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Congenital titinopathy has recently emerged as one of the most common congenital muscle disorders.
Objective: To better understand the presentation and clinical needs of the under-characterized extreme end of the
congenital titinopathy severity spectrum.
Methods: We comprehensively analyzed the clinical, imaging, pathology, autopsy, and genetic findings in 15 severely
affected individuals from 11 families.
Results: Prenatal features included hypokinesia or akinesia and growth restriction. Six pregnancies were terminated.
Nine infants were born at or near term with severe-to-profound weakness and required resuscitation. Seven died fol-
lowing withdrawal of life support. Two surviving children require ongoing respiratory support. Most cohort members
had at least 1 disease-causing variant predicted to result in some near-normal-length titin expression. The exceptions,
from 2 unrelated families, had homozygous truncating variants predicted to induce complete nonsense mediated
decay. However, subsequent analyses suggested that the causative variant in each family had an additional previously
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unrecognized impact on splicing likely to result in some near-normal-length titin expression. This impact was confirmed
by minigene assay for 1 variant.
Interpretation: This study confirms the clinical variability of congenital titinopathy. Severely affected individuals suc-
cumb prenatally/during infancy, whereas others survive into adulthood. It is likely that this variability is because of dif-
ferences in the amount and/or length of expressed titin. If confirmed, analysis of titin expression could facilitate clinical
prediction and increasing expression might be an effective treatment strategy. Our findings also further-support the
hypothesis that some near-normal-length titin expression is essential to early prenatal survival. Sometimes expression
of normal/near-normal-length titin is due to disease-causing variants having an additional impact on splicing.

ANN NEUROL 2025;97:611–628

The TTN gene encodes titin—the largest protein in
nature.1 In skeletal and cardiac muscle, 2 titin molecules

pair to span the full length of the sarcomere forming a contin-
uous elastic myofilament that provides a scaffold for sarcomere
assembly during muscle development,2–4 modulates sarco-
meric tension during contraction, and serves as an important
mechanosensing and signaling hub (reviewed in Gautel et al5).

As a result of the increasing use of massively parallel
sequencing (MPS) in diagnostics, it has become apparent
that disease-causing TTN variants (sometimes referred to as
pathogenic/deleterious variants or mutations) are responsible
for several important skeletal muscle and cardiac disorders.

Heterozygous (de novo or dominantly inherited) non-
sense, frameshift, and canonical splice site-altering TTN vari-
ants are the most common cause of familial/genetic adult-
onset dilated cardiomyopathy (DCM).6–8 In addition, hetero-
zygous disease-causing variants in 2 specific regions of TTN
are responsible for 2 dominantly inherited skeletal muscle
titinopathies: (1) tibial muscular dystrophy (TMD: final exon
variants)9,10 and (2) hereditary myopathy with early respira-
tory failure (HMERF: exon 344 missense variants).11,12

Multiple different recessive skeletal muscle titinopathies
have also been described, under different clinical labels.13–20 These
conditions are increasingly considered clinical variations of the
same disorder; recessive titinopathy (RT).With the increasing use
of MPS in diagnostics, RT has emerged as a common cause of
prenatal-, childhood-, and adolescent-onset skeletalmuscle disease,
frequently complicated by cardiac complications. For example,
RT is now the second most common genetic diagnosis in
Australian PathWest gene panel-analyzed myopathy cases (M.D.,
panel lead, reporting limited to cases with truncating and/or con-
vincingly pathogenic splice-altering variants).

Congenital titinopathy, the most severe form of RT,
manifests in utero or during infancy16–20 and can result in
prenatal or early infant death. However, severity is highly
variable and well over 20 reported congenital titinopathy
cases have survived into adulthood (>18 years; oldest pub-
lished congenital/infant-onset case is 57 years).16,20–25

The biological mechanisms that underpin these marked
differences in severity remain unclear.

Our understanding of the RT clinical spectrum has
expanded rapidly over the past decade. However, our

knowledge of titin transcript and protein isoform biology
remains limited. In humans, there is currently only 1 character-
ized (canonical) titin mature skeletal muscle isoform: N2A.1,26

However, multiple streams of evidence suggest that additional
yet-to-be-characterized human fetal and postnatal (mature)
muscle isoforms exist.28–30 In mature cardiac muscle, N2B and
N2BA are 2 longest and most abundant titin isoforms. There
are also several smaller cardiac isoforms (Novex 1, 2, 3).27

It increasingly appears that analysis of the isoform-
level impact(s) of TTN disease-causing variants may facili-
tate prediction of clinical outcomes. For instance, Roberts
et al7 showed that heterozygous truncating and canonical
splice site TTN disease-causing variants that impact both
N2B and N2BA are more likely to result in adult-onset
DCM than other TTN disease-causing variants. Congeni-
tal titinopathy cases with biallelic TTN disease-causing
variants that both impact N2BA and N2B also appear
more likely to develop cardiac complications.20

Our study aims to comprehensively characterize the
clinical and genetic findings in congenital titinopathy cases
at the most extreme end of the severity spectrum and con-
sider explanations for the severity of these cases.

Methods
The project was approved by the Sydney Children’s Hos-
pitals Network Human Research Ethics Committee
(2019/ETH11736) and by other researchers’ review
boards. Consent for research participation and use of pho-
tographs was obtained from parents/legal guardians.

