screening (PPS), including ECG, has proven effective in
identifying young athletes with potentially lethal cardiovascular
abnormalities and protecting them from sport-related SCD, the
practicality of identifying Long QT syndrome through
wearable technology is still uncertain.110 Nonetheless, it is
conceivable that such devices could eventually be used for
screening a large number of young people for this condition.
At present, it is impractical to reliably use wearable devices

to detect other conditions linked to SCD in athletes.
Nonetheless, growing data suggests that wearable devices are
capable of detecting irregular heart rhythms, including atrial
fibrillation. The Apple Heart Study, involving 419,297
individuals over eight months, discovered that a PPG
algorithm identified irregular heartbeats in 0.52% of the
participants.111 Interestingly, just 0.16% of individuals between
22 and 40 were notified, whereas 3.1% of people aged 65 and
above received alerts. Among those who received irregular
pulse alerts and wore an ECG patch at the same time, the
positive predictive value (PPV) for detecting an irregular pulse
was 84%. Similarly, the Huawei Heart Study, which monitored
pulse rhythms in 187,912 participants, reported that 424
received notifications for suspected atrial fibrillation. Of those
who sought medical evaluation, the PPV was 87%,112 aligning
with the Apple Heart Study findings. Considering that atrial
fibrillation occurs more frequently among male master’s
endurance athletes compared to the general population, the
PPV could be elevated in this particular demographic.113

4.2. Wearable Devices for Exercise Guidance.
4.2.1. Training Based on Heart Rate Zones. Wearables
enable individuals to use heart rate to regulate training
intensity. This method can assist in designing athlete training
plans and tailoring exercise routines for cardiac patients.
Stamina workouts frequently involve extended aerobic
activities at levels where lactate balance is maintained, referred
to as Zone 2, in addition to high-intensity interval training
(HIIT), characterized by short, vigorous bursts.114 The most
accurate way to determine specific training intensities for many

is through a cardiopulmonary exercise test. After identifying
these intensities, the associated heart rate can serve as a guide
for future workouts. For individuals without access to this test,
heart rate zone training and HIIT can be estimated by using
percentages of their predicted maximum heart rate.
Furthermore, providing secure workout recommendations

for athletes with coronary artery disease or conditions
associated with sudden cardiac death is an essential and
developing area in sports cardiology. Although the American
Heart Association and the American College of Cardiology
typically advise athletes to engage in low-intensity (Class IA)
sports for numerous conditions,115 recent revisions suggest a
more adaptable stance, particularly when the effects of exercise
on disease progression or sudden cardiac death risk are
unclear.116 Consequently, wearable devices can offer immedi-
ate, unbiased feedback during workouts, potentially aiding in
maintaining the recommended training levels. Any wearable
technology strategy for athletes with diagnosed cardiovascular
conditions must be thoroughly validated for device precision
and medical safety via clinical studies. The growing enthusiasm
for home-centered cardiac rehab for individuals with heart
conditions could further confirm the precision, safety, and
efficacy of wearable devices in this group.117

As previously noted, wrist-worn heart rate monitors exhibit
varying accuracy, particularly during exercises involving
extensive arm movements. Consequently, when guiding
athletes on training regimens that rely on heart rate or
recommending exercise for those with heart issues, it is
essential to acknowledge the inaccuracies of wearable devices.
Optimal guidance is expected from using a chest strap monitor
rather than wrist-worn devices.
4.2.2. Heart Rate Variability-Guided Training. Wearable

devices offer more than just heart rate metrics; they also
provide objective data on internal workload and recovery.
External workload denotes the physical effort an athlete puts
forth, often quantified by biomechanical actions like speed and
acceleration. In contrast, internal workload captures the body’s
physiological response to this external load. This is often
assessed using wellness questionnaires that evaluate an athlete’s
response to previous workouts and recent stress, recovery, and
sleep levels. Internal workload encompasses subjective assess-
ments during physical activity, such as perceived exertion
ratings using scales like those developed by Borg or
Foster.118,119 Sports scientists use RPE along with the length
of the training session to measure an athlete’s internal
workload for a particular exercise. Coaches and trainers can
use these metrics to ensure adequate recovery between training
sessions. Proper recovery is crucial in competitive sports to
prevent injuries and avoid training plateaus. Overreaching or
overtraining can occur when there is an imbalance between
training load and recovery.120

