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PLAIN ENGLISH SUMMARY 

In this article the authors review recent advances in the treatment of chronic kidney disease (CKD) with diabetes, and summarize evi- 
dence supporting combination therapy approaches to improve patient outcomes. Driven by the global rise in diabetes, the worldwide 
burden of CKD has nearly doubled since the 1990s. People with CKD have notably increased risks for premature cardiovascular disease 
(heart and blood vessels disease), kidney failure and death. CKD, diabetes, obesity and cardiovascular disease are closely interrelated 
and share common risk factors. These health conditions therefore comprise what is now known as cardiovascular–kidney–metabolic 
(CKM) syndrome. Recently approved medications, including sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide- 
1 receptor agonists (GLP-1RAs) and the non-steroidal mineralocorticoid receptor antagonist (ns-MRA) finerenone, represent agents 
capable of reducing metabolic, kidney and cardiovascular risk through complementary mechanisms of action. Current evidence sup- 
ports use of these therapies in combination. Besides providing additive protective effects, combination therapy may also help reduce 
side effects. For instance, using an SGLT2 inhibitor in combination with finerenone helps decrease the risk for high potassium levels. 
Through the multipronged approach, combination therapy allows tailoring treatment for the individual patient characteristics and 
needs. Several planned and ongoing clinical trials continue to study the benefits of combination therapy in people with CKM syn- 
drome. With building evidence supporting the use of combination therapy, it is crucial to raise awareness of the importance of this 
treatment approach and develop processes to incorporate new therapies into every day practice to support optimal care and improved 
outcomes. 

ABSTRACT 

The global burden of chronic kidney disease (CKD) increased by nearly 90% in the period spanning 1990 to 2016, mostly attributed to 
an increase in the prevalence of CKD in diabetes. People living with CKD have an elevated lifetime risk for cardiovascular disease (CVD) 
when compared with the general population, with risk increasing in parallel with albuminuria and kidney function decline. Metabolic 
disease, CKD and CVD share common risk factors including neurohumoral activation, systemic inflammation and oxidative stress, 
thus prompting the introduction of a broader construct of cardiovascular–kidney–metabolic (CKM) syndrome. An important rationale 
for the introduction of this concept are recent and ongoing therapeutic advancements fundamentally changing CKM management. 
Sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1RAs) and the non-steroidal miner- 
alocorticoid receptor antagonist (ns-MRA) finerenone have shifted the therapeutic paradigm for patients with CKD and have emerged 
in rapid succession as cornerstones of guideline-directed medical therapy (GDMT). Recently completed clinical trials of aldosterone 
synthase inhibitors and endothelin receptor antagonists have additionally reported additive antiproteinuric effects on the background 
of renin–angiotensin system and SGLT2 inhibition, with acceptable safety profiles. The sum of current evidence from both preclinical 
and clinical studies support combination therapy in the setting of CKD to achieve additive and potentially synergistic kidney and 
heart protection by addressing metabolic, hemodynamic, and pro-inflammatory and pro-fibrotic mechanistic pathways. This narra- 
tive review will discuss available evidence supporting combination GDMT in CKD with diabetes and additionally discuss ongoing and 
future trials evaluating the efficacy and safety of combination therapies for CKD with or without diabetes. 
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portant risk factor linked to more than 50% of new cases of di- 
abetes every year [4 ]. The highest rates of age-standardized CKD 

incidence and disability-adjusted life years are reported in North 
Africa, the Middle East, South Asia, Central Latin America and 
North America [3 ]. In the USA, CKD rates are disproportionately 
high in racially minoritized populations when compared with the 
INTRODUCTION 

With over 800 million people worldwide affected, and the in-
cidence more than doubling between the years 1990 and 2019,
chronic kidney disease (CKD) represents a pressing public health
concern [1 –3 ]. These concerning trends are largely attributable to

the diabetes pandemic, with obesity representing the most im- 
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Figure 1: Conceptual representation of CKM syndrome. The image displays the pathophysiology underlying CKM syndrome. CKM syndrome most 
commonly originates from excess adipose tissue, dysfunctional adipose tissue or both. Multiple pathological processes related to dysfunctional 
adipose tissue result in insulin resistance and eventual hyperglycemia. Inflammation, oxidative stress, insulin resistance and vascular dysfunction are 
highlighted as central processes leading to the development of metabolic risk factors, to the progression of kidney disease, to the potentiation of 
heart–kidney interactions and to the development of CVD. Metabolic risk factors and CKD further predispose to CVD through multiple direct and 
indirect pathways. MASLD indicates metabolic dysfunction–associated steatotic liver disease. Source: Ndumele et al . [17 ]. 
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hite population [4 ]. CKD is present in nearly half of people with
ype 2 diabetes (T2D) and one-third of those with type 1 dia-
etes (T1D) [2 , 5 ]. Together, T2D and hypertension account for
5% of global growth in CKD burden [3 , 4 , 6 , 7 ]. CKD is associated
ith increased risks for adverse kidney, cardiovascular (CV) and
ortality outcomes [8 –10 ]. Although CKD in diabetes is a global

eading cause of kidney failure and need for kidney replacement
herapy, due to the competing risk of death only a minority of
ersons with diabetes survive to progress to kidney failure [11 ].
eath, mainly due to heart failure (HF) and atherosclerotic cardio-
ascular disease (ASCVD), is a major competing risk of CKD [12 ,
3 ]. Importantly, both increased albuminuria and reduced esti-
ated glomerular filtration rate (eGFR) are independent and addi-

ive risk factors for CV events, CV-related mortality and all-cause
ortality [10 ]. 
Recent therapeutic advancements, including the sodium-

lucose cotransporter-2 (SGLT2) inhibitors, glucagon-like peptide-
 receptor agonists (GLP-1RAs) and aldosterone inhibition with
on-steroidal mineralocorticoid antagonists (ns-MRAs) have 
merged as guideline-directed medical therapies (GDMT) capable
f improving kidney and CV outcomes in patients with CKD on
op of renin–angiotensin system (RAS) blockade given at the high-
st approved or tolerated dose [14 , 15 ]. The recognition of inter-
onnectivity and shared risk factors among metabolic conditions
e.g. diabetes, obesity), CKD and cardiovascular disease (CVD)
erved as the impetus to formulate the concept of cardiovascular–
idney–metabolic (CKM) syndrome. The introduction of CKM syn-
rome as an overarching model helps to establish a theoretical
ramework for the treatment that focuses on identifying and man-
ging shared risk factors and conditions through a multipronged
pproach that addresses the complex biology involved in the de-
elopment and progression of CKM conditions (Fig. 1 ) [16 , 17 ]. A
pillar approach” to management of CKD has been proposed to
olistically address kidney and CVD risks [18 , 19 ]. Recently com-
leted and ongoing studies continue to inform the use of these
herapies in non-diabetic forms of CKD [20 , 21 ]. This narrative re-
iew will discuss evidence supporting combination GDMT in CKD
ith diabetes as well as ongoing and future studies evaluating the
fficacy and safety of combination therapies for CKD with or with-
ut diabetes. 