Only severely affected cases with convincingly path-
ogenic truncating and/or splice-altering TTN disease-
causing variants confirmed to be in trans by parental
segregation studies were included in this study. “Severely
affected” was defined as having pronounced in utero
features (absent/minimal fetal movements, multiple con-
tractures and/or hydrops) and/or severe-to-profound
hypotonia and respiratory insufficiency at birth necessi-
tating immediate resuscitation and prolonged intensive
respiratory support (>4 weeks or until death). Cases with
difficult-to-interpret missense variants or incomplete seg-
regation results were excluded.
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The study included published and unpublished
data from Families AUS1, UK1, and BEL1, reported
previously as Family 6/AUS005, Family 17/UK0001, and
Family 18/BEL0001.20

All disease-causing variants were identified via panel,
whole exome or whole genome sequencing and reported
according to Human Genome Variation Society recom-
mendations referencing the inferred complete TTN
metatranscript (ENST00000589042; NM_001267550.1;
LRG391_t1). Exons were numbered 1–364 according to
the Locus Reference Genomic (LRG) schema.32

The Leiden Muscular Dystrophy pages and Clinvar
were interrogated to identify previously reported disease-
causing variants. The frequency of each disease-causing vari-
ant was determined using the Genome Aggregation Database
(gnomAD).33,34 The protein-level impact(s) of each disease-
causing variant was predicted using Alamut Visual. Cardiodb
was consulted to determine if disease-causing variant-
impacted exons were included in N2A (skeletal), N2B (car-
diac), and/or N2BA (cardiac) isoform transcripts.

The predicted degree of nonsense mediated mRNA
decay (NMD) triggered by each truncating disease-causing
variant was determined using pre-computed NMDetective-A
scores31 according to the position of the termination codon
(sequential exon usage assumed for termination codons not
in same exon as frameshift disease-causing variants).

Percent spliced in index (PSI)35 (exon usage) values
for disease-causing variant-impacted exons were calculated
using previously published methods.7 Fetal and pediatric
skeletal muscle PSI values were generated from ribosomal
RNA depleted 150 base pair single end Illumina RNA-seq
data from 5 control fetal/neonatal samples and 14 control
pediatric samples. Adult skeletal muscle (gastrocnemius)
PSI values were calculated from poly-A selected-76 bp
paired end Illumina GTEx36 RNA-seq data from 196
individuals without features of a neuromuscular disorder
or a history of treatment or lifestyle factors that might
impact muscle health. Cardiac muscle PSI values were

previously published data, which were generated from
84 end-stage dilated cardiomyopathy patient samples.7

ESEFinder37 was used to identify disease-causing
variants that altered exonic splicing enhancer (ESE) motifs
and were, therefore, predicted to have additional splice
impact(s). The strength and relative positioning of sur-
rounding splice signals were analyzed to determine the
likely splice impact(s) of ESE-altering disease-causing
variants.

The minigene assay used to confirm the additional
predicted splice impacts of the Family SRI1 homozygous
nonsense disease-causing variant was performed as previ-
ously described38,39 with slight modifications (Data S2).
Sashimi plots were generated using ggsashimi.40

Cardiac and disease-causing variant data from mem-
bers of this cohort and an additional 50 published families
(Table S3) were stratified according to the cardiac status
of affected members (“Yes” if congenital and/or non-
congenital cardiac abnormalities reported in at least 1 RT
case from that family), and whether each had (1) two
N2B/N2BA-impacting disease-causing variants or (2) other
combinations of disease-causing variants.

Results
Families
This international multicenter study comprises 15 severely
affected fetuses and infants from 11 unrelated families.
Antenatal information was available for 14 of 15 cases.
Only autopsy data was available for MAL1.II.4.

Family ethnicity was diverse. Family pedigrees are
shown in Fig 1A.

Six families (MAL1, UK2, NL1, NL2, SRI1, and
UK4) had a history of more than 1 severely affected child,
with a consistently severe presentation within each sibship.

Eight families included ≥1 affected child who sur-
vived until birth, confirming that the combination of
disease-causing variants present was compatible with in
utero survival.

FIGURE 1: Pedigrees and summary of disease-causing variants. (A) Pedigrees of all families included in this study. Clinically
affected individuals are represented with shaded symbols. Standard pedigree symbols used were used in this figure.57 Symbols *
and # represent paternal and maternal TTN alleles in cases with genetically confirmed compound heterozygous disease-causing
variants. Symbols ** represent cases with genetically confirmed homozygous disease-causing variants. Age at spontaneous
pregnancy loss, pregnancy termination, death, or stillbirth (SB) is shown beneath pedigree member symbols (h: hours, d: days,
w: weeks). F and M in brackets represents gender of terminated pregnancies (F: female, M: male). (B) Location of each of the
disease-causing variants identified in the cohort mapped to the inferred complete TTN metatranscript (Refseq transcript
NM_001267550.1). Splice site disease-causing variants are shown above the transcript image. Frameshift and nonsense disease-
causing variants are shown below the transcript. (Schematic image was created using Illustrator for Biological Sequences.)
(C) Table summarizing all the disease-causing variants identified in the cohort, numbered according to the inferred complete
TTN metatranscript. The table also shows the type of variant, the exon in which each disease-causing variant is located and the
predicted impact of each disease-causing variant at the RNA and/or protein level. A shaded exon number represents disease-
causing variants in metatranscript-only (non-N2A) exons. Symbol ^ represents recurrent cohort disease-causing variants. More
detailed information about the position and predicted (or experimentally, for example, RNA-seq confirmed) impacts of each
disease-causing variant is provided in Table S1. [Color figure can be viewed at www.annalsofneurology.org]
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Overview of Cases
Six pregnancies had been terminated (11 weeks to
27 + 5 weeks gestation) because of severe fetal

hypokinesia or akinesia, limb contractures, and/or hydrops
fetalis. The remaining 9 infants were born alive at or after
35 weeks gestation. Seven of these infants subsequently

TABLE 1. Summary of Prenatal History and Autopsy Features in Severely Affected Cohort Members Who Did
Not Survive Until Birth

Patient information NL1.II.2 NL1.II.3 NL2.II.1 NL2.II.3 UK3.II.1 UK4.II.5 Total

Gender of fetus Male Male Female Male Female

Gestation at TOP
(weeks + days)

