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A B S T R A C T

Radiotherapy plays an essential role in the treatment of breast cancer (BC). Recent advances in treatment 
technology and radiobiological knowledge have a major impact in BC patients with locoregional disease as the 
majority are now long-term survivors.

Over the last three decades, intensity-modulated radiotherapy (IMRT), volumetric-modulated arc therapy 
(VMAT) and deep inspiration breath-hold (DIBH) techniques, together with the increasing adoption of moder-
ately hypofractionated and ultra-hypofractionated treatment schedules as well as the possibility to offer partial 
breast radiotherapy to a well-defined patient subset have significantly changed radiotherapy for BC patients.

As dose-volume constraints (DVCs) have to be adapted to these new treatment paradigms we have reviewed 
available evidence-based data concerning dose-constraints for the main organs at risk (OARs) that apply to the 
treatment of whole breast/chest wall radiotherapy, whole breast/chest wall radiotherapy including regional 
nodal irradiation (RNI) and partial breast irradiation (PBI), for the most relevant fractionation schedules that 
have been introduced recently. This narrative review provides a comprehensive summary that may help to 
harmonize treatment planning strategies.

Introduction

In early breast cancer (BC) radiation therapy (RT) prevents local 
recurrence, reduces BC-related mortality, and improves overall survival 
(OS) [1,2]. In addition, recently published evidence also indicates that 
any recurrence and BC mortality are reduced by adjuvant nodal RT, even 
in case of only minimal axillary involvement [3]. Unfortunately, RT is 
associated with the risk of both acute (early) and delayed (late) toxicity 
to organs at risk (OARs), and every effort should be made to minimize 
these adverse events. Over the past few decades, technological advances 
as well as a deeper understanding of underlying radiobiology have 
significantly contributed to this goal [4].

Intensity-modulated radiotherapy (IMRT), volumetric-modulated 
arc therapy (VMAT), and deep inspiration breath-hold (DIBH) tech-
niques [5–7], together with the increasing adoption of moderately 
hypofractionated or ultra-hypofractionated treatment schedules as well 
as partial breast irradiation (PBI) that also changes the volume para-
digm, have significantly changed RT for BC [8]. This paradigm shift has 
prompted the necessity to adapt/redefine dose-volume constraints 
(DVCs) in BC-RT. While corrections to constraints for normofractionated 
treatments based on the linear-quadratic-model may serve as a first 
approximation to constraints for hypofractionated treatments, this re-
view tries to identify the already available data and directs to study 
protocols that may serve as an informed estimate where no data are yet 
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available.
Efforts to identify safe dose limits, however, have mainly concen-

trated on lungs and heart, while there remains a lack of specific rec-
ommendations for other OARs routinely exposed in locoregional 
treatments. In addition, most commonly used DVCs were derived from 
studies that used three-dimensional conformal RT (3DCRT) techniques. 
This makes their application challenging when employing more 
advanced delivery techniques. The aim of this review is therefore to 
report − in a comprehensive and synoptic fashion and including all 
available evidence regarding the whole spectrum of treatment para-
digms − evidence-based data concerning DVCs for the main OARs in the 
treatment of breast and chest wall (CW) RT across all currently estab-
lished fractionation and treatment paradigms such as whole breast 
irradiation (WBI), locoregional treatments including regional nodal 
irradiation (RNI) and, finally, PBI. The contribution of boost to OARs 
dose is limited. Nevertheless, the recommended tolerance doses apply to 
WBI or WBI plus boost.

Literature overview of organ specific toxicity and resulting 
recommendations regarding DVCs for WBI with or without RNI

Lung toxicity and DVCs for lung

Lung tissue is relatively sensitive to radiation and the risk of lung 
toxicity remains a dose limiting factor in a variety of clinical situations. 
Radiation-induced lung damage involves resident and immune cells 
together with the activation of a cascade of pro-inflammatory cytokines 
and chemokines [9]. Radiation-induced pulmonary toxicity has four 
different clinically relevant manifestations that potentially compromise 
quality of life, radiation pneumonitis (RP), radiation fibrosis (RF), 
bronchiolitis obliterans organizing pneumonia (BOOP) as a rare and 
etiologically complex entity and, finally, second cancer risk as a po-
tential stochastic complication. RP is an early inflammatory reaction 
(within one to three months after RT). RF is a late and irreversible event 
due to fibroblast proliferation and the accumulation of collagen in the 
interstitial pulmonary space and occurs 6–12 months after RT [10].

Literature data reported an overall incidence of clinical RP varying 
from 0.7 % to 14 % [11–13]. The incidence rate of RP seems to vary 
according to treatment schedule (total dose and dose per fraction), 
irradiated volume, type of radiation and RT technique. In addition, 
patient-specific factors (such as age, comorbidity, Body Mass Index 
(BMI)) and treatment-related factors (such as the association of systemic 
therapy, including endocrine therapy) can influence and increase lung 
toxicity [14].

Regarding RF after BC RT, few data are available in the literature. 
Previous studies with small samples of BC patients, found endocrine 
treatment with tamoxifen and dose to ipsilateral lung as predictors for 
RF [15]. More recently, Karlsen et al. published an interesting 12-year 
analysis on long-term pulmonary toxicity in 250 BCE patients 
receiving post-operative RT. They showed that chemotherapy and 
locoregional RT affected performance in pulmonary function tests 
(PFTs), but they failed to find any association between this decline in 
PFTs and long-term RF or patient-reported dyspnea [16]. An inflam-
matory lung disorder of the distal airways extending into the alveolar 
ducts and alveoli, has to be mentioned as a separate entity, called BOOP 
[14]. RT-BOOP syndrome is recognized as an indirect lung injury related 
to an autoimmune process [15]. An incidence of BOOP in BC patients 
after breast conserving therapy ranging from 1.8 % to 2.9 % has been 
reported [16]. Most of these patients received traditional WBI with 
conventional opposing tangential fields. The mechanism of development 
of BOOP is currently unknown, but the subpleural localization of the 
initial injury and the low doses received by directly adjacent lung tissue 
could be involved in its onset [17]. Based on this hypothesis, the 
increasing use of IMRT in BC patients may reduce the incidence of BOOP 
varying the dose distribution but there is no clinical robust evidence yet 
to support this theory.

Finally, lung exposure has also been associated with an increase in 
lung cancer incidence even with modern RT techniques. The risk of 
second primary lung cancer increases with lung dose (i.e. mean whole 
lung dose (MLD)). A case control study including more than 20.000 BCE 
patients reported that the relative risk (RR) of lung cancer after breast 
RT increased linearly with whole lung MLD at 8.5 % per Gy [18], with an 
even higher excess rate of 17.3 % per Gy for smokers. As RT is moving 
from tangents to more complex techniques it is not yet clear what 
component of the dose spectrum is most relevant to second cancer (SC) 
incidence and to what extent modern treatment techniques such as 
IMRT/VMAT or particle therapy may modulate these data for patients 
with significant lung exposure (see also paragraph 4 for in-depth dis-
cussion), especially because of several confounding factors such as a 
small number of events being detected with difficulties in collecting 
long-term follow-up data and the unclear effects of other elements 
(chemo-endocrine therapy, genetic predisposition or smoking habit) 
[19,20]. However, the results from an individual patient data meta-an-
alyses of 40,781 women enrolled in 75 randomized clinical trials (BC RT 
versus no RT) documented an estimated absolute risk for second primary 
lung cancer of 4 % for long-term smokers and 0.3 % for nonsmokers and 
ex-smokers, showing a significant reduction of RT risk through smoking 
cessation [20].