KD PATHOPHYSIOLOGY AS A 

RAMEWORK FOR COMBINATION THERAPY 

PPROACHES 

he pathophysiology of CKD in diabetes is quite complex, involv-
ng intricate interplay between metabolic derangements, hemo-
ynamic changes, and progression of inflammation and fibrosis.
besity, dysglycemia, dyslipidemia and hypertension contribute
o the development and progression of diabetes, CKD, and ma-
or CVD subtypes [22 ]. Obesity, especially visceral adiposity, is
trongly associated with insulin resistance, dyslipidemia and hy-
ertension, and is recognized as a state of chronic inflammation
ith enhanced production of pro-inflammatory cytokines such as
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Figure 2: Normal and diabetic nephron with altered hemodynamics. ( A ) Afferent vasodilation is promoted by hyperglycemia, hyperinsulinemia, 
elevated level of circulating amino acids, COX-2 prostanoids, reduction of tubule glomerular feedback. Tubuloglomerular feedback is a kidney intrinsic 
autoregulatory mechanism which helps regulate the rate of glomerular filtration rate. Because of increased reabsorption of glucose and sodium via 
SGLTs in diabetes, sodium chloride delivery to macula densa cells of juxtaglomerular apparatus is decreased, resulting in lower production of 
adenosin and consequent relative vasodilation of afferent arteriolar. ( B ) Efferent vasoconstriction is promoted by high local angiotensin II level, 
endothelin I, reactive oxygen species, thromboxane A2. Source: Alicic et al . [33 ]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tumor necrosis factor- α (TNF- α) and interleukin (IL)-6 [23 ]. Fur-
thermore, unhealthy adipose tissue is linked to an imbalance in
secretion of adipokines (adiponectin and leptin), resulting in in-
creased vascular tone and overactivity of the sympathetic nervous
system, and RAS activation [23 , 24 ]. Higher aldosterone produc-
tion and upregulation of mineralocorticoid receptors (MRs) accel-
erate kidney and CV injury through multiple pathways activating
inflammation and fibrosis [25 ]. Aldosterone also promotes sodium
and volume retention by the kidney, which in turn increases car-
diac preload, HF worsening and atrial fibrosis [26 , 27 ]. 

At the level of the kidney, high levels of glucagon and amino
acids decrease afferent arteriolar resistance (vasodilation) and
increase glomerular perfusion, while increased production of
angiotensin II and endothelin-1 and increase efferent arterio-
lar resistance (vasoconstriction) [28 –31 ]. With persistent hyper-
glycemia, enhanced glucose and sodium chloride uptake in the 
proximal tubule via upregulated SGLT2 transporters reduces so- 
lute delivery to the macula densa, thus inhibiting tubuloglomeru- 
lar feedback and adenosine-mediated vasoconstriction of the 
afferent arteriole, further augmenting hyperperfusion. These im- 
balances in glomerular vascular tone and perfusion tip the bal- 
ance toward increased glomerular pressure and hyperfiltration 
(Fig. 2 ) [32 –34 ]. 

Advanced glycation end products (AGE), formed by the inter- 
action of glucose and associated metabolites with proteins and 
amino acids, reacts with its membrane-bound receptor (RAGE) 
[35 ]. RAGE is found on multiple cells in the kidney, including
podocytes, mesangial cells, endothelial cells, tubular epithelial 
cells and macrophages [35 ]. AGE-RAGE activation is implicated 
in multiple signaling pathways, including immune pathways 
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Figure 3: Diagram showing the interrelation of mechanistic drivers in early though advanced stages of kidney damage and disease progression in 
diabetes. CTGF, connective tissue growth factor; DKD, diabetic kidney disease; ICAM-1, intracellular adhesion molecule 1; MCP-1, monocyte 
chomoattractant protein-1; MMP-9, matrix metalloproteinase 9; PAI-1, plasminogen activator inhibitor; SAA, serum amyloid A; TLR-4, toll-like 
preceptor-4. Source: Tuttle et al . [41 ]. 
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nd transcription factors, macrophage migration, production of
ro-inflammatory cytokines [e.g. IL 6, TNF- α and vascular cell ad-
esion molecule-1 (VCAM-1)], increased expression of pro-fibrotic
ransforming growth factor- β (TGF- β), and oxidative stress via
eneration of reactive oxygen species (ROS) through stimulation
f nicotinamide adenine dinucleotide phosphate (NADPH) [35 –
0 ]. As a result, the resident network of macrophages in the kid-
ey release proinflammatory cytokines and activate inflamma-
ory pathways, with subsequent recruitment of additional inflam-
atory cells, and further upregulated production of inflamma-

ory cytokines, chemokines, and ultimately pro-fibrotic cells and
athways (Fig. 3 ) [41 –45 ]. 