11 20 14 11 27+5 22

In utero history

Decreased fetal
movements

+ + + + + + 6/6

Hydrops fetalis + + + � � � 3/6

Increased nuchal
translucency

+ + � � 2/4

Contractures/talipes
on US

+ + � � + + 4/6

Intrauterine growth
retardation

+ + � � � � 2/6

Polyhydramnios � � � � + � 1/6

Autopsy features

Arthrogryposis
multiplex congenita

+ + + + + 5/5

Hydrops fetalis + + + � � 3/5

Fetal cystic hygroma + + + � � 3/5

Thoracic hypoplasia + + � + � 3/5

Muscle hypoplasia � � � + + 2/5

Microretrognathia + + + + + 5/5

Low-set ears + + + � + 4/5

Abnormal facial shape + + � � � 2/5

Decreased palmar
creases/abnormal
finger flexion creases

+ � � + 2/4

Additional hand/foot
abnormalities

Syndactyly � � Congenital finger flexion
contractures, rocker

bottom foot, sandal gap,
toe oligodactyly

Hand
clenching

3/5

Additional features Gastroschisis Cleft
palate

Anal
atresia

Hypertelorism 4/4

In the last column (Total), the denominator is the number of cohort members with data provided for that feature. If no data was available regarding a
specific feature the entry has been left blank.
TOP = termination of pregnancy, US = ultrasound.
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TABLE 2. Summary of Clinical and Autopsy Features in Cohort Members Who Survived Until Birth or Later

Patient UK1.II.1 AUS1.II.3 BEL1.II.2 MAL1.II.4 UK2.II.5 UK2.II.6 SRI1.II.3 AUS2.II.3 UK4.II.6 Total

Gender Male Male Male Male Male Female Female Male Male

In utero history

Hypokinesia or akinesia + + + + + + + + 8/8

Contractures/talipes � + � � � � + + 3/8

IUGR � � + � � + � � 2/8

Polyhydramnios � � � + + + + � 4/8

Delivery history

Gestational age Term 38 39+5 39 38+5 35+1 37 35 37+2

Birth weight (kg) 2.165 3.212 2.230 2.320 2.315

Breech presentation � + � + + � + � � 4/9

Caesarean section + + � + + + + � � 6/9

Respiratory distress + + + + + + + + 8/8

Neonatal asphyxia + � � � + � � + 3/8

Muscular and osteoarticular features

Neonatal hypotonia and
weakness

+ + + + + + + + + 9/9

Muscular hypoplasia � � + � � � + + 3/8

Arthrogryposis � + + + + + + + + 8/9

Fractures long bones � + � + � � � + + 4/9

Cardiac features

Atrial septal defect � � + � + + � 3/7

Ventricular septal defect + � � � � � � 1/7

Patent ductus arteriosus � � � � + + � 2/7

Dysmorphic features

High, narrow palate � + + + + + � 5/7

Myopathic facies + � + 2/3

Low-set ears � � + + + + � 4/7

Narrow mouth � + � � � � + � 2/8

Micrognathia or retrognathia � � � + + � + + + 5/9

Abnormality of the neck � � � + + + � 3/7

Hydrops fetalis � � � � � + � 1/7

Cryptorchidism � + � + + + 4/6

Autopsy features

Pulmonary hypoplasia + + � � 2/4

Pleural effusion + � + + 3/4

In the last column (total), the denominator is the number of cohort members with data provided for that feature. If no data was available regarding a
specific feature the entry has been left blank. More detailed information regarding clinical and autopsy findings is provided in Tables S4 and S5, respec-
tively. Note 1: Gestational age is reported in weeks + days. Note 2: pulmonary hypoplasia is defined as lung weight/body weight ratio <1.2%.
IUGR = intrauterine growth retardation; NA = not assessed; US = ultrasound.
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died from cardiorespiratory compromise between days
1 and 44 of life. Two survived beyond infancy.

Features: Terminated Pregnancies
Table 1 describes the in utero imaging and autopsy fea-
tures present in the 6 cases who did not survive to
term. Six pregnancies in 4 families were terminated
because of the presence of severe abnormalities and
poor prognosis. Severe fetal hypokinesia or akinesia was
present in all cases and detected as early as 11 weeks
gestation. Additional abnormal in utero features
included limb contractures and/or talipes (4/6, involv-
ing all limbs in all 4), hydrops fetalis (3/6 cases), intra-
uterine growth retardation (2/6), and increased nuchal
translucency (2/6). No cardiac abnormalities were
detected antenatally.

For all 6, there were documented in utero findings,
and 5 underwent autopsy. All 6 had features consistent with
fetal akinesia deformation sequence41 including contractures
involving all 4 limbs, facial dysmorphisms (eg, micro/
retrognathia [5/5 with autopsy findings], low set ears [4/5]),
and a narrow/hypoplastic thorax (3/5). A cystic hygroma, sig-
nificant muscle hypoplasia, and decreased palmar and/or fin-
ger creases consistent with a paucity of in utero hand/finger
movements were noted in a subset of cases (3/5, 2/5, and
2/5, respectively). Cleft palate, a feature noted in previously
reported cases,18,20 was present in 1 fetus. Gastroschisis and
anal atresia were each present in 1 infant.

Features: Infants Born At or Near Term
Table 2 describes the clinical features present in the
9 infants who survived until birth and the autopsy features
in 5 of these infants, with more detailed summaries pro-
vided in Tables S4 (clinical features) and S5 (autopsy fea-
tures). Figure 2 shows images of 3 severely affected infants
who died shortly after birth.

Pregnancy data were available for 8 of the 9 infants
who were born alive at or near term (only autopsy data
for 9th). All 8 had reduced in utero movements noted at
or after 20 weeks gestation. A subset (3/8) had additional
limb contractures and/or talipes (involving all 4 limbs
in 2/3), intrauterine growth retardation (2/8), and/or
increased nuchal translucency (1/8) on prenatal imaging.
Polyhydramnios developed at or after 28 weeks gestation
in 4 of 8 cases. None had hydrops fetalis.

Six infants were delivered by Caesarean section
because of breech presentation (4/6) and/or fetal
distress. All had either no respiratory movements
or developed marked respiratory distress following
delivery. All required immediate resuscitation and
mechanical ventilation. Table S4 shows additional birth
history information.