Dose effect relationship data for all manifestations of pulmonary 
toxicity potentially caused by radiation are well studied for some of 
these manifestations and less well studied for others. Among the best 
studied (and also most relevant) endpoints are certainly Radiation 
Pneumonitis and Lung Fibrosis. As for BOOP as a rare manifestation no 
dose-volume-relationship has been established and as for SC induction 
the ALARA (As Low As Reasonably Achievable) principle applies, the 
recommended lung DVH constraints can mainly be deducted from 
datasets regarding RP and RF incidence. Different dosimetric parameters 
(Volume receiving 5 Gy, 10 Gy, 13 Gy, 20 Gy (V5Gy, V10Gy, V13Gy, 
V20Gy) and MLD) have usually been analysed retrospectively to eval-
uate their impact on RP risk. Two of these parameters, V20Gy and MLD, 
have then been mainly used clinically as simple and relatively robust 
predictors of RP risk [21–24], as the incidence of RP rises significantly at 
V20Gy > 30 % of the ipsilateral lung volume [25] and/or at MLD values 
> 10 Gy [26]. A systematic review of lung doses from BC-RT studies 
published during 2010–2015 found that mean ipsilateral lung dose 
(MLDipsi) was 9 Gy on average, and increased with the complexity of 
treatment as follows: 8.4 Gy per whole breast/CW irradiation in supine 
position without breathing control, 11.2 Gy when axilla/supraclavicular 
regions were included, 14 Gy when ipsilateral internal mammary chain 
(IMC) was also irradiated. DIBH treatment reduced MLDipsi by 1 Gy, 2 
Gy, and 3 Gy, respectively. The use of IMRT seemed to be able to reduce 
MLDipsi when the target was more extensive such as with IMC irradia-
tion, but it increased controlateral lung dose. The lowest MLDipsi was 
obtained with proton therapy or with treatment in prone or lateral 
decubital positioning [27]. Table 1 summarizes the most relevant lung 
DVCs based on literature data and international guidelines and recom-
mendations. Regarding Whole Breast/Chest Wall (WB/CW) irradiation, 
in 2013, the Danish Breast Cancer Group (DBCG) [28] guidelines pro-
posed V20Gy ≤ 25 % and V17Gy ≤ 25 % as ipsilateral lung DVC for the 
conventional fractionation schedule and the hypofractionation, respec-
tively. These DVCs were used in the DBCG HYPO trial, a randomized 
phase III study to compare hypofractionated versus standard fraction-
ated RT in 1882 patients with node-negative BC. At a median follow up 
of 7 years, no patients were hospitalized with radiation pneumonitis and 
no other lung toxicities were reported, we therefore suggest using the 
DVCs adopted by the authors [29] as they may be considered sufficiently 
robust and conservative. Several years later, the American Society for 
Radiation Oncology (ASTRO) [30] published guidelines for RT in early 
BC and recommended a more restrictive V20Gy ≤ 15 % and V16Gy ≤ 15 
% (ipsilateral lung DVC) as ideal (and < 20 % as acceptable) for the 
conventional fractionation schedule and hypofractionation, respec-
tively, as defined in the ongoing trial RTOG 1005, a study comparing 
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conventional or hypofractionated WBI plus sequential boost vs moder-
ately hypofractionated WBI with simultaneous integrated boost. Pre-
liminary results based on 2262 enrolled patients were presented at 
ASTRO’s 64th Annual Meeting and the authors reported low rates of ≥
grade 3 treatment-related adverse effects (AEs) (without providing 
further details) regardless of fractionation regimen [31]. They allowed 
the use of IMRT in the protocol, thus including constraint tradeoffs to 
optimize ipsilateral lung low dose exposure (V10Gy and V5Gy), that 
could be very useful in the era of more advanced delivery techniques. 
Another interesting clinical dataset that might be considered to refine 
constraints comes from an Italian mono-institutional study: a large 
cohort of BC patients treated with hypofractionated VMAT-based 
treatments. Only 2 cases of G2 RP were reported in the long-term 
analysis including 450 patients with a median follow-up of 6 years 
[32]. They observed cutoff values that may be used as reasonable con-
straints for ipsilateral lung of V20Gy < 10 % and MLD < 10 Gy [33,34]. 
Finally, reliable DVCs for ultra-hypofractionated schedules are derived 
only from the Fast-Forward trial [35], a multicenter, randomized, non- 
inferiority, phase III trial, comparing an adjuvant RT 5-fraction 
schedule (26–27 Gy/5 fractions) with a 15-fraction scheme and 
including a total of 4096 patients. The protocol ipsilateral lung DVC was 
V8Gy < 15 % and the treatment was delivered with 3DCRT. At a median 
follow up of 5 years, the authors reported a very low incidence of 
symptomatic lung fibrosis. Excluding the Italian mono-institutional 
study on VMAT-based treatment, all of these sources allowed the use 
of both 3DCRT and IMRT, without differences in terms of DVCs based on 
the employed technique. Regarding WB/CW RT including RNI, few data 
from completed studies are available, thus, for a conventional frac-
tionation schedule, we suggest referring to the ipsilateral lung DVC 
(V20Gy ≤ 35 %) recommended in the previously mentioned DBCG 
guidelines [28] (despite ASTRO guidelines that focused only on WBRT) 
and to the requirements in the ongoing RTOG 1304 trial (V10Gy ≤ 65 % 
and V5Gy ≤ 75 %), a phase III study to determine if WB/CW and RNI 
reduces invasive breast cancer recurrence free interval in BC patients 
with positive axillary nodes who are ypN0 after neoadjuvant chemo-
therapy [36]. Preliminary results on 1556 evaluable patients were 

presented at the 2023 San Antonio Breast Cancer Symposium. The au-
thors reported no unexpected toxicities. Grade 4 toxicities were rare and 
the rate of grade 3 toxicities was 6.5 % with no regional nodal irradia-
tion and 10 % with regional nodal irradiation (radiation dermatitits was 
the most common toxicity, no further details were provided). [37]. For 
hypofractionation, DBCG guidelines did not define lung DVCs, thus we 
suggest referring to the ipsilateral lung DVCs defined in the ongoing 
trials Alliance A221505 (a phase III randomized trial of hypofractio-
nated versus conventional fractionation post mastectomy RT in BC pa-
tients with breast reconstruction) and SKAGEN (a randomized trial to 
investigate the morbidities following normofractionated versus moder-
ately hypofractionated loco-regional RT in patients with early breast 
cancer and an indication for RNI) as a reasonable option [38,39].

Heart toxicity and DVCs for heart

Several studies demonstrated that RT is an independent risk factor 
for cardiovascular disease (CVD) more than 10 years after BC-RT 
[40–42].

RT, in the acute phase, causes endothelial damage and induces 
activation of the inflammatory cytokine cascade, and this leads over 
time to activation of all known components of the fibrosis response, such 
as fibroblasts, TGF-beta cascade and extracellular matrix remodelling 
(chronic phase) [43–45]. Endothelial cells are sensitive to radiation and 
doses ≥ 2 Gy induce expression of inflammatory adhesion molecules and 
promote leukocyte adhesion [46].

Coronary artery disease is among the most common cardiac com-
plications related to RT [47]. Several studies reported that patients who 
underwent RT have a 10-year risk of 5–10 % of developing coronary 
artery disease [48]. Ionizing radiation, however, can also cause fibrosis, 
retraction and calcification of the valve tissue resulting in both regur-
gitation and stenosis [49]. RT can also induce direct damage of myocytes 
and promote myocardial fibrosis, resulting in diastolic dysfunction 
(heart failure with preserved ejection fraction) or, rarely, restrictive 
cardiomyopathy [50]. Finally, RT can provoke pericardial damage 
leading to acute and chronic pericarditis and conduction system injuries 

Table 1 
Lung dose constraints.

Organ at Risk Conventional fractionation Moderate hypofractionation Ultra 
hypofractionation 
(5.2 Gy/fr)

(2 Gy/fr) (2.6–3.2 Gy/fr)

Ipsilateral Lung Breast/chest wall  Breast/chest wall  V8Gy < 15 
% [35]

Phase III 
TrialMLD ≤ 8 Gy (range 7.9 3DCRT – 

9.4 IMRT) [27]
Systematic review V20Gy < 10 % ([33,34] – 

VMAT treatment)
Phase II Trial

V10Gy ≤ 35 % (acceptable < 40 
%) [31]

RTOG 1005 V17Gy ≤ 25 % [28,29] DBCG guidelines and trial 
protocol (Hypo trial)

V5Gy ≤ 50 % (acceptable < 55 %) 
[31]

DBCG guidelines and trial 
protocol (Hypo trial)

V8Gy ≤ 35 % (acceptable <
40 %) [31]

RTOG 1005

V20Gy < 25 % [28,29] DBCG guidelines, RTOG 1304, 
Alliance A221505

V4Gy ≤ 50 % (acceptable <
55 %) [31]

Trial protocol (Hypo trial)

Breast/chest wall and RLN SKAGEN trial MLD < 10–16 Gy ([29,33,34]
– VMAT treatment)

Phase II Trial

V20Gy ≤ 35 % [28,36,38,39] Alliance A221505 Breast/chest wall and RLN RTOG 1304
V10Gy ≤ 65 % [38] DBCG guidelines V18Gy ≤ 35 % [36] SKAGEN trial
V5Gy ≤ 75 % [38] SKAGEN trial V17Gy ≤ 35 % [39] 
MLD ≤ 18 Gy [28,39] (range 14I 
MRT-20 3DCRT) [27]

Systematic review  

Contralateral 
Lung

Breast/chest wall  Breast/chest wall  Not available
V5Gy ≤ 10 % (acceptable < 15 %) 
[21,31,36,38]

QUANTEC, RTOG 1005, RTOG 
1304, Alliance A221505

V4Gy ≤ 10 % (acceptable <
15 %) [30,31]

ASTRO guidelines, RTOG 
1005

Breast/chest wall and RLN RTOG 1304 Breast/chest wall and RLN Alliance A221505
V5Gy ≤ 15 % [36]  V4.8Gy ≤ 10 % (acceptable <

15 %) [38]


Lungs Breast/chest wall Systematic review Not available Not available
MLD ≤ 6 Gy [27]

MLD: mean lung dose; 3DCRT: three-dimensional conformal radiotherapy; IMRT: Intensity-modulated radiotherapy; RLN: regional lymph nodes. Doses reported for 
hypofractionation (moderate or ultra) are not EQD2 if not specified.