EVIEW OF GDMT IN CKD 

AS inhibitors 
AS inhibition with an angiotensin-converting enzyme inhibitor
ACEi) or angiotensin-receptor blocker (ARB) has been a long-term
tandard-of-care for patients with diabetes, hypertension and al-
uminuria [46 –48 ]. Accordingly, contemporary guidelines recom-
end first-line treatment with a maximally tolerated dose of a
AS inhibitor for patients with diabetes, CKD and hypertension
14 , 15 ]. ACEis and ARBs reduce efferent arteriolar vasoconstric-
ion leading to a reduction in glomerular pressure [5 ], and pos-
ibly anti-inflammatory benefits [49 ]. Notably, more recently es-
ablished GDMTs have demonstrated kidney benefit as add-on to
AS inhibitor therapy, providing proof of concept for combination
herapy to improve CKD outcomes. 
GLT2 inhibitors 
n addition to the benefits described for secondary kidney out-
omes in SGLT2 inhibitor cardiovascular outcome trials (CVOTs)
50 –52 ], three dedicated kidney outcome trials of SGLT2 inhibitor
herapy in CKD have been completed to date (Table 1 ) [20 , 21 , 53 ].
he first trial published was the Canagliflozin and Renal Events
n Diabetes with Established Nephropathy Clinical Evaluation
CREDENCE) trial [53 ]. CREDENCE reported a 30% relative risk
eduction for its primary kidney composite outcome (Table 1 ) [53 ].
he Dapagliflozin and Prevention of Adverse Outcomes in Chronic
idney Disease (DAPA-CKD) and the Study of Heart and Kidney
rotection With Empagliflozin (EMPA-KIDNEY) trials quickly
ollowed, thus establishing a class effect of SGLT2 inhibitors for
idney protection [20 , 21 ]. Importantly, DAPA-CKD and EMPA-
IDNEY included participants without diabetes, with lower eGFRs
baseline eGFRs down to 20 mL/min/1.73 m2 ) and with wide varia-
ions in baseline albuminuria (Table 1 ) [20 , 21 ]. Subgroup analyses
rom the EMPA-KIDNEY trial found no heterogeneity of relative
ffect based on CKD cause or baseline eGFR [21 , 54 ]. Similarly, a
eta-analysis of large SGLT2 inhibitor outcome trials reported
idney benefit in patients with CKD or HF irrespective of baseline
iabetes status or kidney function [55 ]. In consideration of these
emarkably consistent findings of kidney and CV benefit, SGLT2
nhibitors are recommended as first-line therapy for CKD by or-
anizations including the American Diabetes Association (ADA),
idney Disease: Improving Global Outcomes (KDIGO) and the
merican Association of Clinical Endocrinology (AACE) [14 , 15 , 56 ,
7 ]. SGLT2 inhibitors are currently recommended in people with
GFR ≥20 mL/min/1.73 m2 . Discontinuation of SGLT2 inhibition is
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Table 1: SGLT2 inhibitor dedicated kidney outcome trials [20 , 21 , 53 ]. 

Trial 
CREDENCE 
( n = 4401) 

DAPA-CKD 

( n = 4304) 
EMPA-KIDNEY 

( n = 6609) 

Treatment Canagliflozin Dapagliflozin Empagliflozin 

Mean participant age (years) 63 62 64 

Key inclusion criteria • T2D 

• eGFR 30 to < 90 mL/min/1.73 m2 

• UACR > 300 to 5000 mg/g 
• Treated with RAS inhibitor for ≥4 
weeks prior to randomization 

• eGFR 25 to 75 mL/min/1.73 m2 

• UACR of 200 to 5000 mg/g 
• Treated with RAS inhibitor for ≥4 
weeks prior to screening 

• eGFR 20 to ˂ 45 mL/min/1.73 m2 

regardless of albuminuria, or 
• eGFR 45 to ˂ 90 mL/min/1.73 m2 

with UACR ≥200 mg/g 
• Treated with RAS inhibitor unless 

deemed inappropriate by the 
investigator 

Baseline diagnosis of T2D (%) 100 67 46 
Median follow-up (years) 2.6 2.4 2.0 

Primary outcome 
HR (95% CI) ESKD, doubling of SCr, or renal or 

CV death: 
0.70 (0.59–0.82) 

≥50% decline in eGFR, ESKD or 
renal or CV death: 

0.61 (0.51–0.72) 

ESKD, ≥40% decline in eGFR, 
sustained eGFR of 
˂10 mL/min/1.73 m2 , or renal or 
CV death: 

0.72 (0.64–0.82) 
Key secondary outcome 
Progression to ESKD; HR (95% CI) 0.68 (0.54–0.86) 0.64 (0.50–0.82) N/R 

ESKD, end-stage kidney disease; HR, hazard ratio; N/R, data not reported; SCr, serum creatinine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

currently recommended once a patient progresses to dialysis or
kidney transplant. However, a potential therapeutic role of SGLT2
inhibitors for patients treated by dialysis or kidney transplant
is under study [58 , 59 ]. The Renal Lifecycle Trial (NCT05374291)
will assess the effects of dapagliflozin on kidney failure, HF,
mortality and safety in patients with eGFR ≤25 mL/min/1.73 m2 ,
chronic dialysis or kidney transplant with an eGFR ≤45 mL/min/
1.73 m2 . 

While SGLT2 inhibitor therapy results in reduced glycemia,
weight and blood pressure [60 , 61 ], the kidney and heart pro-
tective effects of SGLT2 inhibition are independent of metabolic
effects [62 ]. A principal therapeutic mechanism is reduction of
glomerular hyperfiltration by restoring tubuloglomerular feed-
back through increased distal delivery of solutes including sodium
and chloride along with glucose (Fig. 4 ) [41 ]. SGLT2 inhibition may
also reduce oxidative stress and inflammation in kidney, heart and
endothelial cells [62 –70 ]. Another plausible mechanisms respon-
sible for improved kidney and CV outcomes are augmented deliv-
ery of efficient fuels and oxygen in the setting of SGLT2 inhibition
induced ketonemia and erythrocytosis [71 , 72 ]. However, data on
role of the increased hematocrit in reduction of CV risk are incon-
sistent, underscoring the need for ongoing research [73 ]. 

ns-MRA: finerenone 

Overactivation of the MR is an important mechanism for CKD pro-
gression and CVD (Fig. 3 ) [41 , 74 , 75 ]. The ns-MRA finerenone se-
lectively antagonizes the MR [74 ]. The finerenone–MR complex in
turn transits to the nucleus and downregulates pro-inflammatory
and profibrotic gene transcription (Fig. 4 ) [76 ]. The benefits of
finerenone treatment as an add-on to RAS inhibitor therapy in the
setting of T2D and CKD were reported in two primary outcome tri-
als: the Effect of Finerenone on Chronic Kidney Disease Outcomes
in Type 2 Diabetes (FIDELIO-DKD) trial and the Finerenone in Re-
ducing Cardiovascular Mortality and Morbidity in Diabetic Kidney
Disease (FIGARO-DKD) trial (Table 2 ) [77 , 78 ]. After median follow-
ups of 2.6 and 3.4 years, the FIDELIO-DKD and FIGARO-DKD
trials reported relative risk reductions of 18% and 13% for their 
primary composite kidney and CV outcomes, respectively [77 , 78 ].
Together, FIDELIO-DKD and FIGARO-DKD included participants 
with a range of baseline eGFR and urine albumin to creatinine
ratio (UACR) values. FIDELITY analyses (inclusive of pooled data 
from both primary trials) reported benefits on kidney and CV out- 
comes across a broad range of baseline eGFR and albuminuria 
levels [79 ], with treatment benefits realized regardless of preva- 
lent ASCVD [80 ]. Other MRAs such as spironolactone also convey 
antialbuminuric effects, but have not been studied for efficacy or 
safety in dedicated kidney outcomes trials among patients with 
CKD [81 ]. Therefore, based on the available evidence, ADA and 
KDIGO recommend use of finerenone in patients with T2D and 
CKD with persistent albuminuria (UACR ≥30 mg/g) despite treat- 
ment with first-line therapies [14 ]. 