FIGURE 2: Examples of clinical features seen in severely
affected cohort members. (A) Image of MAL1.II.4 shortly after
Caesarean breech delivery showing typical hypotonic “frog-leg”
positioning, multiple limb and toe contractures, generalized
muscle hypotrophy/wasting, almost complete absence of
palmar creases (best seen in left hand), and ventilatory/life
support equipment in situ. (B–D) Images of BEL1.II.2 show in B
and D, multiple limb wrist and finger contractures, ventilatory/
life support equipment (B), and in C, the relative absence of
facial weakness. (E) Image of UK2.II.6 showing multiple limb
contractures, bilateral wrist contractures, bilateral talipes
equinovarus, and ventilatory/life support equipment. [Color
figure can be viewed at www.annalsofneurology.org]
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Three infants (UK1.II.1, BEL1.II.2, and UK4.II.6)
had brain magnetic resonance imaging (MRI) features con-
sistent with hypoxic brain injury following traumatic deliv-
eries. UK1.II.1 subsequently developed seizures and was
treated with therapeutic hypothermia and anticonvulsants.
A fourth infant (UK2.II.5) had signs of severe hypoxic–

ischemic encephalopathy and died at 8 hours of age from
severe respiratory insufficiency.

All infants born alive had severe-to-profound axial and
limb hypotonia, absent proximal antigravity movements,
reduced or absent distal antigravity movements, and congen-
ital contractures involving all 4 limbs (Fig 2). Four had

FIGURE 3: Autopsy, histopathological and ultrastructural features. (A–C) Autopsy images of MAL1.II.4 show near-complete
absence of several limb muscles. (D–O) Light microscopy and ultrastructural (electron micrograph [EM]) images of severely
affected cohort member muscle biopsy samples. All brightfield scale bars are 10μm unless otherwise stated. (D) Fiber size
variation and internalized nuclei in a hematoxylin and eosin (H&E)-stained quadriceps section from UK1.II.1 at age 2 months and
3 days. (E,F) Cores and striking central and circumferential peripheral mitochondrial accumulations in a NADHTR-stained section in
E and a COX/SDH double-stained section in F from the same biopsy shown in D. (G) Atrophic fibers with fiber-size variation in an
H&E-stained quadriceps section from BEL1.II.2 at age 7 days. (H) EM image showing focal myofibrillar loss from the same biopsy
as shown in G. (I) EM image showing rare subsarcolemmal cap-like lesions comprising mostly thin filaments attached to
haphazardly arranged and thickened Z-lines from the same muscle biopsy as shown in G and H. (J,K) EM images showing marked
myofibrillar disarray in a quadriceps section from UK2.II.6 on day 1 of life. (L) EM image showing focal extensive loss of myofibrils
with striking mitochondrial proliferations from the same muscle biopsy shown in J and K. (M) Fiber size variation and slightly
increased central nucleation in an H&E-stained quadriceps section from AUS1.II.3 at age 1 day (note: a section of this image was
previously published in Oates et al22: patient passed away shortly after biopsy was taken). (N) Indistinct fiber typing in a NADHTR-
stained section of the same muscle biopsy as shown in M. (O) Extreme fiber size variation in an H&E-stained section from UK3.II.1
(autopsy after termination of pregnancy at 27 + 5 weeks gestation). [Color figure can be viewed at www.annalsofneurology.org]
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FIGURE 4: Examples of prenatal and postnatal radiological features. (A,B) Ultrasound of AUS2.II.3 at 30 + 6/40 weeks gestation
performed to investigate markedly reduced fetal movements shows persistent lower limb flexion in A and an unusual flexion
deformity of the toes in B. (C–E) Fetal magnetic resonance imaging (MRI) of the same infant (AUS2.II.3) at 31 + 4/40 weeks
gestation (sagittal SSFSE T2 images, orientation: arm upper left, thigh lower left, back on right of D) shows persistent upper and
lower limb flexion deformities, marked limb muscle atrophy, intrinsic hand muscle atrophy (arrow, E) and marked paravertebral
muscle atrophy (best seen in C), particularly in neck (arrow, C). Atrophy of the tongue and facial muscles was also present. (F,G)
Postnatal MRI (T1 images) of lower limbs in UK4.II.6 demonstrate severe fatty replacement of the lower limb muscles (F, coronal)
and proximal upper limb muscles (G, axial). (H–J) Postnatal X-ray images of UK4.II.6 showing a severe hindfoot varus deformity
(H), and displaced fractures of the left humerus (I) and left femur (J). (K) Babygram X-ray of MAL1.II.4 showing a displaced
fracture of the left humerus. Thin gracile ribs and thin long bones, bilateral talipes equinovarus, and bilateral hip flexion
contractures are also evident. (L) Postmortem babygram X-ray of AUS1.II.3 showing bilateral displaced femur fractures and a
slightly displaced fracture of the right humerus, which appeared recent (no evidence of repair). Older changes are seen at distal
radius and ulna. Thin ribs, thin long bones, and bilateral talipes equinovarus foot deformities are also evident.
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bilateral talipes equinovarus (Fig 2). Three had decreased or
absent palmar and/or phalangeal creases.

A high-arched palate was a frequent finding (5/6).
Ophthalmoplegia was consistently absent. Mild facial weak-
ness or myopathic facies were present in 2 cases. Micro/
retrognathia, low set ears, and a narrow mouth were each pre-
sent in more than 1 case (5, 3, and 2 cases, respectively). Four
cases had neck abnormalities (webbing, cystic swelling,
increased skin, and short neck). All infants who survived
beyond the first few days of life had significant feeding
difficulties.

Four infants (BEL1.II.2, UK1.II.1, UK2.II.6, and
AUS2.II.3) had atrial and/or ventricular septal defects.
Two (BEL1.II.2, UK2.II.6) had additional pulmonary
hypertension. In UK2.II.6, this resulted in right-sided car-
diac failure. In BEL1.II.2, echocardiogram-confirmed pul-
monary hypertension resolved within 1 month.