F. De Rose et al.                                                                                                                                                                                                                                 Radiotherapy and Oncology 202 (2025) 110591 

3 



leading to several rhythm disorders [51]. McGale, analyzing a cohort of 
35.000 women treated between 1976 and 2006, reported a higher risk of 
pericarditis (RR: 1.61) and valvular heart disease (RR: 1.54) in left-sided 
than in right-sided irradiated BC [49].

To define dose constraints, the correlation between the dose received 
by an OAR and the occurrence of side effects has to be analyzed. How-
ever, confounding factors (other factors affecting cardiac risk) and the 
long latency of cardiac side effects makes this evaluation difficult. In 
addition, the development of new RT techniques amplifies this 
difficulty.

Darby et al. reported a dose–effect relationship between risk of car-
diac side effects and mean heart dose (MHD), and a dose–effect rela-
tionship between cardiac toxicity and dose to the left anterior 
descending (LAD) artery was observed by Zureick et al. [41,52]. The 
study by Darby et colleagues demonstrated a direct correlation between 
MHD and the risk of major coronary events, with a linear increase in 
observed risk, reporting a 7.4 % increased risk every additional 1 Gy.

Zureick et al suggested that LAD EQD2 Dmax higher than 6.7 Gy 
correlated with adverse cardiac events. However, these studies had 
several limitations: the analyses were retrospective, were lacking indi-
vidual dosimetry and the analyzed patients were treated from the early 
1970 s to the 2000 s, and dose-volume relationships were therefore only 
applicable to the standard RT techniques used in this period that were 
mainly consisting of basic tangent-based techniques.

Avoiding the clinical consequences of cardiac exposure by using 
MHD as the only constraint is likely not sufficient. In the BACCARAT 
trial, the authors showed that limiting MHD alone may result in exces-
sive irradiation of certain cardiac substructures as the predictive value of 
MHD for the exposure of single cardiac substructures, including coro-
nary arteries, is not reliable [53]. Nilsson et al. retrospectively analyzed 
200 irradiated patients, all of whom underwent coronarography after 
RT, showing a direct correlation between high dose hotspots and the 
location of coronary stenosis [54].

Most of the studies on correlation between OAR dose and occurrence 
of side effects included only patients who received 3DCRT and con-
ventional fractionation. The following reports are the most relevant 
regarding this issue. Van den Bogaard et al. performed an individual 
Computerized Tomography (CT)-based RT plan analysis to validate the 
Darby model and to investigate if other dose-distribution parameters are 
predictive of CVD [55]. A total of 910 patients were included in this 
study and 30 patients (3.3 %) developed acute CVD during follow-up. An 
increase of the cumulative incidence of acute coronary events by 16.5 % 
per Gy was found, but the left ventricle (LV) V5Gy was the most 
important prognostic DVC (V5Gy < 17 %). Erven et al., using the eco-
graphic strain-rate imaging method, analyzed early radiation-induced 
changes in the function of 18 separate segments of the LV [56]. Ana-
lysing 30 patients, they showed a significant decrease in systolic 
myocardial deformation in the apical segments receiving > 3 Gy vs. < 3 
Gy. Skyttä et al. prospectively investigated the relationship between 
cardiac doses and the serum biomarker troponin T (TnT) on a total of 58 
patients with early stage left-sided BC treated with adjuvant RT without 
prior chemotherapy (CT). [57]. TnT increased during RT from baseline 
in 12/58 patients (21 %) and the authors found a significant correlation 
between the increase of TnT and MHD and mean LV dose (4 vs. 2.8 Gy 
and 6.7 vs. 4.5 Gy). Similar results were also observed for other dosi-
metric parameters like V15Gy (58.6 vs. 40 %) and V20Gy (55.4 vs. 36.2 
%) of the LAD, V5Gy (12 vs. 8.1 %), V10Gy (8.4 vs. 4.9 %), V15Gy (7.1 
vs. 4 %) and V20Gy (5.7 vs. 3.5 %) of the heart and V5Gy (22 vs. 14.5 
%), V10Gy (15.5 vs. 8.6 %), V15Gy (13.2 vs. 7.2 %) and V20Gy (11.1 vs. 
6.2 %) of the LV. Beaton et al. analyzed treatment planning parameters 
in 5249 patients who underwent RT 10 years earlier, comparing 76 
patients who died of CVD (cases) to a matched population of 150 pa-
tients who did not (controls) [58]. They performed an individual CT- 
based RT plan evaluation. They found a higher proportion of cases 
than controls with CVD risk factors and lower cardiac RT doses, sug-
gesting that radiation oncologists had deliberately spared the heart 

when patients presented with CVD risk factors. It was observed that 75 
% of patients without cardiac toxicity had received a MHD and Dmax 
LAD (EQD23 Gy) of no more than 3.3 Gy and 45.4 Gy, respectively, and 
that in 80 % of these patients heart V25Gy was < 5 %. They therefore 
concluded that the risk of radiation induced cardiac death at 10-years 
appears to be very low if these limits are respected and recommended 
those as clinically useful dose constraints.

In conclusion, it is well documented that a reduction of MHD is 
associated with lower risks of cardiac late effects in a predominantly 
tangential 3DCRT setting. The use of modern techniques for WBI allows 
to achieve very low MHDs, but if only MHD is used as a dose constraint, 
subvolumes such as the heart apex or parts of the LAD can be exposed to 
much higher doses [59]. It is therefore very likely crucial to use addi-
tional dose limits in addition to MHD in the future, as it is already 
common practice in present clinical studies (see below and what is 
considered in the discussion).

Based on the dosimetric data discussed above, some scientific soci-
eties, such as DEGRO [60], published recommendations for cardiac dose 
constraints for conventional fractionation RT.

More recently, DVCs suggestions have also been made for hypo-
fractionation [29,61], while for ultrahypofractionation data regarding 
late cardiac toxicities are still elusive.

The authors of the DBCG HYPO trial for patients enrolled in the 
hypofractionation arm defined the dose constraints for heart as V17Gy 
≤ 10 % and V35Gy ≤ 5 %. The contouring of LAD was optional, and if 
LAD was delineated, the required dose constraint was Dmax < 17 Gy. In 
a quality assessment of the treatment plans (3DCRT with Field-In-Field, 
IMRT was also allowed) they found that the compliance for heart con-
straints was superior than 99 %, although a high number of missing data 
was registered for the optional LAD contouring [29]. As very few car-
diovascular events (5 cardiac deaths) were registered in the enrolled 
patients after a median follow-up of 7.3 years, with no indication of an 
excess risk, they concluded that the 95th percentile values for heart 
dosimetric parameters could be suggested as clinically useful constraints 
for the broad application in whole-breast RT planning not including 
regional lymphnodes (V17Gy ≤ 5 % and V35Gy ≤ 1 % for hypo-
fractionation and V20Gy ≤ 5 % and V40Gy ≤ 1 % for standard frac-
tionation). Extrapolating from these data by simply relaxing those 
constraints slightly (not based on a dedicated dataset acquired for this 
paradigm), they suggested a heart V17Gy < 10 % and V35Gy < 5 % (for 
hypofractionation) and V20Gy < 10 % and V40Gy < 5 % (for standard 
fractionation) for locoregional treatments including lymphnodes [29]. 
Franceschini et al. investigated the use of hypofractionated RT with 
concomitant boost delivered with VMAT in patients with early-stage BC 
who underwent conservative surgery [32]. The heart dose constraints 
suggested were V40Gy < 3 % and V18Gy < 5 %. At 2-year follow-up no 
symptomatic heart toxicities were recorded. These constraints are less 
restrictive than the previous ones, therefore, they should be considered 
rigorously if the constraints proposed in the HYPO trial cannot be met. 
No constraints for MHD were defined in these two studies. In RTOG 
1005 it was required that MHD did not exceed 3.2 Gy (with 4 Gy being 
still acceptable), but no heart toxicity data were published [31]. Also, for 
ultrahypofractionated treatments, long term cardiac toxicity data are 
not available and orientation in this setting is only provided by study 
protocol DVC requirements. In the Fast Forward trial 3DCRT with 
tangential field arrangements was used and protocol dose constraints for 
the heart were V1.5 Gy < 30 % and V7Gy < 5 %. In the 5-years analysis, 
27 patients out of 4096 enrolled died because of cardiac events (10 in 
the moderately hypofractionated arm, 17 in the 5-fraction arms). 
Though the low number of events and the short follow-up do not allow 
correlations between dosimetric parameters and major cardiac events, 
the protocol requirements may serve as a reasonable suggestion for 
clinically applicable DVCs in the ultrahypofractionation setting [35].