GLP-1RAs 
GLP-1RAs, like SGLT2 inhibitors, were initially developed as 
glucose-lowering therapies [82 ]. Secondary kidney outcome find- 
ings from CVOTs and a clinical trial (inclusive of participants with
eGFRs as low as 15 mL/min/1.73 m2 ) suggested benefits of GLP-
1 receptor agonism on kidney disease [83 –86 ]. Pooled GLP-1RA
CVOT analyses reported that GLP-1RA therapy reduced albumin- 
uria and slowed eGFR decline compared with placebo, with the 
greatest benefits observed in those with baseline eGFR < 60 mL/ 
min/1.73 m2 [87 , 88 ]. The first dedicated kidney outcome trial 
performed with a GLP-1RA, the “Effects of Semaglutide Versus 
Placebo on the Progression of Renal Impairment in Subjects With 
Type 2 Diabetes and Chronic Kidney Disease” (FLOW) enrolled 
3533 participants with T2D and CKD. After median follow-up 
of 3.4 years, treatment with subcutaneous semaglutide 1.0 mg 
weekly reduced the risk of the primary composite outcome by 
24% [89 ]. Both the kidney and CV components of the composite
endpoint contributed to the reduction in risk, with a 21% risk re-
duction observe for the kidney-specific components of the pri- 
mary outcome, and a 29% reduction in death from CV causes.



i8 | Nephrol Dial Transplant, 2025, Vol. 40, No. 13

Figure 4: Mechanisms of GDMT benefit in CKD. Mechanisms of kidney protection with SGLT2 inhibitors, GLP-1RAs and an ns-MRA. ( A ) Hemodynamic 
changes in the diabetic kidney are reversed with SGLT2 inhibition. In diabetes, the resorptive capacity for glucose in the proximal tubule is increased 
via upregulation of SGLT2 and SGLT1. As a result of enhanced glucose and sodium chloride uptake in the proximal tubule, solute delivery to the 
macula densa cells of the juxtaglomerular apparatus is diminished resulting in altered tubuloglomerular feedback. Adenosine release is subsequently 
decreased resulting in vasodilation of afferent arteriola, glomerular hyperfiltration and hypertension. SGLT2 inhibition deceases glucose/sodium 

reabsorption, thus increasing solute delivery to the distal tubule. These effects help restore tubuloglomerular feedback with a resulting increase in 
production of adenosine leading to vasoconstriction of afferent arteriola, with improvement of glomerular hyperfiltration and hypertension. ( B ) The 
proposed effects of GLP-1RAs in kidney are predominantly mediated through activation of the GLP1R. Beneficial effects are principally related to 
suppression of inflammation and oxidative stress, reduced immune cell infiltration, and reduced fibrosis. Activation of the GLP1R reduces production 
of ROS via HO1, and reduces production of proinflammatory chemokines, cytokines, adhesion molecules and pro-fibrotic factors via inhibition of 
NF- κB binding. ROS production is also reduced through a non-receptor mediated reduction in NADPH oxidase. ( C ) In kidney, ETA activation causes 
predominantly efferent arteriolar vasoconstriction contributing to the glomerular hypertension, podocyte injury with loss of nephrin, cytoskeleton 
disruption and detachment from glomerular basement membrane, mesangial cell proliferation and matrix accumulation, and inflammatory cell 
infiltration. Selective ETA antagonists inhibit arteriolar vasoconstriction overall reducing glomerular hypertension, decrease mesangial matrix 
accumulation and inflammatory cell infiltration and help restore podocyte morphology. As a result, there is a reduction in albuminuria and 
amelioration of inflammatory and fibrotic changes. ETA antagonist may (to a lesser degree than nonselective ETA /ETB antagonist) still induce 
exaggerated fluid retention through ETB receptor overstimulation causing vascular permeability, upregulation of aldosterone and 
vasopressin-mediated water reabsorption. ( D ) Overactivation of the aldosterone production and MR expression in obesity, diabetes has further been 
implicated in the promotion of inflammation and fibrosis. Aldosterone synthase inhibition blocks production of aldosterone, and antagonism of the 
MR with steroidal (e.g. spironolactone), and non-steroidal (finerenone) MRAs suppresses expression of pro-inflammatory and pro-fibrotic genes in 
macrophages, myofibroblasts, podocytes and mesangial cells. ( E ) Structural changes observed in patients with diabetes and CKD include glomerular 
hypertrophy, thickening of the glomerular basement membrane, podocyte detachment and foot process effacement, expansion of glomerular 
mesangial cell matrix, immune cell infiltration and interstitial fibrosis. Treatment with SGLT2 inhibitors, GLP-1RAs and ns-MRA helps restore 
podocytes and decreases extracellular mesangial matrix remodeling, immune cell infiltration, tubular damage, and interstitial inflammation and 
fibrosis. cAMP, cyclic adenosine monophosphate; GLP1R, glucagon-like peptide 1 receptor; HO1, haem-oxygenase 1; NaCl, sodium chloride; NF- ᴋB, 
nuclear factor- ᴋB; SGLT-1, sodium-glucose cotransporter 1. Created with BioRender.com. 
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mportantly, the risk of death from any cause was 20% lower in
he semaglutide group compared with placebo. The number of
ersons who would need to be treated over 3 years to prevent one
rimary outcome event was 20 [89 ]. Therefore, the FLOW results
re likely to elevate semaglutide as another foundational GDMT
or treatment of CKD in persons with T2D. 
In addition to robust reductions in glycemia and weight, GLP-

RAs suppress oxidative stress, reduce activation and infiltration
f inflammatory cells into the kidney and heart, and reduce
nflammation and fibrosis (Fig. 4 ) [90 –96 ]. Notably, early find-
ngs with the dual GLP-1/glucose-dependent insulinotropic pep-
ide (GIP) receptor agonist, tirzepatide, suggest benefits on
oth albuminuria and eGFR decline [97 ]. The ongoing Study
f Tirzepatide (LY3298176) in Participants With Overweight or
besity and Chronic Kidney Disease With or Without Type 2 Di-
betes (TREASURE-CKD; NCT05536804) is examining the effect
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Table 2: Finerenone outcome trials [77 , 78 ]. 