Four infants (AUS1.II.3, AUS2.II.3, UK2.II.5, and
UK2.II.6) died from profound respiratory insufficiency

during the first 48 hours of life. The 5 infants who survived
beyond 48 hours (UK1.II.1, BEL1.II.2, MAL1.II.4, SRI1.
II.3, and UK4.II.6) remained dependent on mechanical
ventilation (weeks-months). Three subsequently died follow-
ing withdrawal of respiratory support because of absence of
clinical improvement or deterioration.

UK1.II.1 (age, 3 years) remains alive following a
period of intensive medical intervention throughout
early childhood. He remains dependent on
tracheostomy-administered ventilation and is hospital-
ized several times a year for lower respiratory tract infec-
tions. He is severely hypotonic, weak (gross motor
function classification system level 5), and is fed via
gastrostomy tube. He is unable to vocalize, but is
socially interactive.

UK4.II.6 (age, 16 months) required mechanical ven-
tilation for 109 days, remains dependent on nocturnal bi-
level positive airway pressure ventilation, and is awaiting
insertion of a gastrostomy tube. He has antigravity finger

TABLE 3. Summary of Skeletal Muscle Histopathology and Ultrastructural Features in Cohort Members

Patient Age at biopsy Site of biopsy Light microcopy findings
Ultrastructural (EM)

findings

UK1.
II.1

2 months 13 days (born at
term)

Quad • FSV
• IN
• Cores
• Central and peripheral

mitochondrial accumulations

Not undertaken

AUS1.
II.3

38/40 (before death at
8 hours of age)

Quad • Marked FSV
• IN (<5% fibers)
• Increased connective (perimysial)

and adipose tissue
• Increased adipose tissue
• Signs of degeneration and

regeneration

• Poorly formed sarcomeres
• Peripheral areas of

myofibrillar disarray

BEL1.
II.2

Day 7 (born at 39+5/40) Quad • FSV • Cap-like areas
• Multifocal myofibrillar

loss/disarray

UK2.
II.6

Not known Not known • FSV • Cap-like areas
• Severe myofibrillar

disarray
• Mitochondrial

accumulations

AUS2.
II.3

Day 1 (born at 35/40) Gastrocnemius • FSV
• IN
• Increased connective tissue

(endomysial)

• Poorly formed sarcomeres

UK3.
II.1

27+5/40 (TOP) Quad, triceps,
psoas

• Marked FSV Not undertaken

EM = electron microscopy; FSV = fiber size variation; IN = internalized nuclei; Quad = quadriceps; TOP = termination of pregnancy.
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FIGURE 5: Previously unrecognized splicing impact of the homozygous truncating TTN disease-causing variant identified in
Family SRI1. (A) Strength of exonic splicing enhancer motifs as scored by ESEFinder.39 Graphs show the location of serine/
arginine-rich splicing factor (SRSF) binding motifs relative to reference (left) and alternative (right) genomic sequence. Alternative
sequence contains the Family SRI1 exon 107 nonsense disease-causing variant (c.29986C>T) (red lettering). (B) Splicing diagrams
representing mRNA transcripts predicted to be produced by the reference TTN sequence (normal) and the alternative sequence
containing the c.29986C>T disease-causing variant (SRI1). (C) Minigene splicing assay assessing the impact of the c.29986C>T
disease-causing variant on TTN splicing. Minigene construct (left) contains (left to right) flanking minigene exon (73 bp), minigene
intron (577 bp), partial TTN intron 105 (92 bp), TTN exon 106 (268 bp), TTN intron 106 (102 bp), TTN exon 107 (261 bp), partial
TTN intron 107 (148 bp), minigene intron (868 bp), and minigene exon (499 bp). TTN exon 107 contains the c.29986C>T variant
(black) and the alternative splice site (blue). Predominant mRNA products expressed in HEK293FT cells identified by reverse
transcription polymerase chain reaction (RT-PCR) shown below minigene construct map. (C) Minigene assay RT-PCR products
from wild-type construct (WT), mutant (MUT), and negative control (NC). Although low level usage of the cryptic acceptor splice
site can be seen in the WT minigene result (iii), in the presence of the c.29986C>T disease-causing variant (MUT) there is a clear
shift from the predominant 764 bp wild-type RNA produced by linear exonic splicing (i) to a predominant 581 bp mutant RNA
produced by usage of the alternative splice site (iii). (D) Sashimi plots of TTN splicing patterns in control fetal and pediatric
skeletal muscle as identified by RNA-sequencing. Areas of less intense blue color reflect regions with more variable sequencing
coverage (superimposed datasets). Plots show predominantly linear splicing in control muscle with only 16 reads corresponding
to low-level usage of the alternate splice site in exon 107. [Color figure can be viewed at www.annalsofneurology.org]
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and wrist movements (contractures restrict finger move-
ments) and can reach and grasp, but has subgravity hip and
knee strength. Lower limb movement is limited to minimal
kicking. His congenital fractures have healed. However, he
is osteopenic, with thin bones and is being monitored
closely for bone health-related complications.

The 2 infants (BEL1.II.2, UK1.II.1) with available
creatine kinase (CK) levels had normal results. Three
infants underwent electromyography (EMG), nerve con-
duction studies (NCS), and/or repetitive nerve stimulation
testing (RNS) with variable results (Table S4).

All 5 infants who were live-born and later under-
went autopsy had dysmorphic and/or myopathic facial
features and arthrogryposis multiplex congenita. One
infant (MAL1.II.4) had complete absence of multiple
muscle groups including sternocleidomastoid, right biceps,
and thigh muscles (Fig 3A–C). Intercostal muscles were
markedly atrophic. The diaphragm was macroscopically
normal. There was also fibrous tissue replacement of the
cervical spinal cord of uncertain significance.

Pulmonary hypoplasia (lung weight/body weight
<1.2%42) was present in 2 infants. All 4 male infants had
undescended testes.