Based on all these data, in Table 2 we summarize the most relevant 
heart and cardiac substructure dose constraints.
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DVCs for contralateral breast

While dose to the contralateral breast (CB) in all types of modern 
primary breast RT is of little relevance for deterministic acute or late side 
effects, it is nevertheless of major concern due to the risk of potential 
cancer induction [62]. This endpoint is related to the stochastic effects of 
ionizing radiation [63]. A Surveillance, Epidemiology, and End Results 
(SEER) database reported an absolute increase of CB cancer risk asso-
ciated with RT of 0.5 %, 1.3 %, and 1.6 % (10–15-and 20-year actuarial 
rates, respectively [64]). Young women are most significantly at-risk. 
The WECARE study observed that patients < 40 years of age who 
received > 1 Gy of absorbed dose to the CB had a 2.5-fold greater risk for 
CB cancer than unexposed women (RR = 2.5; 95 % CI 1.4–4.5) [65]. 
Hooning et al. reported a linear excess RR of 0.21 per Gy increase in 
patients younger than 45 years. The relationship was stronger for the 
risk of medially located contralateral tumours (linear excess RR/Gy 
0.37) [66].

Based on these relatively clear data, international guidelines and 
national recommendations suggest giving the lowest possible dose to the 
CB, both for conventional (25 fractions) and hypofractionated (15 
fractions) schedules [29,30,67]. As dose trade-offs have to be made with 
target coverage and other relevant OARs these trade-offs have to be 
chosen, and estimating lifetime consequences of heart, lung and CB 
exposure, Thomsen et al. concluded that CB exposure was of lesser 
priority than dose coverage or heart and lung constraints [29]. There are 
no studies reporting a direct relationship between specific dose con-
straints and the incidence of SC in the CB. As a result, dose limits are 
derived from ongoing clinical trials, however, it should be noted that 
these constraints are too strict, especially when all other benefits of non- 
3DCRT (IMRT/VMAT) such as heart sparing are to be maximized. 
Regarding conventional fractionation, RTOG1005 [31] and Alliance 
221,505 [38] allowed the use of either 3DCRT or IMRT with no 
distinction for dose limits. The only difference between studies con-
cerned RNI, as it was included in the Alliance (RNI + ) but not in the 
RTOG1005 (RNI-) trial. Dose constraints are D5%≤1.86 (RNI-) and 
D10%≤3Gy (RNI + ). In a recent overview of involved site RT in adult 
lymphomas the authors suggested that the volume receiving > 4 Gy 
should be below 10 % and Dmean should be < 4 Gy [68] which seems 
reasonable also for BC. For hypofractionated (15 fractions) schedules, 
both the RTOG1055 and Alliance221505 trials used a dose constraint of 
D5%≤1.44 Gy for hypofractionation, regardless of RNI, with no varia-
tions in delivery technique. De Rose et al. evaluated 2-year toxicity and 
cosmesis in patients with early stage BC treated with 3 week/15 fraction 
hypofractionated SIB-VMAT to the whole breast (40.5 Gy) and tumour 
bed (48 Gy) [34]. In their study the constraint for CB was a mean dose <
3 Gy.

In conclusion, as stochastic effects of ionizing radiation induce sec-
ond tumours, it is fundamental to expose the CB to the lowest dose 
possible, especially in young patients [63,66,69]. A set of commonly 
used constraints are reported in Table 3, but for this endpoint it is hard 
to identify a reliably validated dose limit due to the lack of data as a 
consequence of the necessary long follow up and a lack of patient in-
dividual dosimetric data [67]. Particularly for modern paradigms such 
as PBI and IMRT/VMAT, no reliable clinical data are yet available and 
assumptions have to be made in clinical decision making (see also 
paragraph 4).

Brachial plexus toxicity and DVCs for brachial plexus

Brachial plexus neuropathy (BPN) is a potential late toxicity 
following surgery and/or radiation for BC, supraclavicular (SCLNs) and/ 
or axillary (ALN) lymphnode targets. Clinical symptoms of BPN are 
neuropathic pain, paresthesia or motor weakness of the upper extrem-
ities, and can cause significant morbidity [70]. The brachial plexus (BP) 
appears to be especially sensitive to variations in fractionation schedule, 
with the risk of injury being much higher for larger fractions despite 

equivalent BED [71]. Emami et al. suggested that the TD 5/5 to the 
entire BP was 60 Gy for normofractionation [72] and in a recent update 
the risk of clinically observed radiation induced BPN (RIBPN) seems to 
be < 5 % with standard fractionation after 5 years of completing RT, 
when the dose tolerance is limited to 60 Gy [73]. Nevertheless, with the 
prevalence of 3DCRT in studies so far and an increasing use of hypo-
fractionated RT recently, toxicity to BP needs to be reevaluated as there 
are insufficient data regarding the incidence of BPN after RT with new 
radiation techniques [74,75] and as fractionation seems to dramatically 
modulate tolerance doses. A review showed that the use of doses per 
fraction in the range from 2.2 Gy to 4.58 Gy with total doses between 
43.5 Gy and 60 Gy causes a significant risk of BPN which ranges from 
1.7 % to up to 73 % [76]. The risk of RIBPN was smaller than 1 % for 
doses between 2.2 and 2.5 Gy with the total dose ranging between 34 
and 40 Gy. Regarding the influence of treatment technique on the 
toxicity of OARs only a limited experience has been reported in the 
literature [77–79]. Prospective studies are needed to investigate DVCs in 
a more detailed fashion to improve the reliability of BP dose constraints 
and the plethora of factors that may modify RIBPN risk. Surgical 
manipulation of the axilla and CT have to be taken into account as 
additional factors which may increase the risk of RIBPN [80–82]. 
Regarding conventional fractionation the DBCG recommends that the 
maximum dose to the BP should not exceed 54 Gy [28] which is a 
reasonable suggestion given the available data.

A systematic review and meta-analysis by Yan et al. reported a sig-
nificant increase in RIBPN risk for each Gy increase in brachial plexus 
maximum dose (BPDmax) (RR, 1.11; 95 % CI 1.07–1.15) and suggested 
that current BP constraints of 60–66 Gy for conventional fractionation 
are safe [83]. Lundstedt et al. reported the incidence of paresthesia in 
192 patients treated with RT on SCLN lymphonodes. BP was contoured 
modifying guidelines published by Hall et al. [84]. Paresthesia was re-
ported in 25 % of patients when BP V40Gy was > 13.5 cm3 [85]. In a 
study of Jin et al, 156 patients received 50 Gy in 25 fractions and a boost 
to involved nodes and were compared with a control group of 297 pa-
tients treated with supraclavicular irradiation without boost. Dosimetric 
data were available in 74 patients in the first group and in 126 in the 
control group. BP was contoured following guidelines by Hall and col-
leagues. V50Gy > 90 % (33.3 % in V50Gy < 90 % and 63.6 % in V50Gy 
> 90 %) tended to develop more BPN related symptoms (p = 0.07) [86]. 
In these last two retrospective studies [85,86] patients were treated with 
3DCRT in the first one and with 3DCRT (25 patients)/IMRT (127 pa-
tients) in the second one, respectively.

Regarding hypofractionated RT in line with the data reported 
above and serving as a reasonable synoptic recommendation DBCG 
guidelines for the Skagen 1 trial therefore require maximum dose to BP 
to remain below 46.25 Gy [39]. BP dose constraints reported in the 
literature are summarized in Table 4.