Considering the personal nature of wellness surveys and
perceived exertion ratings, data from wearable devices can
enhance these evaluations to better gauge athletes’ internal
workload levels. Wearable devices are progressively utilizing
deviations in skin temperature and breathing rate from normal
daily rhythms, along with heart rate variability data, as
objective indicators of internal strain and recuperation. Heart
rate variability, which indicates changes in the autonomic
nervous system, offers a thorough evaluation of exercise, rest,
diet, and mental as well as emotional stress. Lundstrom et al.
explored if daily monitoring of heart rate variability could
improve endurance training outcomes more effectively than a
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fixed training regimen in healthy, moderately fit male
athletes.121 Heart rate variability was measured every morning
using a Polar S810i monitor. The training intensity was
modified according to heart rate variability; a drop in heart rate
variability resulted in lower intensity, whereas stable or
increased heart rate variability permitted higher intensity.122

The guidelines permitted up to two back-to-back high-intensity
or rest days, requiring a rest day after nine straight days of
training, irrespective of heart rate variability. Although both
groups trained six times a week, athletes using heart rate
variability to guide their training, with only three high-intensity
sessions compared to four in the standard program,
experienced notably better gains in maximum running speed
and a larger, albeit not statistically significant, rise in
VO2peak.123 Analogous research involving both genders
revealed steady outcomes in men, whereas women in the
heart rate variability-guided cohort attained equivalent
cardiovascular performance enhancements with reduced train-
ing intensity.124 Later studies back these results, showing
improved sports performance through training guided by heart
rate variability. However, wearables encounter challenges in
accurately measuring heart rate variability. Certain research
employs a 7-day moving average of the root-mean-square of
successive differences (RMSSD) between normal heartbeats, as
it is more responsive to variations in training status compared
to single-day measurements.125 Despite challenges in obtaining
accurate heart rate variability data and interpreting its
significance, wearable-derived heart rate variability can
plausibly guide training regimens, offering marginal perform-
ance gains.
4.3. Wearable Devices in Sports Cardiology. Wearable

technologies for monitoring CVD significantly reduce the costs
associated with in-hospital treatments. For continuous and
outpatient care, smart wearables enhance diagnostic accuracy,
offering athletes with cardiovascular conditions convenient
self-care solutions by consistently tracking biomedical variables
during daily activities. CVD monitoring methods vary widely,
with their effectiveness depending on the specific condition
being managed and the monitoring approach used.126,127 For
example, ECG and PPG are typically utilized in fitness bands
and smartwatches for ongoing and ambulatory monitoring.
ECG, a widely recommended test for monitoring certain heart
conditions, records electrical activity from the body’s surface.
By measuring the electrical potential difference between two
points on the body, ECG can detect heart issues such as heart
failure and arrhythmias Nevertheless, conventional electro-
cardiography using electrodes continues to be the best method
for assessing heart attack risk. In sport performance, these
wearable technologies are instrumental. They allow athletes to
monitor their heart health, ensuring safe participation in high-
intensity activities. Ongoing surveillance can detect possible
problems at an early stage, enabling prompt action and
possibly averting severe heart incidents during intense physical
activity. Wearables also help tailor training programs by
providing real-time data on an athlete’s physiological
responses, ensuring that training intensity is optimized for
both performance and safety. By integrating wearable
technology into their routines, athletes can achieve better
performance while minimizing the risk of cardiovascular
complications.
PPG is an important method for monitoring CVD metrics.

This method operates by releasing photons into bodily tissues
and examining the light that bounces back. PPG shows

improved accuracy when used at the wrist through bands or
smartwatches, which athletes with cardiovascular conditions
can easily wear during daily activities. However, PPG has
limited reliability and robustness during physical exertion or
movement. Besides ECG and PPG, other methods like
ballistocardiography (BCG) and PCG are also utilized to
track vital heartbeat information. BCG measures ballistic forces
produced by the heart, generating a graphical representation of
the body’s repetitive movements caused by blood being ejected
into major vessels with each heartbeat.128,129 BCG is often
incorporated into wearables through highly sensitive accel-
erometers placed on the torso. PCG technology records heart
sounds but is highly sensitive to ambient noise, making it less
likely to be integrated into current wearable devices.130 In
sports performance enhancement, these technologies offer
significant benefits. They allow athletes with cardiovascular
conditions to continuously monitor their heart health, ensuring
safe participation in intense physical activities. Continuous data
collection helps identify potential issues early, enabling prompt
intervention and potentially preventing serious cardiac events
during exercise. Moreover, these wearables provide valuable
insights into an athlete’s physiological responses, aiding in
optimizing training regimens for both performance improve-
ment and safety. Integrating these wearable technologies into
their routines helps athletes enhance their performance while
minimizing cardiovascular risks.
The human skin, covering most of the body, offers an ideal