Imaging Abnormalities
Figure 4 shows prenatal and postnatal MRI, ultrasound,
and/or X-ray imaging studies of 4 severely affected infants;
in utero ultrasound and MRI images for AUS2.II.3;
and postnatal X-ray and/or MRI images for AUS1.II.3,
MAL1.II.4 and UK4.II.6. Table 1 (fetal cases) and
Table 2 (surviving infants) summarizes the imaging abnor-
malities noted in each of these cases.

These images show evidence of markedly reduced in
utero movements, limb and toe flexion deformities, and
limb girdle, hand, paravertebral, neck, tongue, and/or
facial muscle atrophy. Premortem and postmortem X-ray
findings included diaphyseal and metaphysical fractures of
limb bones (radius, humerus, femur, and distal tibial),
which were occasionally bilateral (eg, MAL1.II.4: both
humeri in [Fig 3K]). Some fractures looked recent, with
no evidence of repair, whereas others (eg, the distal radius
and ulna fractures in AUS1.II.3) (Fig 3L), appeared more
longstanding.

Muscle Histopathology
Premortem skeletal muscle histopathology results were
available for 5 live-born infants. Postmortem skeletal mus-
cle histopathology results were available from 1 fetus ter-
minated at 27 + 5 weeks gestation (eg, Fig 3, summary of
findings, Table 3).

Histopathological changes were variable both in sever-
ity and nature ranging from a dystrophic appearance (AUS

1.II.3) to myopathic and milder nonspecific abnormalities.
All biopsies showed 1 or more of the following pathological
features: atrophy and/or fiber-size variation (all 6/6 biop-
sies), increased internalized nuclei (3/6), core-like structures
(1/6), and cap-like lesions (2/6).

Features suggestive of ongoing degeneration and/or
regeneration were noted in several biopsies. Ultrastructural
examination revealed focal loss or disorganization of myo-
fibrillar structure in 4 biopsies, including 1 with only min-
imal light microscopy changes. Striking central and
circumferential peripheral mitochondrial accumulations
were visible on oxidative enzyme-stained sections from
2 biopsies (from AUS1.II.3, UK2.II.6).

Cardiac Findings in Carrier Relatives
Cardiac screening of carrier relatives was incomplete
(undertaken in 4/22 parents and no carrier siblings). Fur-
thermore, many carrier family members remained under
the age of 40 and may, therefore, be yet to manifest TTN-
related cardiac pathology (risk increases with age). In the
context of these limitations, there was no history of DCM
among first-degree relatives of cohort members. The
mother of AUS2.II.3 had been diagnosed with atrial fibril-
lation before the age of 40.

Disease-Causing Variants
The location of the 18 cohort member disease-causing vari-
ants (Fig 1C) mapped against a schematic representation of
the domains encoded by the complete inferred TTN meta-
transcript (Refseq transcript NM_001267550.1) is shown
in Fig 1B. A comprehensive description of each disease-
causing variant is provided in Table S1A, along with
patient and parental cardiac findings.

Ten disease-causing variants were novel. All disease-
causing variants were absent from gnomAD with the
single exception of one very low frequency disease-causing-
variant (AUS1: p.Met7597Valfs*15: frequency: 1/244158).
Four disease-causing variants were nonsense, 9 were frame-
shift, and 3 were canonical splice site disease-causing variants
predicted to cause in-frame skipping of a single exon. Two
were non-canonical splice site disease-causing variants. The
first (in AUS2) altered the final base of an exon. Muscle
complementary DNA (cDNA) studies confirmed that this
disease-causing variant resulted in the creation of a new
donor splice site and subsequent frameshift (data not shown).
The second (in AUS1) was an extended splice site deletion
shown by cDNA studies to result in in-frame skipping of
exon 317 as previously described.20

Most disease-causing variants were in N2A exons
with PSI values of 100% (Table S1A). Three disease-
causing variants from 4 cohort families (MAL1, AUS2,
UK3, and UK4) were within non-N2A I-band exons.
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This included an exon 180 p.Lys12385Argfs*562 disease-
causing variant identified in 2 unrelated families (AUS2,
UK3). All 3 exons that contained non-N2A disease-
causing variants had fetal or neonatal PSI values that were
similar to or greater than pediatric and adult PSI values
(Table S1A), suggesting that these exons are included
within a significant subset of fetal isoform transcripts.

Previously Unrecognized Splicing Impact(s)
Seven nonsense and frameshift disease-causing variants were
predicted to have an additional previously unrecognized
impact on splicing (Table S1A: columns V and W).

The Family SRI1 homozygous nonsense disease-
causing variant in exon 107 (PSI 100% in fetal or neona-
tal, pediatric, and adult muscle) was predicted to result
in the loss of a strong serine and arginine rich splicing
factor 5 (SRSF5) splicing motif (Fig 5A). Minigene splic-
ing analysis confirmed that this disease-causing variant
results in markedly increased usage of a cryptic splice
acceptor site within exon 107 (Fig 5C) and in-frame loss
of 261 base pairs of exon 107, including the premature
termination codon introduced by the disease-causing var-
iant (Fig 5B).

The Family NL1 homozygous frameshift disease-
causing variant within exon 140 (PSI 99–100% in fetal or
neonatal, pediatric, and adult muscle) was predicted to result
in transcripts with reduced inclusion of exon 140, but no
change to the reading frame (in-frame exon skipping).

Five additional truncating disease-causing variants
were predicted to result in a loss of splicing enhancer ele-
ments (n = 3) or gain of heterogeneous nuclear ribonu-
cleoprotein (hnRNP) A1 splicing silencer elements
(n = 2) (Table S1A: columns V and W). These would
result in skipping of the affected exon and in-
frame transcription.