DVCs for humeral head

The effect of radiation doses received by the humeral heads during 
locoregional breast RT, including lymphnode areas, has not been well 
investigated. Data regarding doses received by the humeral head and 
adjacent tissues in RT for BC are scarce and there is no reported dose-
–effect relationship for shoulder mobility [89]. European Society for 
Radiotherapy and Oncology (ESTRO) guidelines suggest adding an 
expansion of 1 cm around the anatomical humeral head to obtain a 
planning risk volume (PRV), but no specific dose constraints are rec-
ommended [90].

In a recent publication Belaidi et al. reported data on 159 BCE pa-
tients receiving locoregional treatment with Helical Tomotherapy. To 
our knowledge this is the first study that correlated dosimetric param-
eters of the humeral head with late toxicity. After a median follow-up of 
48 months the authors observed a very low rate of clinical adverse 
events [proximal humerus fracture (0.6 %), shoulder pain (3.8 %) and 
functional limitations (1.9 %)] without any significant difference in the 
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maximum and average doses between symptomatic and asymptomatic 
patients [89]. As a consequence of these inhomogeneous and incomplete 
datasets we currently have no robust clinical data to support specific 
DVCs for humeral heads.

Again, following the DBCG guidelines for the Skagen 1 trial seems 
reasonable in this context and we therefore suggest to reduce the dose to 
the humeral head to the necessary minimum and preferably to less than 
50 % of prescription dose (Table 4) [39].

Esophageal toxicity and DVCs for esophagus

Symptomatic radiation esophagitis is an infrequent complication of 
radiation treatment for BC and usually occurs in those patients in whom 
SCLN irradiation is indicated [91].

Esophagus exposure, however, has also been associated with an in-
crease in esophageal cancer incidence. A dose–response relationship 
based on 252 women who developed esophageal cancer after BC-RT 
suggests that the risk increases by 7.1 % per Gy median oesophagus 
dose [92]. A recent systematic review demonstrated that, for breast 
radiotherapy including lymphnodes, the average mean oesophagus dose 
is 11.4 Gy and this may nearly double oesophageal cancer risk [93]. Few 
studies have examined the incidence of esophagitis in patients under-
going treatment for BC and even fewer have assessed esophageal DVCs 
for conventional fractionated and hypofractionated RT. Yaney et al. 
conducted a single-institution retrospective study analyzing 531 BCE 
patients who underwent RNI with conventional fractionation using both 
3DCRT or IMRT. Target volume delineation was based on the RTOG 
Breast Atlas for high-risk, node-positive breast cancers (e.g., T3–4, 
N2–3). The esophagus was retrospectively contoured from the caudal 
edge of the cricoid cartilage to the carina. Grade 2 esophagitis was 16.2 
% (86/531) and was significantly higher in patients treated with IMRT 
versus 3DCRT (p < 0.0001). Mean esophageal dose, Dmax and V10Gy, 
V20Gy, V30Gy, V40Gy and V50Gy were significantly associated with 
grade 2 esophagitis. The identified dose cutoffs resulting in increased 
toxicity for esophageal Dmean, V10Gy and V20Gy were 11 Gy, 30 % and 
15 %, respectively [87].

West et al. carried out a single-arm prospective observational study 
to determine dosimetric factors related to incidence and grade of 

Table 2 
Heart and cardiac substructure dose constraints.

Organ at 
risk

Conventional fractionation Moderate hypofractionation Ultra hypofractionation
(2 Gy/fr) (2.6–3.2 Gy/fr) (5.2 Gy/fr)

Heart Breast/chest wall Original scientific article, trial protocol 
(RTOG1005)

Breast/chest 
wall

Original scientific article, trial 
protocol (RTOG1005)

V7Gy < 5 % (3DCRT) 
[35]

Original 
scientific article

V20Gy ≤ 5 % [31,61] V17Gy ≤ 5 % 
[61]

V1.5Gy < 30 % 
(3DCRT) [35]

V40Gy ≤ 1 % [61] Original scientific article, DEGRO 
guidelines, trial protocol (RTOG1005)

V35Gy ≤ 1 % 
[61]

Not available for 
IMRT and VMAT

Dmean 2.5 Gy* 
(optimal) [57,60]

Dmean < 3.2 Gy 
[31]

Dmean < 4 Gy [31] 
Breast/chest wall and 
RLN

Original scientific article, trial protocol 
(RTOG 1304)

Breast/chest 
wall and RLN

Original scientific article

V20Gy ≤ 10 % [61]
V40Gy ≤ 5 % [61] V17Gy ≤ 10 % 

[61]
Dmean < 5 Gy [36] V35Gy ≤ 5 % 

[61]*With DIBH

LADCA Dmax < 20 Gy [60] DEGRO guidelines, Original scientific 
article, Trial protocol (Hypo trial)

Dmax < 17 Gy 
[61]

Original scientific article
Dmax < 45 Gy*[58]
Dmean < 10 Gy [29]
V30Gy < 2 % [29]
V40Gy < 1 % [29]


 * End-point: cardiac death; as, however, LAD-related and muscle- 
related toxicity cannot yet reliably be separated, as the dimension 
of both muscle and LAD is small, and as positioning of the anterior 
heart is not perfect, it seems prudent to keep maximum dose to the 
anterior heart − thus also dose to the LAD − in any case ≪ 30 Gy, 
in line with the published recommendations for anterior heart 
also reported in this table

 

LV Dmean < 3 Gy [56] Original scientific articles, Trial protocol 
(Hypo trial)Dmean < 4.5 Gy [57]

V5Gy < 17 % [55]
V23Gy < 5 % [29]

LADCA: Left Anterior Descendent Coronary artery; LV: Left Ventricle; 3DCRT: three-dimensional conformal radiotherapy; IMRT: Intensity-modulated radiotherapy; 
VMAT: volumetric-modulated arc therapy; Dmax: Maximum dose; Dmean: Mean dose; RT: radiation-therapy. Doses reported for hypofractionation (moderate or ultra) 
are not EQD2 if not specified.

Table 3 
Contralateral Breast dose constraints.

Organ at risk Conventional 
fractionation

Moderate 
hypofractionation

Ultra 
hypofractionation

(2 Gy/fr) (2.6–3.2 Gy/fr) (5.2 Gy/fr)

Contralateral 
Breast

ALARA 
[30,61,67]

ALARA [30,61,67] Not available

D5%≤1.86 Gy 
(RNI − ) [31,38]

D5%≤1.44 Gy (RNI 
− ) [31,38]

D10% ≤3 Gy 
(RNI + ) [31,38]

D10%≤3 Gy (RNI + ) 
[31,38]

V4Gy < 10 % 
[68]

Dmean < 3 Gy [34]

Dmean < 4 Gy 
[68]



ALARA: As Low As Reasonably Achievable; Dmean: mean dose; Dmax: Maximum 
dose; D0.1cc: Dose to 0.1 cc of volume; RNI: regional nodes irradiation; Doses 
reported for hypofractionation (moderate or ultra) are not EQD2 if not specified.
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esophagitis in 77 BC patients receiving IMRT to the SCLNs. The planned 
dose was 50 Gy in 25 fractions. Esophagus was contoured from the su-
perior to the inferior border of the supraclavicular planning target vol-
ume (PTV). There was a higher incidence of grade 2 esophagitis in 
patients receiving a mean oesophageal dose of > 31 Gy compared to 
those receiving < 31 Gy (18/34 versus 6/24, respectively, p = 0.025). 
There was also a difference in patients who had > 1 cm of pharynx 
included in supraclavicular fossa fields compared to those with < 1 cm 
(15/24 versus 9/24 respectively, p = 0.0116). The authors concluded 
that by limiting mean dose to the irradiated esophagus to < 31 Gy and 
ensuring that less than 1 cm of the pharynx is included in the supra-
clavicular field, the incidence of grade 2 esophagitis could be reduced 
[94].

Regarding hypofractionated RT, Wang et al. conducted one of the 
few prospective studies to investigate dosimetric predictors for radiation 
esophagitis in BC patients undergoing hypofractionated regional nodal 
radiotherapy [88]. All patients were irradiated to the CW, the supra- 
infraclavicular fossa and level II of the axilla with 43.5 Gy in 15 frac-
tions over 3 weeks. RT was delivered with IMRT except that the CW was 
irradiated with an electron technique in a small subgroup of patients. 
Esophagus was contoured from the lower border level of the cricoid 
cartilage to the lower margin of the aortic arch. The incidence of grade 2 
esophagitis was 40.9 % (122/298) and grade 3 was 0.3 % (1/298).