Trial 
FIDELIO-DKD 

( n = 5734) 
FIGARO-DKD 

( n = 7437) 

Mean participant age (years) 66 64 

Key inclusion criteria • T2D • T2D 

• eGFR 25 to ˂ 60 mL/min/1.73 m2 and UACR 30 to 
˂300 mg/g, or 

• eGFR 25 to 90 mL/min/1.73 m2 and UACR 30 to 
˂300 mg/g, or 

• eGFR 25 to ˂ 75 mL/min/1.73 m2 and UACR 300 to 
5000 mg/g 

• eGFR ˃ 60 mL/min/1.73 m2 and UACR 300 to 
5000 mg/g 

• Treated with RAS inhibitor at maximum tolerated 
dose 

• Treated with RAS inhibitor at maximum tolerated 
dose 

Mean baseline A1C (%) 7.7 7.7 
Median follow-up (years) 2.6 3.4 

Primary outcome 
HR (95% CI) Kidney failure, ≥40% decline in eGFR or renal death: 

0.82 (0.73–0.93) 

CV death, non-fatal MI, non-fatal stroke or 
hospitalization for HF: 

0.87 (0.76–0.98) 
Key secondary outcomes 
Key secondary composite; HR 
(95% CI) 

CV death, non-fatal MI, non-fatal stroke, or 
hospitalization for HF: 

0.86 (0.75–0.99) 

Kidney failure, ≥40% decline in eGFR, or renal death: 

0.87 (0.76–1.01) 
Progression to ESKD; HR (95% CI) 0.86 (0.67–1.10) 0.64 (0.41–0.995) 

A1C, glycated hemoglobin A1c; ESKD, end-stage kidney disease; HR, hazard ratio; MI, myocardial infarction. 

Figure 5: Summary of GDMT complimentary effects in CKD. Proposed mechanisms of kidney and CV protection. RAS inhibitors, SGLT2 inhibitors, 
incretin therapies (GLP-1RAs, GIP/GLP-1RAs), aldosterone blockade with the ns-MRA finerenone and aldosterone synthase inhibition address multiple 
pathophysiological drivers of CKD and CVD. Created with BioRender.com. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of tirzepatide on kidney oxygenation and fibrosis on magnetic
resonance imaging in addition to multiple secondary clinical out-
comes (e.g. eGFR and UACR change from baseline). 

COMBINATION GDMT IN CKD 

The availability of several classes of drugs with different, yet com-
plimentary mechanism of action poses important questions sur-
rounding the efficacy and safety of combination therapy for CKD
(Fig. 5 ) [98 ]. 

Preclinical studies 
Combination therapy with an SGLT2 inhibitor and RAS inhibitor
in a rat model of diabetic kidney disease reported additive ben-
efits, greater than either drug class alone, on glomerular injury,
outer medullar fibrosis and blood pressure lowering [99 ]. Similarly,
combination treatment with the finerenone and empagliflozin in 
nondiabetic rats demonstrated longer survival, reductions in pro- 
teinuria, plasma creatinine, uric acid and blood pressure, along 
with amelioration of heart and kidney fibrosis [100 ]. Elucidation of
the mechanism behind the observed antifibrotic effects of SGLT2 
inhibitors is an area of active inquiry [101 ]. An in vitro study on
network-based molecular models of proximal tubular cells re- 
ported a reduction of plasma levels of TNF receptor 1, IL-7, ma-
trix metalloproteinase 7 and fibronectin 1 with canagliflozin treat- 
ment [70 ]. In another study utilizing the mouse model of kidney
disease in T2D, a combination of the endothelin-1 type A (ETA ) re-
ceptor antagonist atrasentan and losartan increased glomerular 
podocyte numbers and reduced proteinuria compared with the 
group treated with atrasentan alone [102 ]. Additionally, in a study
using a model of non-diabetic CKD (Ren-2 transgenic rats after 

https://www-sciencedirect-com.offcampus.lib.washington.edu/topics/pharmacology-toxicology-and-pharmaceutical-science/transgenic-rat
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/6 renal ablation) combination treatment with a RAS inhibitor
nd ETA receptor antagonist had additive effects on reducing pro-
einuria and glomerular damage [103 ]. 

linical studies 
n persons with T1D and mean baseline GFR of 121 mL/min/
.73 m2 , ramipril plus empagliflozin reduced directly measured
easured GFR by 8 mL/min/1.73 m2 and urinary 8-isoprostane

evels compared with placebo or ramipril, suggestive of reductions
lomerular hyperfiltration and oxidative stress [104 ]. Similarly, in
ersons with T2D, combination treatment with empagliflozin and
osartan demonstrated small additive reductions in directly mea-
ured GFR compared with empagliflozin or losartan monotherapy
105 ]. In both studies, combination therapy was also associated
ith greater reductions in systolic blood pressure [104 , 105 ]. Taken
ogether, these data support additive effects of ARBs and SGLT2 in-
ibition on glomerular and systemic hemodynamics in both T1D
nd T2D [104 , 105 ]. 
The Effect of Efpeglenatide on Cardiovascular Outcomes