Genotype–Phenotype Correlation
The characteristics of disease-causing variants pre-
sent in our severe congenital (SC) cohort members
(Table S1A) were compared to the characteristics of
disease-causing variants present in the 5 adult survivor
(AS) cohort members from our previous study to
explore possible reasons for the marked differences
in clinical presentation (AS cases 1–5 in Table S1B:
reported previously as Family 1 [AUS0001], Family
5 [AUS0004], Family 9 [F26], Family 19 [HK0001],
and Family 26 [B13-26]).20

Both groups had:

• Disease-causing variants in multiple different domains
(A-, I-, and M-band), with no group-specific clustering.

• Disease-causing variants in N2A exons (all associated
with 100% PSI values across all age groups).

• Disease-causing variants in non-N2A exons associated
with variable PSI values.

• Truncating disease-causing variants predominantly
predicted to result in complete (rather than incomplete)
nonsense mediated decay.

• Splice site disease-causing variants predominantly
predicted or shown (via RNA studies) to cause partial
or complete exon skipping without frameshift.

• Truncating disease-causing variants predicted to have
an additional previously unrecognized splice impact.

Relationship between Cardiac Involvement and
Cardiac Isoform Impact
Many affected cohort members died before comprehensive
cardiac assessment, or perhaps before manifesting cardiac
involvement. Nevertheless, cardiac abnormalities (predom-
inantly septal defects) were present in at least 1 case from
5 of the 11 cohort families (Table S1A: column AA). Two
of these 5 families had biallelic N2B/N2BA-impacting
disease-causing variants.

Cardiac isoform analyses based on findings in the
families from this study cohort and an additional 50 publi-
shed families with convincingly pathogenic segregation
confirmed disease-causing variants (Table S3) show a sig-
nificant association between cardiac involvement and the
presence of 2 N2B/N2BA-impacting disease-causing vari-
ants (Fisher’s exact test: p-value, 0.018; odds ratio, 3.90;
95% confidence interval, 1.20–13.53).

The mother of AUS2.II.3, who developed atrial
fibrillation before the age of 40, was the carrier of a
N2B/N2BA-impacting disease-causing variant. Further
statistical analysis was not undertaken because of incom-
plete carrier family member cardiac screening.

Discussion
RT has recently emerged as a common genetic muscle dis-
order, largely because of the exponential increase in MPS
use within the diagnostic setting. The growing number of
genetically confirmed cases has facilitated a rapid expan-
sion in our understanding of the clinical spectrum of this
disorder, which we now know includes patients with
prenatal-, infant-, childhood-, adolescent-, and occasional
adult-onset presentations, variable rates of progression,
and different complication (eg, cardiac risk) profiles.

At the extreme end of the clinical severity spectrum
are congenital titinopathy cases with severe-to-profound
prenatal-onset weakness, limb contractures, hydrops,
and/or growth restriction, frequently resulting in in utero
or early infant death or pregnancy termination because of
poor prognosis. At the other end of the spectrum are the
more than 20 reported congenital titinopathy cases with
convincingly pathogenic disease-causing variants who have
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survived into adulthood, many of whom remain somewhat
ambulant and independent in many activities of daily liv-
ing.16,20–25 There are also more than 15 reported non-
congenital RT cases (onset after infancy) who have
reached adulthood.13,20,21,24,25,43 The reasons for such
vast differences in clinical severity remain unclear.

Congenital long bone fractures (sometimes multiple)
were present in 4 of 9 cohort members who survived until
birth. Congenital fractures are rare, but have been reported
in association with motor pathway disorders caused by
disease-causing variants in a range of disease genes including
SMN1 (Type 0 SMA),44 ASCC1,45,46 BICD2,47 EXOSC9,48

LMOD3,49 KLHL40,50 RYR1,51 and ACTA1.52 The reason
why only a small subset of severely-to-profoundly weak
infants with these genetic diagnoses present with this compli-
cation remains unclear. It is possible that only a small propor-
tion of infants are put at risk of fractures because of their in
utero positioning toward the end of pregnancy and/or at time
of delivery. Of note, is that 2 of cases had congenital fractures
(from AUS1, MAL1) despite having an elective Caesarean
section, which should have reduced their fracture risk. Con-
genital fracture-associated disorders might also have additional
yet-to-be-characterized impacts on bone development.

The complete absence of sternocleidomastoid, right
biceps, and thigh muscle groups noted at autopsy in 1 mem-
ber of this cohort (MAL1.II.4) was a rare and unexpected
finding. Of additional note, is that extreme fat replacement
of quadriceps muscle was noted in 1 additional genetically
confirmed congenital titinopathy patient not included in this
cohort. In this young infant, no diagnostically useful quadri-
ceps muscle fibers could be obtained via open muscle biopsy.
Thigh muscle ultrasound suggested increased echogenicity,
but the presence of at least some muscle. A second open
muscle biopsy with surgical exploration deeper into the
quadriceps femoris muscle fascia yielded fatty tissue and rare
muscle fibers with centralized/internalized nuclei (Dr Adnan
Manzur, personal communication).

The diagnosis of congenital titinopathy in MAL1.
II.4 was established following a neuromuscular panel anal-
ysis. Although no pathogenic or likely pathogenic variants
in other muscle disease genes were identified by this analy-
sis, it remains possible that additional variants in 1 or
more additional muscle disease genes (known, or as-yet-
unknown) contributed to this finding. Of additional note,
is that this patient’s parents were consanguineous. The
likelihood of involvement of additional genes responsible
for recessive muscle conditions is, therefore, higher than it
would be for a patient with non-consanguineous parents.
However, an alternative hypothesis is that, in a subset of
congenital titinopathy patients, fetal expression of isoforms
critical to the development of specific muscle groups are
so severely reduced during early prenatal life that muscle

development is profoundly compromised, or there is com-
plete failure of muscle development.