platform for noninvasive wearable devices in medical
applications. These skin-based devices can monitor both
physiological and psychological parameters, particularly
beneficial for managing athletes with CVDs. They enable the
diagnosis of various conditions by analyzing skin secretions like
sweat, providing qualitative and quantitative insights. Epi-
dermal wearables, such as electronic skin (e-skin), directly
adhere to the skin like tattoos. E-skin integrates adaptable
electronic elements such as conductive substances (for
instance, liquid metal alloys, graphene, gold nanorods, or
polymers with a rubber base), enabling the gathering of
customized medical information.131,132 Sensors embedded in
electronic skin monitor health metrics and send information to
smartphones or other connected gadgets instantly.133 More-
over, e-skin can harness energy from the body’s electro-
physiological processes, eliminating the need for batteries. Its
flexibility and adaptability to body movements make it superior
to traditional wearables, ensuring continuous monitoring
without discomfort.134 This innovative technology holds
promise in sports cardiology by facilitating the monitoring
and diagnosis of arrhythmias, assessing heart function in
premature athletes, managing sleep disorders, monitoring brain
activity, enhancing personalized care, and athlete performance
optimization. It is estimated that over one billion people
globally live with hypertension or elevated blood pressure, with
a majority in developing nations lacking adequate healthcare
infrastructure. Regular blood pressure monitoring is crucial for
athletes with cardiovascular diseases, as hypertension often
presents without symptoms. The lack of monitoring contrib-
utes significantly to premature deaths worldwide. Precise blood
pressure monitoring necessitates skilled healthcare workers,
emphasizing the importance of e-skin in supporting the
WHO’s objective to lower hypertension rates by 25% by the
year 2025.135 As healthcare technology evolves to be more
compact and intelligent, wearable devices like e-skin aim to
integrate seamlessly into athletes’ daily routines, minimizing
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disruptions to their daily lives. Currently, e-skin is being
enhanced through ongoing research and development. Trends
suggest it could become more dependable, precise, and less
intrusive compared to conventional techniques. This progress
is likely to increase confidence among athletes with
cardiovascular conditions, encouraging them to use e-skin for
health self-management. In addition, e-skin’s advancements
can significantly impact monitoring and improving athletic
performance by providing accurate and noninvasive health
data.

5. APPLICATION OF AI-ASSISTED WEARABLE
DEVICES IN SPORTS CARDIOLOGY

As the popularity and sophistication of wearables continue to
grow, they are beginning to reshape healthcare, driven by
advances in hardware and software technologies. Moreover,
advancing artificial intelligence, essential for improving mobile
health wearables, relies on analyzing vast data sets with
algorithms that utilize different learning methods to identify
patterns, a fundamental aspect of diagnostics. By incorporating
AI methods and neural networks into wearable devices through
signal processing and deep learning, researchers can tackle
modern tech issues, enhancing the dependability of mobile
monitoring systems and the accuracy of ECG and PPG
readings.136 Numerous major reports have highlighted
cardiovascular conditions that have either harmed athletes or
stopped them from engaging in sports. Consequently,
engineers have designed numerous wearable gadgets to
consistently track heart rate and blood pressure, intending to
identify critical irregularities that could signal serious heart
conditions like arrhythmias.137−139 Research has demonstrated
that artificial intelligence can predict cardiovascular events and
their long-term effects, such as heart failure, thereby enhancing
the diagnostic capabilities of wearable devices.140 In summary,
incorporating AI and neural networks boosts the efficiency of
wearable gadgets and improves the precision of heart-related
biomedical assessments. Consequently, as wearable devices
become more reliable and accessible, athlete acceptance also
rises. Wearables are evolving into practical solutions for
athletes to continuously and dynamically monitor cardiovas-
cular health during everyday training. Currently, numerous
machine learning techniques are applied in wearable
technology. This segment reviews existing research on
integrating wearables with machine learning algorithms to
enhance sports cardiology. The review categorizes based on
machine learning methods. Table 3 provides a summary of the
studies employing wearables and artificial intelligence algo-
rithms.
5.1. Applying Supervised Learning Techniques in