From this analysis V25Gy < 20 % and V35Gy < 0.27 ml emerged as 
dosimetric parameters linked to a decreased risk of grade 2 radiation 
esophagitis and these constraints seem reasonable to also reduce 

esophageal second cancer risk as much as possible. In Table 4 we sum-
marize esophagus dose constraints for conventional and hypofractio-
nated RT suggested by these studies.

Hepatic toxicity and DVCs for liver

Few studies have examined toxic effects of breast RT on the liver and 
its impact has remained unclear, given that, for most patients, liver 
exposure from RT for BC is low. RT-induced liver disease (RILD) is 
generally defined as a radiation hepatitis or a subacute form of liver 
injury as a consequence of radiation with a ≥ 2-fold increase in the level 
of alkaline phosphatase (ALP) (classic type) or ≥ 5-fold increase in the 
level of aspartate transaminase (AST)/alanine transferase (ALT) (non- 
classic type) following RT. Studies analyzing consequences of RT for 
liver malignancies suggest that the dose constraints for normal liver 
volumes are a Dmean ≤ 28–32 Gy in 2 Gy fractions to prevent RILD [95]. 
However, these dose constraints are unrealistically high considering the 
prescribed dose for BC and the limited anatomical vicinity/overlap of 
liver and breast/CW targets. Park et al. evaluated the early effect of 
radiation dose on liver function in 125 of 185 BCE patients undergoing 
VMAT [96]. In patients who underwent RT to the breast alone, dose 
prescription was 42.56 Gy in 16 fractions with a sequential boost of 
10.64 Gy in 4 fractions; in patients who received RNI the dose was 
administered with conventional fractionation of 50 Gy in 25 fractions 
with a sequential boost of 10–14 Gy. In post-mastectomy patients a total 
dose of 50 Gy in 25 fractions was delivered to the CW and regional 
lymph nodes. The authors collected the results of liver function tests 
(LFR) including albumin, total and direct bilirubin, AST, ALT and ALP 
levels and registered DVCs such as mean dose and relative liver volume 
receiving 10 Gy, 20 Gy and 30 Gy. A total of 31 patients had liver 
function test results outside normal limits. No patients, however, had 
RILD. Based on all this data, both for normo and hypofractionated RT, 
keeping Dmean ≤ 3 Gy and ≤ 4 Gy for left and right BC, respectively, may 
be a useful dose objective that can be easily utilized for VMAT planning.

Liver dose constraints reported in the literature are summarized in 
Table 4.

Thyroid gland toxicity and DVCs for thyroid gland

A large number of studies have demonstrated that the thyroid gland 
is sensitive to radiation and its irradiation can cause disorders such as 
hypothyroidism (HT), Graves’ disease, and thyroid cancer [72,97–99]. 
Unfortunately, knowledge of radiation-induced HT in BC patients is also 
limited because the thyroid gland is not routinely defined/contoured as 
an OAR. The few available studies have reported an HT incidence of 6 
%–21 % [100–104]. Regarding normofractionation, a randomized 
pilot study was conducted by Tunio et al. Forty BC patients with baseline 
normal thyroid function tests were randomized into two groups: adju-
vant CW/breast with SCLN RT and control group (adjuvant CW/breast) 
[105]. Patients were treated with 3DCRT. At 52 months, four patients 
(10 %) had HT. The study showed that the risk of HT in BC patients after 
SCLN RT depends on the thyroid gland volume and V30Gy < 50 % was 
identified as a clinically useful dose cutoff. Kanyılmaz et al. estimated, 
retrospectively, the incidence of HT after RT in 243 patients and eval-
uated its predictors, with a focus on radiation DVCs [106]. All patients 
received RT using 3DCRT with a field-In-field technique, in normo-
fractionation, to the breast/CW and a single anterior field (or combined 
anterior and posterior fields) for SCLN. Of 243 patients, 51 (21 %) were 
diagnosed with HT, 22 (9.1 %) with clinical HT and 29 (11.9 %) with 
subclinical HT. They reported a Dmean > 21 Gy as the only factor that 
predicted HT. Regarding hypofractionation, only Zhao and colleagues 
evaluated the incidence of HT after RT with hypofractionation in 500 
patients [107]. They observed a significant increase of 2-year cumula-
tive incidence of HT comparing BC patients with and without SCLN 
irradiation (31.5 % and 11.4 %, p < 0.001) after 3DCRT. After a median 
follow-up of 21.9 months, 131 patients (26.2 %) developed HT and 59 

Table 4 
Dose constraints for other OARs routinely involved in breast locoregional 
treatment.

Organ at 
risk

Conventional 
fractionation 
(2Gy/fr)

Moderate 
hypofractionation 
(2.6-2.9 Gy/fr)

Ultra 
hypofractionation 
(5.2 Gy/fr)

Brachial 
Plexus

Dmax ≤ 54 Gy 
[14]
V40Gy < 13.5cm3

[85]
V50Gy < 90% [86]

Dmax 46.25 Gy [39] Not available

Humeral 
Head

ALARA ALARA Not available

Esophagus Dmean ≤ 11 Gy, 
V10Gy ≤ 30%, 
V20Gy ≤ 15%[87]^ 
^(when contoured 
along the entire 
length)  

Dmean ≤ 31 Gy 
[88]◦
◦(when contoured 
from the superior 
to the inferior 
border of the 
supraclavicular 
PTV)

V25Gy < 20% and 
V35Gy < 0,27 mL  
[89]* 

*(when contoured 
from the lower border 
level of the cricoid 
cartilage to the lower 
margin of the aortic 
arch)

Not available

Liver Dmean ≤ 3 Gy 
(left breast) [90]
Dmean ≤ 4 Gy 
(right breast) [90]

Dmean ≤ 3 Gy(left 
breast) 
, 
Dmean ≤ 4 Gy 
(right breast) [90]

Not available

Thyroid V30Gy < 50% [91]
Dmean < 21 Gy 
[92]

Dmean < 21 Gy [93] Not available

Chest Wall D2cc ≤ 52 Gy 
[94]

D2cc ≤ 52 Gy EQD2 

[94]
Not available

Spinal 
Cord

Dmax ≤ 45 Gy 
(optimal) [95]
Dmax <50 Gy 
(mandatory) [95]

Dmax ≤ 37.8 Gy 
(optimal) [96]
Dmax < 42 Gy 
(mandatory) [96]

Not available

ALARA: As Low As Reasonably Achievable; Dmean: mean dose; Dmax: Maximum 
dose; Doses reported for hypofractionation (moderate or ultra) are not EQD2 if 
not specified.
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(11.8 %) received thyroid replacement therapy. A Dmean > 21 Gy, again, 
was the threshold value for predicting HT after RT (p < 0.001). Another 
issue concerns secondary cancer risk as various reports have shown that 
even low doses may increase the risk of secondary thyroid malignancy 
development [108–110]. Based on this evidence, it is advisable to 
consider the thyroid gland as an OAR and accurately calculate the dose it 
receives and keep it as low as reasonably possible after fulfilling other, 
potentially more important dose constraints. In any case, regular 
monitoring of thyroid function through periodic serum assays is 
fundamental for prevention of clinically significant HT and, after early 
detection, appropriate treatment of manifest HT should be initiated. 
Thyroid dose constraints reported in the aforementioned studies are 
summarized in Table 4.

Chest wall toxicity and DVCs for chest wall

The CW includes both nerves and musculoskeletal tissue with an 
uncertain composite α/β value, for this reason the mechanism of CW 
toxicity is poorly understood [111]. Spontaneous rib fractures (SRFs) are 
defined as fractures without apparent blunt force trauma and are often 
asymptomatic. In patients treated for BC, SRF is linked to many causes. 
Known risk factors are represented by osteoporosis, RT, CT, use of AIs, 
and long-term use of bisphosphonates [112]. The effect of dose per 
fraction on the likelihood of radiation induced SRFs in BC patients re-
mains controversial. As a starting point, after conventional fractionation 
Emami et al. estimated for SRFs, the 5 % and 50 % tolerance doses to be 
50 and 65 Gy, respectively, to a third of the structure [72]. In a recent 
study the incidence of SRF, as identified by bone scans, was 16.5 % 
during follow-up [113]. Multivariate analysis of RT subgroups showed 
that hypofractionated RT increased the rate of SRFs (p = 0.002) [113].