The strikingly unusual central and circumferential
mitochondrial accumulations noted in 2 cohort member
biopsies appear to be more common in biopsies from
recessive (including congenital) titinopathy cases than in
biopsies from individuals with other muscle disorders53

and may be an important clue to this diagnosis.
In this study, disease-causing variant-containing

exons not included within the canonical N2A mature
skeletal muscle transcript (non-N2A exons) were associ-
ated with moderate to high fetal/neonatal PSI values
(56–100%). This finding underscores the importance of
non-N2A exons during fetal muscle development.
Disease-causing variants in 3 non-N2A exons were pre-
sent in 4 of our 11 severely affected cohort families,
including 1 consanguineous family (MAL1). Disease-
causing variants in non-N2A exons have also been
reported in numerous published congenital titinopathy
cases.20,21,24 It is, therefore, clear that disease-causing
variants in non-N2A exons can contribute to disease,
including severe disease. All TTN exons (not just N2A
exons) should, therefore, be interrogated during the diag-
nostic evaluation of TTN.

Of note, I-band exons 173–199 lie within the TTN
triplicated repeat region. RNA-seq reads from this region
do not map as accurately as reads from other regions. The
in vivo usage of these exons might, therefore, be higher
than suggested by our PSI calculations.

In this study, using cohort and additional published
data, we were able to confirm that congenital titinopathy
patients with convincingly pathogenic biallelic TTN
disease-causing variants that impact N2B and N2BA (the
2 most abundant cardiac isoforms), are significantly more
likely to develop cardiac complications than cases with
other combinations of disease-causing variants. However,
because the other genetic and environmental factors that
contribute to an increased risk of cardiac involvement have
not been fully elucidated, regular cardiac screening is still
strongly recommended for all patients and carrier relatives.
Cardiac assessment is particularly important for maternal
carrier family members who are planning pregnancy or are
pregnant because of the well-recognized risk of cardiac
decompensation during or shortly after pregnancy.54,55

As noted in previous studies,20,26 all congenital
titinopathy cases reported to date have had at least 1 disease-
causing variant predicted or shown (via western blot) to
result in the production of at least some near-normal length
titin. Examples of “titin preserving” disease-causing variants
include (1) C-terminal M-band truncating variants that do
not result in complete nonsense mediated decay, (2) splice-
altering variants that result in in-frame loss of a single exon
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at the transcript level, and (3) disease-causing variants that
impact lower PSI exons not included in all transcripts.

In this study, 3 families (SRI1, NL1, and NL2) ini-
tially appeared to be exceptions to this rule. However, subse-
quent in silico analyses of the disease-causing variants present
in families in SRI1 and NL1 suggested that the homozygous
causative variants in each family had an additional previously
unrecognized impact on pre-mRNA splicing.

The additional splicing impact of the Family
SRI1 exon 107 nonsense disease-causing variant was subse-
quently confirmed via minigene assay. Because no patient
muscle was available it was not possible to determine the
in vivo levels of titin transcript produced by this additional
splicing impact. However, in this family, this splicing impact
appears to have resulted in sufficient titin expression to sup-
port the survival of all 3 affected infants, at least until birth.

In Family NL1, both affected pregnancies were ter-
minated early (11 and 20 weeks). It is, therefore, not clear
if these cases would have survived until birth. However,
survival to 20 weeks had been possible even though the
homozygous exon 140 frameshift disease-causing variant
present in these cases impacted a 99 to 100% PSI exon
and was predicted to result in complete nonsense-
mediated decay. In this family, the additional splice
impact is predicted to cause in-frame skipping of exon
140. This may have resulted in sufficient titin expression
to support early fetal survival (until 20 weeks gestation).

In Family NL2, 1 of the 2 causative nonsense disease-
causing variants (in 100% PSI exons 64 and 135) ware
predicted to result in incomplete NMD. This exon 64 non-
sense variant may, therefore, have resulted in production of
at least some truncated protein, although any protein pro-
duced from this allele is likely to have been extremely short.
Of note, both affected cases in this family were terminated
early (latest at 14 weeks) because of severe abnormalities.
Survival beyond this point may not have been possible.

Overall, the disease-causing variant-related findings in
these and all other reported congenital titinopathy cases sug-
gest that production of at least some near-normal length titin
is essential to early human survival, and that combinations of
biallelic TTN disease-causing variants that result in severely
reduced or absent titin compromise pregnancy viability. This
hypothesis is further supported by studies that have shown
that Ttn-deficient mice do not survive embryogenesis.56

Comparison of the predicted transcript- and protein-
level impacts of the disease-causing variants present in
severe congenital and adult survivor cases was inconclu-
sive. There were no obvious points of difference in terms
of disease-causing variant type or location, usage of
impacted exons, degree of predicted NMD, or occurrence
of previously unrecognized additional splice impacts. This
may, in part, be because of the limited size of the

comparison groups. All the above-mentioned factors, per-
haps in addition to as-yet-uncharacterized transcriptional
and translational regulatory factors, likely contribute to
overall differences in titin abundance and/or length.

Although not yet proven, our somewhat unexpected
findings in SRI1, NL1, and NL2 strongly suggest that
differences in titin protein abundance impact clinical out-
comes including in utero survival. We hypothesize that
differences in titin abundance in patient muscle account
for at least some of the differences in severity observed
clinically in cases that survive beyond birth.

The length of “remnant titins” expressed in patient
muscle might also impact severity. Shorter remnant titins
might destabilize the sarcomere, increase vulnerability to
sarcomeric wear and tear over time, and/or adversely impact
critical signaling pathways. One possibility is that there is a
titin length threshold. Titins shorter than this length may crit-
ically impair key structural and/or signaling functions. There
may also be 1 or more titin domains that when absent, result
in more severe clinical presentations. This impact may be
exacerbated by reduced overall titin transcript/protein levels
and/or significantly shortened remnant proteins.

To explore these possibilities, short- and long-read
transcriptomic and protein-based analyses of muscle from
patients with a range of different clinical severities is needed.
If our hypotheses are confirmed, these types of analyses could
facilitate clinical prediction. In addition, these analyses are also
likely to inform our understanding of whether increasing titin
abundance and/or length might be an effective treatment
strategy, and how much additional titin might be needed to
achieve significantly improved clinical outcomes.
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