Wearable Devices. Learning algorithms are categorized into
two main types: supervised and unsupervised. In supervised
learning, the desired output for training examples is
predetermined, and the model is developed using these
examples along with their respective outputs.141 Generally,
supervised learning is employed for tasks like classification,
where the goal is to associate an input example with a
corresponding label, and for regression, which focuses on
establishing a relationship between inputs and continuous
outputs.142 In both cases, the objective is to establish accurate
relationships between inputs and outputs, seeking a model that
can generate correct output data effectively. Nonetheless, the
model’s performance will be greatly diminished if the training
data are flawed or have erroneous labels. Popular supervised

learning techniques encompass random forest, Naiv̈e Bayes,
artificial neural networks, and support vector machines.143−145

Supervised learning techniques are extensively utilized in
machine learning for the development of automated systems,
especially in enhancing cardiovascular health monitoring for
athletes. Saadatnejad et al. introduced a cutting-edge ECG
classification algorithm tailored for wearable devices, designed
for the continuous surveillance of cardiac health.146 This
method, beneficial due to its low energy usage, utilized several
LSTM recurrent neural networks in conjunction with wavelet
transform, achieving excellent ECG classification results. In a
similar vein, different research introduced a novel ECG
classification method tailored for energy-efficient wearable
gadgets, utilizing spiking neural networks.147 This method
employed spike-timing-dependent plasticity and reward
modulation, adjusting model weights based on spike signal
timings. The results indicated its efficacy for real-time
operation and highlighted its lower energy consumption
compared to other devices, making it ideal for athletes
requiring uninterrupted monitoring with minimal recharging
intervals. Acharya and Basu focused on developing classi-
fication models to detect anomalies in patients’ breathing
sounds.148 Their work aimed at enabling the automated
diagnosis of cardiovascular and pulmonary conditions. They
utilized a deep learning model for categorizing respiratory
sounds. Furthermore, they implemented a regional log
quantization technique to reduce memory usage, making it
ideal for wearable devices with limited memory capacity. For
athletes, maintaining optimal respiratory health is crucial for

Table 3. Overview of Advancements in Wearable Devices
and Artificial Intelligence Technologies

Artificial intelligence
algorithms Application

Category of
learning

techniques ref.

Random Forest Detection of physical
Fatigue

Supervised
learning

176

Long Short-Term
Memory

Recognition of
human activities

Supervised
learning

177

Statistical analysis Recognition of
human activities

Supervised
learning

178

Artificial Neural
Network

Heartbeat
classification

Supervised
learning

179

Support Vector
Machine

Recognition of stress
in construction
workers

Supervised
learning

180

Convolutional neural
networks

Recognition of
human activities

Semisupervised
learning

181

Random Forest Recognition of
human activities

Semisupervised
learning

182

Support Vector
Machine

Recognition of
human activities

Semisupervised
learning

183

Long Short-Term
Memory

Prediction of
cardiovascular risk

Semisupervised
learning

184

Support Vector
Machine and Simple
1-NN classifier

Wearable video used
for location
identification

Semisupervised
learning

185

K-means Detection of poor
posture

Unsupervised 186

Expectation
Maximization
algorithm

Recognition of
human activities

Unsupervised 187

K-Means Recognition of
human activities

Unsupervised 188

Spectral clustering,
hierarchical clustering

Recognition of
human activities

Unsupervised 189

K-Means Recognition of
human activities

Unsupervised 190
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performance, and these advancements can be particularly
beneficial. Incorporating such models into wearables can help
in early detection and management of respiratory issues,
ensuring athletes maintain peak cardiovascular and pulmonary
health. The efficient use of memory in these devices allows for
continuous monitoring without the need for frequent
recharges, making them practical for active use.
5.2. Applying Unsupervised Learning Techniques in