To our knowledge, few detailed dose–response analyses have been 
conducted in association with SRFs after conventional fractionated or 
hypofractionated BC-RT.

Overgaard reviewed radiation-induced SRFs in 231 BCE patients 
who underwent postmastectomy RT; radiation-induced SRFs occurred in 
19 % and 6 % of the large and standard fraction size groups, respectively 
(3.0–3.9 vs. 2.2–2.5 Gy/fraction); the difference was statistically sig-
nificant and despite the technical limitations of 3-dimensional treatment 
planning are comparable to Emami’s historic and rather unsystematic 
observations [114]. However, the 10-year follow-up data of the START 
trials [115] comparing conventional fractionation and hypofractionated 
RT of BC revealed no significant difference in the incidence of symp-
tomatic rib fracture according to dose per fraction (1.5 % conventional 
vs. 2.2 % hypofractionation). A recent retrospective study analyzed the 
most relevant risk factors for ipsilateral SRFs in 2204 patients followed 
up with bone scans [116]. Ipsilateral SRF occurred in 14.5 % of patients 
3 years after RT. Most of the patients with SRF (87.3 %) were asymp-
tomatic. RT was administered according to two dose fractionation 
schemes: conventional fractionation and hypofractionated schedules. 
The number of patients who received each schedule is not specified and 
the authors used the same constraint for both schedules. Patients were 
treated with 3DCRT. In multivariate analysis D2cc ≥ 52 Gy EQD2 was the 
only significant risk factor for ipsilateral SRF and, viewing all available 
data synoptically, this seems to be the most reliable estimate of a clin-
ically useful dose cutoff to date in normo and hypofractionated RT. 
CW dose constraints reported in the aforementioned studies are sum-
marized in Table 4.

Spinal cord toxicity and DVCs for spinal cord

A very rare complication of BC-RT, particularly for patients under-
going RT of SCLNs, that should not have to be a real risk anymore today 
with the general availability of improved patient positioning, Image 
Guided Radiotherapy (IGRT) and IMRT and well understood dose- 
volume effects, has been post-actinic transverse myelitis. It is the 
result of damage to the white matter of the spinal cord 

(oligodendrocytes) and vascular damage to the endothelium (more 
frequently at low doses) [117]. The probability of actinic myelopathy is 
lower than 0.5 % with conventional fractionation for doses of 45–50 Gy. 
This side effect has a latency of months from the end of treatment, and it 
is more frequent in case of re-irradiation [118].

Based on literature data, there is no clear consensus on contouring 
modalities (only spinal cord, spinal cord + 2–3 mm, spinal canal) as 
these parameters depend, of course, on institutional patient positioning 
and treatment planning protocols, as well as on the upper and lower 
contouring limits. RTOG recommends 10 cm above and below the PTV 
as the limit for cord contouring to obtain reproducible and clinically 
meaningful dose-volume histograms (DVHs) [119].

As spinal cord at least longitudinally must be considered a serial 
OAR, attention must be, of course, paid to the administered maximum 
dose.

The following dose constraints may be recommended for left/right 
breast/CW plus SCLN treatments based on well established tolerance 
data derived from non-human primate studies as well as from long term 
follow up in patients treated for other diseases:

− Conventional fractionation: Dmax ≤ 45 Gy (optimal); Dmax 
45–50 Gy (mandatory) [120].

− Hypofractionation: Dmax ≤ 37.8 Gy (optimal); Dmax 37.8 Gy-42 
Gy (mandatory) [121].

Given that treatment of metastatic vertebral disease may be neces-
sary in the region of previous nodal treatment, spinal cord dose should 
ideally be limited to doses that permit an efficacious vertebral treatment 
after appropriate recovery (>6–12 months). Combining IGRT and 
IMRT/VMAT, cord doses can today reliably be limited to < 30 Gy, which 
also reduces spinal cord toxicity risk as a consequence of the first BC 
treatment effectively to zero [122].

DVCs for partial breast irradiation (PBI)

WBI has been conventionally delivered over several consecutive 
weeks, limiting access to breast-conserving surgery for women with 
socioeconomic barriers [123].

In early stage disease, local recurrence after breast conserving sur-
gery occurs especially in the area of the primary tumour [124,125]. 
Treating only the tumour bed, PBI has therefore been suggested as a 
potentially more convenient treatment option for patients with early- 
stage BC [126], an approach that prior to publication of the results of 
accelerated WBI trials was considered a safe way to accelerate treat-
ments in addition to expose less tissue.

Numerous large multicentric phase 3 trials demonstrated non- 
inferior local control in patients at low risk of recurrence, especially 
using external beam RT [127–129].

Based on these studies, several international guidelines consider the 
use of PBI a possible treatment paradigm in selected patients with early- 
stage BC. PBI can be delivered using different techniques (intra-opera-
tive RT, brachytherapy, and external beam RT) with various fraction-
ation schedules. However, the results in terms of late toxicity and 
cosmetic outcome have so far differed among the studies. In IMPORT 
LOW (40.05 Gy/15 daily fractions), similar adverse effects were re-
ported in the PBI and WBI arms [129]. In the RAPID trial, IRMA trial and 
NSABP B-39/RTOG 0413, despite the use of the same RT schedule (38.5 
Gy/10 twice daily fractions), the results in terms of late side effects 
differed among the studies [127,128,130]. In RAPID, an increase in late 
soft tissue toxicity and skin telangiectasia was observed in patients 
treated with accelerated PBI (APBI) [127]. Similar results regarding late 
subcutaneous tissue toxicity were observed in IRMA [130], but the re-
sults regarding late skin toxicity differ between RAPID and IRMA. In 
NSABP B-39/RTOG 0413 late toxicity was similar between the two arms, 
although a detailed report has not yet been published [128]. There are 
several potential explanations for these conflicting results in terms of 
late toxicity and cosmesis. Radiobiologic models suggest that a twice- 
daily treatment might not permit complete repair of normal tissue 
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damage. Among other causes, some dosimetric parameters may have 
contributed to these contrasting results. The volume of ipsilateral breast 
receiving a high RT dose may have been associated with increased soft 
tissue toxicity, as recently shown by Thomsen et al [131]. Hot spots on 
the CW may have increased the risk of SRFs. Currently, very few pub-
lications from the main PBI trials analyze the correlation between the 
dose received by an OAR and the occurrence of side effects. It is there-
fore very important to evaluate DVCs retrospectively in these studies 
and standardise the DVCs in any future prospective trial to be able to 
collect the data for various treatment schedules and analyze them to 
identify any parameters predictive of toxicity. Recently, ASTRO there-
fore published recommendations on appropriate dose-fractionation 
regimens, target volume delineation, and treatment planning parame-
ters for delivery of PBI [132]. In Table 5 we report DVCs used in the main 
PBI trials that can serve as general DVC recommendations as toxicity in 
these trials (that is also reported in the table) is in general acceptably 

low.

Discussion

To our knowledge, this is the first review of the literature that 
analyzed all available evidence regarding DVCs for BC-RT in a 
comprehensive fashion, including all OARs and different fractionation 
schedules and trying to correlate proposed DVCs with clinical endpoints 
if available.

Recently, results from European and Latin American surveys on 
organ-sparing techniques and DVCs in BC-RT were published [135]. 
Lungs (ipsilateral and contralateral), whole heart and CB resulted in the 
most frequently contoured OARs, with IMRT/VMAT as the preferred 
modalities used in heart sparing strategies. On the other hand, only a 
small percentage of all responders reported DVCs used in clinical prac-
tice, underlining the uncertainty about this issue, and MHD represented 

Table 5 
OARs dose constraints for PBI.