AMPLITUDE-O) trial was a CV outcome trial with the GLP-
RA efpeglenatide [106 ]. Approximately 15% of participants in
MPLITUDE-O were on background SGLT2 inhibitor therapy with
 subgroup analysis finding that the benefits of efpeglenatide were
ndependent of background SGLT2 inhibitor use. The combined
se of the ns-MRA finerenone with a GLP-1RA was explored in
 post hoc FIDELITY analysis [107 ]. Approximately 7% of partici-
ants in the FIDELIO and FIGARO trials used GLP-1RAs at base-
ine. The post hoc analysis reported significantly greater reduction
n UACR at 4 months in patients treated with a GLP-1RA at base-
ine (–38%) when compared with those not taking a concomitant
LP-1RA treatment (–31%) ( P -interaction = .03) [107 ]. The observa-
ions from this analysis suggest that use of finerenone and a GLP-
RA in combination may provide additional kidney protection in
atients with CKD and T2D. Additionally, combined use of MRAs
nd SGLT2 inhibitors was explored in post hoc analyses of DAPA-
KD and FIDELIO-DKD [108 , 109 ]. These analyses found that da-
agliflozin in baseline users of a conventional MRA (spironolac-
one or eplerenone) or finerenone in users of an SGLT2 inhibitor at
aseline resulted in potential additive kidney and CV effects [108 ,
09 ]. Subgroup analyses from FIDELITY further examined con-
omitant baseline treatment with an SGLT2 inhibitor on compos-
te kidney (time to first event of kidney failure, sustained ≥57% de-
line in eGFR, or kidney disease death) and CV (time to first event
f CV death, non-fatal myocardial infarction, non-fatal stroke or
F hospitalization) outcomes with finerenone treatment. Hazard
atios (HRs) with finerenone versus placebo for the kidney com-
osite outcome were 0.80 [95% confidence interval (CI) 0.69–0.92]
nd 0.42 (95% CI 0.16–1.08) in patients not receiving and receiv-
ng an SGLT2 inhibitor at baseline, respectively [110 ]. For the CV
omposite outcome, the HRs were 0.87 (95% CI 0.79–0.96) and 0.67
95% CI 0.42–1.07) without and with treatment with an SGLT2 in-
ibitor at baseline, respectively [110 ]. Patients receiving an SGLT2
nhibitor at baseline additionally had a lower incidence of hyper-
alemia in both the placebo and finerenone treatment groups,
hich may improve safety of aldosterone antagonism [110 ]. It is

mportant to recognize that analyses of treatment effects by base-
ine MRA, GLP-1 RA or SGLT2 inhibitor use must be interpreted
autiously, as study participants patients were not randomized by
aseline use of these agents. 
Several small pilot trials have been conducted to assess the

afety and additive benefit of kidney protective therapies in pa-
ients in CKD. ROTATE-3 enrolled patients with CKD with and
ithout T2D [111 ] to assess the albuminuria-lowering effect of
apagliflozin and the MRA eplerenone individually and in com-
ination. After 4 weeks, the mean changes from baseline in UACR
ith dapagliflozin, eplerenone, and dapagliflozin plus eplerenone
reatment were –19.6% (95% CI –34.3 to –1.5), –33.7% (95% CI –
6.1 to –18.5) and –53% (95% CI –61.7 to –42.4) ( P < .001 versus da-
agliflozin; P = .01 versus eplerenone). These data support that the
lbuminuria-lowering effects of SGLT2 inhibitor plus MRA com-
ination therapy may be additive. Additionally, the incidence of
yperkalemia was significantly less with combination treatment
ompared with eplerenone alone [111 ]. Another pilot open-label,
andomized clinical trial investigated the short-term effects of
nerenone and dapagliflozin separately and in combination on
lbuminuria in patients with non-diabetic, proteinuric CKD [112 ].
ombination therapy produced an additive reduction in albumin-
ria of –36% (95% CI –46% to –24%) from baseline to Week 8. A
econdary outcome was change in directly measured GFR, which
as most pronounced in the combination therapy group (mean
ecrease of 7 mL/min by Week 8) [112 ]. 
The Dapagliflozin, Exenatide and Combination for Albuminuria

eduction in Diabetes (DECADE) study examined effects of da-
agliflozin plus exenatide on albuminuria [113 ]. The mean change
n UACR from baseline was –21.9% (95% CI –34.8% to –6.4%) with
apagliflozin, –7.7% (95% CI –23.5% to 11.2%) with exenatide, and –
6.0% (95% CI –38.4% to –11.0%) with dapagliflozin plus exenatide
ombination treatment over 6 weeks from baseline [113 ]. A pre-
pecified analysis of the Dapagliflozin plus Exenatide on Central
Egulation of Appetite in diabeteS typeE 2 (DECREASE) trial tested
he effects of dapagliflozin and exenatide alone or in combination,
ersus placebo, on UACR and cystatin C–estimated GFR in obese
atients with T2D compared with placebo, the UACR difference in
he exenatide plus dapagliflozin treatment group was –32.2% (95%
I –60.7 to 16.9; P = 0.159). Combination therapy also resulted in
 greater dip in cystatin C–estimated GFR (–10.4 mL/min/1.73 m2 )
114 ]. 
Recently completed phase II trials further tested additive ef-

ects of SGLT2 inhibition with an aldosterone synthase inhibitor
nd an ETA receptor antagonist on CKD with or without T2D. A
rial of BI 690517 (an aldosterone synthase inhibitor) conducted
n people with eGFR < 30 to < 90 mL/min/1.73 m2 and UACR > 200
o < 5000 mg/g found that treatment resulted in substantial dose-
ependent reductions in UACR when used concurrently with a
AS inhibitor and with or without empagliflozin [115 ]. The per-
entage change in UACR measured in first morning void urine
ith placebo was –6%, –12% with BI 690517 3 mg, –43% with
I 690517 10 mg and –39% with BI 690517 20 mg in once daily
oses. Notably, in the BI 690517 10 mg dose group, a reduction of
30% UACR was reported in 51% and 70% of participants with
onotherapy or in combination with empagliflozin, respectively,
upporting a benefit with combination therapy added to back-
round standard-of-care without unexpected safety signals [115 ].
Clinical development of the endothelin-1 receptor antagonist

lass has been hindered by adverse events of fluid retention
nd HF. In the Zibotentan and Dapagliflozin for the Treatment
f CKD (ZENITH-CKD) trial, while the higher dose of zibotentan
.5 mg daily was associated with fluid retention–associated ad-
erse events compared with the 0.25 mg dose, the risk of HF
as mitigated by addition of dapagliflozin [116 ]. After 12 weeks,
he UACR reduction with zibotentan plus dapagliflozin versus da-
agliflozin alone was –33.7% (90% CI –42.5 to –23.5; P < .001)
or high dose (1.5 mg zibotentan plus dapagliflozin 10 mg) and
27.0% (90% CI –38.4 to –13.6; P = .002) for low dose (0.25 mg
ibotentan plus dapagliflozin 10 mg), suggesting that combination

https://www-sciencedirect-com.offcampus.lib.washington.edu/topics/medicine-and-dentistry/aldosterone-synthase
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Table 3: GLP-1RA dedicated kidney outcomes trial [89 ]. 

Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes (FLOW) (3533 participants) 

Intervention: semaglutide 1.0 mg weekly vs placebo 
Key inclusion criteria: T2D; CKD (eGFR 50 to 75 mL/min/1.73 m2 and UACR > 300 and < 5000 mg/g or eGFR of 25 to < 50 mL/min/1.73 m2 and UACR 

> 100 and < 5000 mg/g) 
Mean participant age (in years): 66.6 ± 9.0 
Median follow-up (in years): 3.4 
Participant characteristics: eGFR 46.9 ± 15.6 mL/min/1.73 m2 (12.3% with eGFR < 30 mL/min/1.73 m2 ); median UACR 582.3 mg/g [68% (3533/1205) with 

A3, macroalbuminuria) 

Primary outcome: the major kidney disease events [a composite of the onset of kidney failure (dialysis, transplantation or an eGFR of 
< 15 mL/min/1.73 m2 )], at least a 50% reduction in the eGFR from baseline or death from kidney-related or CV causes: 24% lower relative risk in in 
semaglutide vs placebo group: 331 first events [5.8 per 100 patient-years of follow-up] vs 410 first events (7.5 per 100 patient-years) (HR 0.76; 95% CI 
0.66–0.88; P = .0003) 

Confirmatory secondary outcomes: 
(i) Total eGFR slope (the annual rate change in eGFR from randomization to the end of trial): −2.19 vs −3.36 mL/min/1.73 m2 per year in semaglutide 

and placebo group respectively (between-group difference 1.16; 95% CI 0.86 to 1.47; P < .001) 
(ii) Major CV events (a composite of nonfatal myocardial infarction, nonfatal stroke or death from CV causes): 18% lower in semaglutide group (212 vs 

254 events; HR 0.82; 95% CI 0.68 to 0.98; P = .029) 
(iii) Death from any cause: 20% lower in semaglutide group (227 vs 279 events; HR 0.80; 95% CI 0.67 to 0.95, P = .01) 

eGFR shown as mean (SD); mL/min/1.73 m2 ; UACR in median mg/g. 
HR, hazard ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

therapy improved upon monotherapy for reducing albuminuria
(Fig. 4 ; Table 3 ) [116 ]. 

COMBINATION THERAPY IN CKD: CLINICAL 

TRIALS IN PROGRESS 

The COmbinatioN effect of FInerenone anD EmpaglifloziN in par-
ticipants with CKD and T2D using a UACR Endpoint (CONFI-
DENCE, NCT05254002) study is an ongoing randomized, double-
blind, multicenter, parallel-group, phase 2 study enrolling 807
adults with T2D, stage 2–3 CKD and 100 ≤UACR < 5000 mg/g . CON-
FIDENCE is exploring the effect of dual therapy with finerenone
and empagliflozin on reducing albuminuria versus either agent
alone [117 ]. 

Following successful completion of the phase 2 trial of aldos-
terone synthase inhibition with and without empagliflozin for
CKD, EASi-KIDNEY (Studies of Heart & Kidney Protection with
BI 690517 in combination with empagliflozin: A multicenter, in-
ternational, randomized, double-blind, placebo-controlled clini-
cal trial of the aldosterone synthase inhibitor BI 690517 in combi-
nation with empagliflozin in patients with CKD) will compare BI
690517 10 mg once daily versus placebo given in addition to em-
pagliflozin 10 mg once daily and standard-of-care RAS inhibition.
EASi-KIDNEY will enroll an estimated 11 000 participants with
eGFR ≥20 to < 45 mL/min/1.73 m² or eGFR ≥45 to < 90 mL/min/
1.73 m2 with UACR ≥200 mg/g. The primary outcome is the first
occurrence of a composite of ≥40% eGFR decline, kidney failure,
HF hospitalization or CV death. 

CLINICAL IMPLICATIONS OF COMBINATION 

THERAPY 

Initiation of an SGLT2 inhibitors is associated with an acute re-
versible decline in GFR. Following an initial GFR “dip,” kidney
function typically stabilizes with ongoing SGLT2 inhibitor ther-
apy [118 ]. Initially findings of an eGFR dip with SGLT2 inhibitor
therapy raised concerned of possible acute kidney injury (AKI) in
patients receiving combination therapy with RAS and SGLT2 in-
hibitors [119 ]. However, a meta-analysis of over 90 000 study par-
ticipants reported that SGLT2 inhibition actually reduces risk of 
AKI by 23% (relative risk 0.77; 95% CI 0.70 to 0.84) [120 ]. Thus,
the dip in eGFR is more commonly attributable to acute reduc-
tion in glomerular hyperfiltration [118 ]. Larger dips in GFR have
been observed in combination therapy trials. In ROTATE-3, a re- 
duction of directly measured GFR from baseline to 8 weeks was 
observed with finerenone and dapagliflozin, which was largest 
with combination therapy (–7 mL/min/1.73 m2 ; 95% CI –8 to –5;
P < .001) [112 ]. In ZENITH-CKD, there was also an acute reduction
with the largest eGFR dip observed in the zibotentan 1.5 mg plus
dapagliflozin group [116 ]. Two weeks after discontinuation of da- 
pagliflozin and zibotentan, eGFR returned to baseline [116 ]. The 
acute eGFR decrease typically levels off after the 3 months, and 
the chronic eGFR slope following the dip becomes less steep com- 
pared with placebo, which is expected to result in a long-term 

slowing of CKD progression [118 ]. Additionally, an ongoing clini- 
cal trial is evaluating SGLT2 inhibition for prevention of postoper- 
ative AKI in cardiac surgery patients (MERCURI-2; NCT05590143),
which is mechanistically plausible considering the acute reduc- 
tion in glomerular hyperfiltration and proximal tubular metabolic 
stress [104 ]. 