Wearable Devices. In unsupervised learning, the goal is to
discern the inherent structure within unlabeled data. Typical
activities in this field involve grouping, estimating density, and
learning representations. Techniques such as principal
component analysis and autoencoders are frequently utilized
for these objectives.149,150 Unsupervised learning is typically
used for exploratory analysis and dimensionality reduction,
especially in situations where manual data analysis is
impractical. These methods provide initial insights into the
data set, aiding in hypothesis testing. Dimensionality reduction
simplifies data representation by using fewer features, which
involves identifying relationships between features to eliminate
redundancy.151,152 This leads to a more efficient data
processing approach with reduced computational demands.
Das et al. introduced a self-learning method to estimate

heart rate from ECG data collected by wearable devices.153

The spatial and temporal characteristics of ECG signals were
transformed into spike sequences, which subsequently
activated recurrently connected spiking neurons in a liquid-
state machine computational framework. A self-regulated
analysis, employing fuzzy c-means clustering of neural spike
data, was enhanced using particle swarm optimization
techniques. This method, which can be effortlessly applied to
spiking-based systems, achieved impressive accuracy and
remarkably low energy consumption, thus prolonging the
battery life of wearable gadgets. This is particularly advanta-
geous for continuous monitoring of athletes, ensuring longer
periods of data collection without frequent recharges. Besides,
Krause et al. proposed another unsupervised learning
algorithm.154 They developed and evaluated an online
wearable system that could autonomously determine user
context and predict context transitions. By utilizing statistical
methods and machine learning in their graph algorithms, the
system successfully represented user context solely with data
from a device that has physiological sensors. This capability
can enhance the monitoring of athletes’ cardiovascular health
by providing real-time context-aware insights without external
supervision. In addition, an innovative unsupervised deep
learning approach was introduced to enhance data preprocess-
ing for wearable sensors.155 This method required only 11.25
ns for computation, significantly improving recognition
performance by optimizing feature selection and extraction.
These advancements are particularly relevant for athlete
cardiovascular health monitoring, as they allow for faster and
more efficient processing of sensor data, enabling real-time
insights and timely detection of potential issues.
5.3. Utilizing Semisupervised Learning Methods in

Wearable Technology.When there are few labeled examples
but many unlabeled ones, both supervised and unsupervised
learning methods are ineffective. In these circumstances,
semisupervised learning techniques can be beneficial. With a
limited amount of labeled data and a substantial amount of
unlabeled data, they can be taught to forecast new instances.
Labeled data can assist algorithms in utilizing unlabeled data
more effectively, leading to significant enhancements in

learning accuracy. Gathering annotated data for learning
tasks often necessitates specialists. Tagging the samples can
be expensive and sometimes unfeasible because of the vast
amount of unlabeled data. In this context, the significance of
semisupervised learning is evident.47

Wearable devices can amass vast amounts of data, but
labeling this data is often costly and time-intensive. Thus, it is
beneficial to develop methods that maximize the use of
unlabeled data while minimizing labeling expenses. Semi-
supervised techniques offer a promising solution by effectively
combining a small set of labeled data with a large volume of
unlabeled data. Ballinger et al. utilized commercially available
wearable heart rate monitors to collect information from
numerous international users through a smartphone applica-
tion.156 They aimed to diagnose different health issues,
including elevated cholesterol levels, by employing a multitask
LSTM model. They presented two semisupervised techniques
that outperformed manually crafted biomarkers from clinical
research. Initially, an LSTM was pretrained as a sequence
autoencoder, and the resulting parameters were then used to
kickstart a supervised training phase with a small amount of
labeled data. The alternative approach employed a generated
data set for initial training. These advancements are particularly
relevant to monitoring cardiovascular health in athletes, as they
allow for the efficient use of wearable data to detect potential
health issues with minimal manual labeling effort.
Yang et al. described an innovative method to autonomously

detect near-miss falls by analyzing a worker’s movement data,
collected through wearable inertial measurement units
(WIMUs).157 A support vector machine (SVM) algorithm,
utilizing semisupervised learning, was used to detect near-miss
falls. Two experiments were conducted to gather data on near-
miss falls, which were then used to test this method. This
method utilizing WIMU technology can identify near-miss falls
among ironworkers without disrupting their activities, helping
to prevent fall-related incidents. This technology has potential
applications in sports cardiology by enhancing athlete safety
through continuous monitoring and early detection of fall-
related events, which can be crucial for preventing injuries.
Stikic et al. developed an innovative method for recognizing

activities by employing a semisupervised learning process.158

This method employed a combination of minor labeled data
sets and extensive unlabeled data sets, disseminating
information via a graph that encompassed both data types.
They proposed two different methods to combine multiple
graphs based on feature similarity. Their study assessed the
label propagation quality and the performance of classifiers.
This method can be applied to sports cardiology by improving
the accuracy of activity recognition in athletes, aiding in the
continuous monitoring of cardiovascular health, and the early
identification of potential heart-related issues.
To minimize supervision levels, semisupervised learning was

applied to improve the recognition of human activities from
limited labeled data.159 This approach allows reducing the
effort of supervision to a minimum, while still preserving
competitive recognition performance. To develop activity
models from a small amount of labeled data, two semi-
supervised techniques, self-training and cotraining, were
utilized. The study demonstrated that cotraining outperformed
self-training by utilizing additional sensor modality information
during training. In certain instances, cotraining outperformed
fully supervised methods in terms of recognition accuracy.
Their proposed method used a pool-based setting, where a
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large amount of unlabeled data was available alongside a small
set of labeled data. An expert subsequently labeled the most
informative samples chosen by the algorithm. LabelForest
offers an alternative method for recognizing human activ-
ities.160 Information gathered from wearable devices frequently
includes considerable noise and ambiguity. LabelForest, an
adaptable semisupervised learning framework, boosts machine
learning algorithm effectiveness by increasing the size of the
training data set. It chooses a portion of untagged data for
annotation by comparing it to already labeled examples.
LabelForest includes two techniques: a spanning forest
algorithm for selecting and labeling samples, and a
silhouette-based filtering method to add samples with more
reliable clustering assignments to the training set. These
methods can be highly beneficial for monitoring athletes’
cardiovascular health, as accurate activity recognition helps in
tracking and managing their physical condition and detecting
potential heart-related issues early.
Wiechert et al. utilized a wearable headband called Muse to

collect EEG brain signals from participants engaged in various
activities, such as reading or listening to music.161 The goal was
to identify both the participants and their activities based on
the recorded EEG signals. For this purpose, multiobjective
clustering was accomplished using K-medoid clustering in
conjunction with an evolutionary algorithm. The genetic
algorithm was utilized to determine the optimal K medoids.
Wiechert et al. reported that their method outperformed K-
means. This approach can be adapted to monitor athletes’
brain activity, potentially linking cognitive states with
cardiovascular health, thus offering valuable insights for
optimizing performance and early detection of stress or
fatigue-related cardiovascular issues.
5.4. Applying Reinforcement Learning Techniques in

Wearable Devices. Reinforcement learning involves mapping
situations to appropriate actions to maximize a numerical
reward signal.162,163 In contrast to supervised learning,
reinforcement learning does not provide the learner with the
correct action but requires trying various actions in different
states to determine the best actions that yield the highest
reward. Effective action selection is crucial for maximizing
long-term utility, as focusing solely on immediate rewards can
result in suboptimal long-term performance. Reinforcement
learning challenges can be represented as Markov decision
processes (MDPs).
Wearable technologies have incorporated reinforcement

learning in various applications, significantly impacting athlete
cardiovascular health. For example, ADAS-RL, a modified Q-
learning algorithm, continuously adapts Lane Departure
Warning System (LDW) interventions by integrating driver
behaviors and reactions.164 This technique modifies alert
intervals according to driving habits, assisting motorists in
keeping a safe gap of about 1.75 m from lane boundaries. Such
adaptive systems could be beneficial in monitoring and
responding to athletes’ cardiovascular signals during training
or competition. FaiR-IoT, an alternative framework based on
reinforcement learning, employs Q-learning to ensure adaptive
and fairness-conscious human-in-the-loop IoT applications.165

Assessments covered an intelligent home IoT app and a vehicle
driver support system. In a smart home setting, thermostats
were regulated automatically by tracking fluctuations in human
body temperature over time, a method that could be adapted
to monitor athletes’ heart rates and maintain ideal training
environments. The assistance system for drivers dynamically

modified collision alert thresholds by considering individual
factors such as reaction time and focus, showcasing the
possibility of adapting similar systems for real-time monitoring
of athletes’ physical conditions. These advancements in
wearable technology, particularly with reinforcement learning
integration, are crucial for enhancing cardiovascular health
monitoring in athletes. By ensuring timely and adaptive
responses to their physiological states, these technologies can
improve athletes’ overall health and performance.