Overall, evidence continues to build for combination therapy 
in the setting of diabetes and CKD. A recently published analy- 
sis posits that combination therapy with SGLT2 inhibitors, GLP-1 
receptor agonists and finerenone will improve long-term kidney,
CV and mortality outcomes [121 ]. An “accelerated, risk-based ap- 
proach” to initiation of combination GDMT has been suggested for 
patients with T2D in high- or very-high-risk CKD categories [122 ],
with thoughtful application of risk mitigation strategies recom- 
mended to ensure patient safety [14 ]. 

CONCLUSIONS 

Findings from kidney and CV outcome trials have dramati- 
cally shifted the standard-of-care for CKD with or without dia- 
betes. Recommendations from major guideline-forming organi- 
zations stress early initiation and intensification of kidney and 
heart protective therapies to improve outcomes in this high-risk 
population. While traditionally kidney and CV complications of 
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Table 4: Summary of key findings from studies of combination therapy in CKD. 

Name 
of the study Type of the study Participants Kidney function 

Combination 
therapy Outcome 

FIDELITY 
[107 ] 

Post hoc analysis (944 of 
12 082 with baseline 
GLP1-RA use) 

T2D CKD eGFR 58.7 (21.6); 
UACR 483.5 
(180–1052) 

Finerenone, GLP1 
RA 

↓ Albuminuria reduction 
In combination group 
–31% (east squares mean 

treatment ratio 0.69, 95% CI 
0.66–0.71) vs 38% (least squares 
mean treatment ratio 0.62, 95% 

CI 0.57–0.67), P -interaction = .03 

FIDELIO-DKD 

[109 ] 
Post hoc analysis (250 or 

5674 with baseline SGLT2 
inhibitor use) 

T2D CKD eGFR 51.1 (11.9) 
UACR 619 
(370–1258) 

Finerenone, 
SGLT2i 

Albuminuria reduction 
31% (95% CI 0.66–0.71) vs 25% (95% 

CI 0.62–0.90) with SGLT2 
inhibitor ( P -interaction: 0.31) 

FIDELITY 
[110 ] 

Post hoc analysis (877 with 
baseline SGLT2-i/13 026) 

T2D CKD eGFR 66.3 ± 21 UACR 
448 (185–945) in 
SGLT2i group; 
eGFR 57.0 ± 21.6 
UACR 521 
(199–1161) no 
SLGT2i 

Finerenone, 
SGTL2i 

a Kidney composite outcome: HR 
0.80 (95% CI 0.69–0.92) without 
SGLT2i and 0.42 (95% CI 
0.16–1.08) with SGLT2i 

b CV composite outcome: HR 0.87 
(95% CI 0.79–0.96) without 
SGLT2i and 0.67 (95% CI 
0.42–1.07) with SGLT2i 

DAPA-CKD 

[108 ] 
Post hoc analysis (229/4304) CKD with 

and w/o 
T2D 

eGFR 25–75; UACR 
200–5000 

Dapagliflozin, 
MRA 

Consistent outcome with and w/o 
MRA independent of baseline 
use of nsMRA 

Lower rates of hyperkalemia with 
SGLTi 

Tuttle et al . 
2024 [115 ] 

Clinical trial CKD with 
and w/o 
T2D 

eGFR 51.9 (17.7); 
UACR 426 mg/g 
(205 to 889) 

BI 690517 3 mg, 
10 mg, 20 mg; 
Empa 10 mg + 

BI690517 3, 10, 
20 mg 

BI 690517: 
Placebo –3% (–19 to –17) 
3 mg –20% (–39 to 3) 
10 mg –37% (–52 to –18) 
20 mg –35% (–51 to –14) 
Combination: 
Placebo –11 (–23 to 4) 
3 mg BI –19% (–31 to –5) 
10 mg –46% (–54 to –36) 
20 mg –40 (–49 to –30) 

ROTATE-3 
[111 ] 

Clinical trial CKD with 
and w/o 
T2D 

eGFR58.1 (18.6); 
UACR 401 (225, 
629) 

Dapagliflozin, 
eplerenone, 
combination 
(dapagliflozin 
+ eplerenone) 

UACR change 
19.3% dapagloflozin 
33.7% eplerenone 
53% combination 
Combination vs dapagloflozin, 

P < .001 
Combination vs eplerenone, 

P = .127 

Marup et al . 
2023 [112 ] 

Clinical trial CKD w/o 
dia- 
betes 

eGFR 34; UACR 469 Finerenone vs 
dapagloflozin 
vs combination 
(finerenone + 

dapa) 

Change in UACR: 
Finerenone ↓ 24% 

Dapa ↓ 8% 

Combination ↓ 36% 

Change of mGFR: 
Finerenone ↓ 3 mL/min 
Dapa ↓ 2 mL/min 
Combinatinon ↓ 7 mL/min 

ZENITH-CKD 

[116 ] 
Clinical trial CKD w 

and w/o 
T2D 

eGFR 46.7; 
UACR 565.5 

Zibotentan 
1·5 mg plus 
dapagliflozin, 
zibotentan 
0·25 mg plus 
dapagliflozin, 
dapagliflozin 
plus placebo 

Change in UACR with: 

Dapa: –28.3% (90% CI –37.8 to –17.4) 
Dapa/zibotentan 1.5 mg: –52.5% 

(90% CI –59.0 to –44.9) 
Dapa/zibotentan 0.25 mg: –47.7% 

(90% CI –55.7 to –38.2) 

a Fifty percent decline in eGFR, kidney failure or death from kidney causes. 
b First occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for HF. 
eGFR shown as mean (SD) (mL/min/1.73 m2 ); mGFR, measured GFR in mL/min; UACR in median (IQR) mg/g. 
SGLT2i, SGLT2 inhibitor; HR, hazard ratio; w, with; w/o, without. 
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diabetes have been addressed in isolation, increased recognition
of shared common pathways and the availability of therapies that
improve CKM outcomes is shepherding change to the delivery of
clinical care and trial design. Current data support additive ther-
apeutic effects that allow targeting distinct pathways involved in
the onset and progression of CKD that can be tailored to an indi-
vidual patient’s phenotype and clinical needs. Notably, protective
effects of SGLT2 inhibition against occurrence of ns-MRA-related
hyperkalemia or fluid retention with endothelin-1 receptor antag-
onist could enable patients to safely stay on combination thera-
pies. As the evidence supporting combination GDMT in CKD con-
tinues to build, dissemination and implementation efforts will
be critical to ensure optimal patient care and clinical outcomes
(Table 4 ). 
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