6. CHALLENGES OF AI-ASSISTED WEARABLE
DEVICES IN SPORTS CARDIOLOGY

Although AI shows significant promise, challenges persist in
fully integrating AI and wearable technologies into clinical
practice. A key issue is addressing the various ethical and legal
challenges involved.166,167 Ethically, concerns such as data
privacy, algorithmic biases, fairness, transparency, safety, and
informed consent must be thoroughly considered. Access to
advanced technology, which is not widely available, must also
be taken into account. Legally, issues like intellectual property
rights, cybersecurity, privacy, data protection, liability, and
safety remain highly relevant. Recognizing potential flaws in
the design and implementation of AI-driven wearable devices is
crucial, especially when monitoring athletes’ cardiovascular
health. Furthermore, AI models in sports cardiology may be
vulnerable to algorithmic biases, which could result in
discrepancies in performance predictions across different
demographic groups. These biases often arise from imbalanced
training data sets and variations in physiological responses
among athletes of varying ages, ethnicities, and genders. It is
essential to recognize that AI-driven wearables could reinforce
existing patterns of discrimination, inequality, and margin-
alization. The biases inherent in the data used to train
algorithms can distort outcomes and perpetuate researchers’
assumptions and prejudices.168,169 Additionally, the implemen-
tation of AI-powered wearable solutions in sports cardiology
faces regulatory challenges, as current medical device approvals
often require extensive validation and clinical trials. While
wearables have demonstrated promise in real-time cardiovas-
cular monitoring, the long-term benefits of their use in
preventing major cardiac events remain insufficiently sup-
ported by large-scale clinical evidence. Further research is
needed to establish standardized guidelines for incorporating
AI-driven wearable insights into medical decision-making,
ensuring their safe and effective use in both competitive and
recreational athletes.
As artificial intelligence advances, it becomes increasingly

incomprehensible to humans, even to those who designed the
algorithms. This opacity poses significant risks in safety-critical
fields such as medicine, where incorrect decision-making can
endanger lives. The development of explainable artificial
intelligence (XAI) aims to address this by making artificial
intelligence algorithms more interpretable. XAI allows humans
to understand artificial intelligence operations, trust outcomes,
identify biases, and evaluate accuracy and transparency.170

Ensuring that artificial intelligence systems are explainable
helps meet regulatory requirements, adhere to best practices,
and facilitate deployment in high-risk areas like health-
care.171,172 The increasing use of intelligent medical gadgets
and AI-powered health apps has raised worries about medicine
becoming less personal. These intelligent applications are
taking over certain roles traditionally performed by physicians.
However, the trust issue arises when decision-makers do not
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fully comprehend the artificial intelligence systems they
depend on. In cases where there are disagreements in
management strategies, doctors should maintain the final say
in AI-assisted medical choices.173 This principle also applies to
sports cardiology, where evaluating athletes’ cardiovascular
health is crucial. Maintaining a balance between human
judgment and artificial intelligence integration is vital for
fostering a healthy physician-athlete relationship. Artificial
intelligence-driven wearable technologies can be beneficial for
reducing administrative workloads and enhancing patient care.

7. CONCLUSION
Athletes constantly seek new methods to enhance performance
and minimize injuries. The growing capability to gather
physiological data aids this goal by enabling personalized
training plans and emphasizing the significance of recovery.
For both sports cardiologists and athletes, deciphering and
utilizing this vast amount of data to distinguish valuable
information from irrelevant noise is crucial. With technological
progress and more lenient exercise recommendations for
athletes with heart conditions, wearables might become crucial
devices. These gadgets can oversee the safety of workouts for
athletes with heart issues, identify, and even foresee emerging
cardiovascular conditions. Although no standardized guidelines
currently exist for integrating wearable data into sports
cardiology, we foresee three primary applications (Figure 8):

(1) directing exercise regimens for athletes with established
cardiovascular conditions, (2) enhancing cardiovascular
performance, and (3) screening for cardiovascular disease.
This approach will be particularly beneficial in managing the
cardiovascular health of athletes, ensuring both safety and
optimal performance.
Combining AI with wearable devices has revolutionized

sports by delivering instant data during practice sessions and
events. These sensors deliver objective physiological informa-
tion, which previously required costly, specialized equipment.
This information is essential for creating specialized training
plans, improving competition strategies, and predicting as well
as preventing injuries in competitive athletes. The advent of

wearable tech has ushered in a new age of data-centric sports
coaching, providing trainers and athletes with immediate
access to crucial physiological data. Through the use of
wearable tech, trainers can collect and interpret extensive data,
allowing them to refine training programs and make well-
informed choices to enhance performance and reduce the
likelihood of injuries. AI-driven coaching platforms could
transform how athletes receive guidance and feedback. They
examine large amounts of data from wearable devices, offering
immediate, data-based insights into an athlete’s performance.
AI identifies trends, patterns, and irregularities in data,
providing tailored suggestions for enhancement. Trainers are
responsible for the physical, mental, and technical growth of
athletes, in addition to overseeing their performance and well-
being. Wearable devices currently provide significant ease in
collecting real-time physiological data during workouts or
events, allowing for the assessment of internal load metrics that
once needed costly tools. The surge in accessible data greatly
improves the creation of specialized training regimens, strategic
competition planning, and the forecasting and prevention of
injuries for athletes. Within sports cardiology and performance,
utilizing AI and wearable devices enables accurate tracking and
modification of heart and physical metrics, ensuring athletes
with cardiac issues can safely reach their potential. Moreover,
the development of remote coaching platforms could tran-
scend spatial and temporal limitations in the future.
Despite the increasing reliability of wearables in monitoring

heart rate during exercise, traditional clinical methods such as
ECGs remain the gold standard for precision and accuracy.
Wearable devices may exhibit slight discrepancies in heart rate
monitoring due to issues such as sensor placement, motion
artifacts, or individual variability in physiology. However,
wearables show considerable promise in contexts where
continuous, real-time data collection is crucial, such as for
endurance athletes or those in remote locations where access
to clinical facilities is limited. In high-intensity sports, such as
running or cycling, wearables can offer valuable insights into
heart rate dynamics during prolonged exertion, while tradi-
tional methods may be impractical or intrusive for such
activities. Therefore, wearables can be particularly advanta-
geous for long-term monitoring or for athletes with chronic
conditions who require ongoing assessment.
Even with progress in AI and wearable tech, the crucial

function of human coaches in the athlete-coach relationship
remains indispensable. This connection goes further than data
analysis, encompassing guidance, encouragement, and emo-
tional backing. The combination of human coaching and
artificial intelligence-driven systems can potentially elevate
athlete development and performance to new heights. A new
study underscores the vital significance of coaches’ physical,
technical, tactical, and strategic abilities, as well as their
capacity for self-reflection, responsiveness to feedback, and
display of emotional resilience and neuropsychological in-
sight.174,175 Sportspeople rely on their trainers for mental
encouragement and spoken guidance throughout practice
sessions and events. Effective communication and verbal
feedback from coaches significantly enhance both athletic
performance and social-emotional learning. Wearable sensors
are vital in sports cardiology and performance, especially for
athletes with heart issues, as they help track cardiovascular
health and physical parameters. These devices provide real-
time data that can inform training adjustments and ensure safe
performance thresholds. However, it is important to recognize

Figure 8. Clinical applications of wearable devices in sports
cardiology practice. Abbreviation: HR, Heart rate; AHR, Average
heart rate; CV, cardiovascular; ECG, EMG; BP, Blood pressure.
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that while wearable sensors can serve as valuable assistant
coaches by providing objective data and insights, they cannot
replace the holistic support human coaches offer. This synergy
between technology and human expertise maximizes perform-
ance potential and ensures the well-being of athletes.
To sum up, incorporating AI and wearable devices into

sports cardiology presents many opportunities to improve the
assessment and management of athletes’ heart health. AI
technologies, such as machine learning, present opportunities
for better risk stratification, diagnosis, treatment planning, and
monitoring in this specialized field. AI can greatly benefit
sports cardiology by utilizing cutting-edge imaging methods,
genetic analysis, and state-of-the-art wearable technology.
Nonetheless, it is essential to tackle moral and legal concerns,
guaranteeing openness, equity, and confidentiality in the
deployment of AI-powered wearable devices. Integrating
doctors’ knowledge with AI-powered wearable devices will
enhance patient treatment, yield better results, and provide
greater insights into athletes’ intricate heart health. With the
ongoing advancements in AI and wearable tech, essential
elements like research, cooperation, and regulatory guidelines
will be crucial for fully harnessing the transformative power of
these innovations in sports cardiology.
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