Homolateral 
breast

Contralateral 
breast

Homolateral 
Lung

Contralateral 
Lung

Heart Thyroid Rib Skin Reported 
toxicities (only if 
different 
between the 2 
arms)

IRMA Trial [130] V19.25Gy < 60 % Dmax ≤ 1.155 
Gy

V11.55Gy < 15 
%

V1.92 Gy Dmax <

1.925 Gy
G3-4 late soft 
tissue: 2.8 % PBI 
vs 1 % WBI

(38.5 Gy/10 twice 
daily fractions)

V38.5Gy < 35 % <5% (right 
sided)

G3-G4 late bone 
toxicity: 1.1 % PBI 
vs 0 % WBI<40 % (left 

sided)
RAPID Trial[127] V19.25Gy < 50 % Dmax ≤ 1.155 

Gy
V3.85Gy < 20 % V1.925Gy < 5 % Right sided: Dmax <

1.925 Gy
G ≥ 2 induration: 
22.9 % PBI vs 4.6 
% WBI

V1.925Gy < 5 %

(38.5 Gy/10 twice 
daily fractions)

(up to 60 %) 
V36.575Gy < 25 % 
(up to 35 %)

V11.55Gy < 10 
%

G ≥ 2 
telangiectasi: 9.3 
% PBI vs 3.7 % 
WBI

Left sided 
(excluding 
lower inner 
quadrant):
V3.85Gy < 5 % G ≥ 2 breast pain: 

4.8 % PBI vs 1.9 % 
WBI 

Left sided 
(lower inner 
quadrant):
V5.775Gy < 5 %

NSABP B-39 [128]
(External beam RT: 
38.5 Gy/10 twice 
daily fractions

V50%<60 % Dmax ≤ 1.155 
Gy*

V11.5Gy < 15 % 
*

V1.925 Gy < 5 % 
*

V1.925 Gy* 
<5% (right 
sided)

Dmax <

1.925 Gy 
*

No detailed data 
published

< 40 % (left 
sided)Brachytherapy: 34 

Gy/10 twice daily 
fractions)

V100%<35 %

*Only for External 
beam RT

Florence Trial V15Gy < 50 % Dmax < 1 Gy V10Gy < 20 % V5Gy < 10 % V3Gy < 10 % G ≥ 2 overall late 
toxicity: 0 % PBI 
vs 7 % WBI

[133]
(30 Gy/5 daily 

fractions every 
other day)

DBCG PBI trial V40%<50 % V17%<25 % V35%<5% G ≥ 2 Breast 
induration: 5.1 % 
PBI vs 9.7 % WBI

[131] 
(40 Gy/15 daily 

fractions)
V17%<10 %

Dmax(LADCA) ≤

17 Gy
IMPORT LOW Not defined in the protocol
[129]
(40 Gy/15 daily 

fractions)
ESTRO-ACROP Ipsilateral non- 

target breast 
V90%<10 % 
V50%<40 %

MLD < 8 % MHD < 8 % D0,1cm
3 

< 90 %
D1cm

3 <

90 %
Brachytherapy 

[134]
D0.1cm

3 < 50 % D1cm
3 <

80 %
D0.2cm

3 

< 100 
%

D0.1cm
3 < 60 %

MLD: Mean lung dose; MHD: Mean heart dose; PBI: Partial Breast Irradiation; WBI: Whole Breast Irradiation; Dmax: Maximum dose. Doses reported for hypo-
fractionation (moderate or ultra) are not EQD2 if not specified.
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the most frequently reported parameter.
The introduction in clinical practice of more advanced delivery 

techniques has prompted the necessity to adapt/redefine dose con-
straints in BC-RT.

A definitive proposal of DVCs for main OARs (such as lungs, heart 
and CB) is difficult to establish but should most likely prioritize the 
possibility to reduce the high doses despite a relative increase of mean 
and low doses.

Regarding lung DVCs, most clinical data correlated with specific 
dosimetric parameters derive from studies on RT in lung cancer. In the 
few published single centre studies focusing on RP incidence after breast 
RT 3DCRT (tangential fields) was the most frequently used technique. In 
the setting of conventional fractionation, MLD and V20Gy were 
considered as robust predictors of RP, as the incidence of RP rises 
significantly at V20Gy > 20–30 % of the ipsilateral lung volume and/or 
at MLD values > 10–15 Gy [11,14,22–27]. International guidelines and 
ongoing trials re-proposed these parameters for both conventional and 
hypofractionated regimens, without differences based on the employed 
technique. The use of IMRT should be able to reduce MLDipsi and V20Gy 
for more extensive targets such as in IMC irradiation, but it increases 
contralateral lung dose. As for doses to the CB, there remain some 
concerns about the larger volumes treated to low doses and a potential 
relationship with an increase of SC incidence, but only long term clinical 
follow up will be able to clarify this issue. Fogliata et al. tried to evaluate 
the impact of VMAT breast treatments when compared to 3DCRT on SC 
Excess Absolute Risk (EAR), taking into account Normal tissue compli-
cation probability (NTCP) to estimate the ipsilateral lung, heart, and 
skin toxicity [136]. With obvious limitations related to the type of study 
(in silico study), the authors concluded that VMAT (particularly the 
VMAT_tang setting) could have the same risk of SC induction as 3DCRT 
delivered with the Field-in-Field setting for the contralateral organs 
while reducing acute and late NTCP for the ipsilateral organs. It is not 
yet clear what DVC is most relevant to increase SC risk, especially 
because of several confounding factors such as a small number of events 
detected with difficulties in collecting long-term follow-up data and the 
unclear effects of other elements (chemo-endocrine therapy, genetic 
predisposition or smoking habit) [19,20]. In synthesis the use of modern 
RT techniques (IMRT/VMAT/Tomotherapy), particularly when more 
extensive targets have to be irradiated, allows to optimize the lung DVCs 
reducing toxicity, so far without evidence of an increase of SC risk.

Heart DVCs, in this context, merit a more in-depth discussion. 
Currently, based on data generated from 3DCRT-series MHD is the most 
commonly used constraint in clinical practice as several studies showed 
that a reduction of MHD is associated with lower risks of cardiac late 
effects. However, as demonstrated by other previously cited studies, the 
use of MHD alone has limitations.

Piroth et al. showed that using a simple wedged tangential field 
technique, a low MHD is achievable (mean 2.1 Gy [SD 1.32]) but, 
despite such a low MHD, small but relevant subvolumes such as the 
heart apex or parts of the LAD can be exposed to much higher doses 
(mean LAD Dmax: 24.6 [SD 17.6]) [137]. Similar results were reported 
by Tan et al. evaluating dose distributions achievable with IMRT [59]. 
They also concluded that the “anterior myocardial territory” may 
replace the heart as the OAR in left-sided breast IMRT to decrease the 
radiation dose to the heart. Therefore, even when relying only on 
(modified) tangential techniques, as a consequence of individual patient 
anatomy, MHD may often remain below 2.5/3Gy but apical areas like 
LAD and LV receive much higher doses. To limit high doses to these 
substructures, it is crucial to use additional dose limits (as reported in 
Table 2) in addition to MHD and, when required, adequate techniques as 
comprehensively reported and recommended by the DEGRO review on 
heart-sparing RT techniques in BC patients [138].

A limitation of the reviewed datasets and, as a consequence, of this 
review, is the absence of specified contouring guidelines for a large 
number of the discussed OARs. This aspect may, of course, represent a 
source of uncertainty for the entire analysis and for this compilation of 

suggested DVCs as the amount of the variation in contouring across the 
manuscripts this review is based on are unknown. Given the fact that 
more recently the number of available contouring guidelines has 
increased and contouring in study populations is usually well controlled, 
contouring variation is, however, likely smaller than in the past.

On the other hand, the main strength of this work is to provide a 
comprehensive summary of DVCs for BC-RT that may help to harmonize 
treatment planning strategies, based on available data, which in turn 
would lead to an increase of the reliability/robustness of dose/response- 
effect relationship estimates as the analysis of these future, more aligned 
prospective efforts would likely be more reliable and accurate, 
improving the quality of real-world clinical data with large numbers. 
Moreover, the addition of some very restrictive but achievable DVCs, as 
suggested above for the heart, could accelerate the adoption of heart- 
sparing RT techniques, as well as PBI when indicated, in clinical 
practice.

Since modern and more conformal techniques are now widely 
available for WBI and RNI, patient anatomy and treatment volumes must 
guide the choice of technique in order to obtain the best possible 
treatment plan for all patients taking into account target coverage, dose 
homogeneity and refined OAR sparing.

Conclusions

This review provides clinically useful information regarding DVCs to 
avoid radiation-induced toxicity in BC-RT in the most comprehensive 
detailed fashion that is currently achievable across all commonly used 
treatment paradigms. While ongoing studies and incoming long-term 
data will further refine these data, this review may serve as a practical 
summary of the currently available literature data.
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Critical appraisal of the risk of secondary cancer induction from breast radiation 
therapy with volumetric modulated arc therapy relative to 3D Conformal 
Therapy. Int J Radiat Oncol Biol Phys 2018;100:785–93. https://doi.org/ 
10.1016/j.ijrobp.2017.10.040.

[137] Piroth MD, Petz D, Pinkawa M, Holy R, Eble MJ. Usefulness of a thermoplastic 
breast bra for breast cancer radiotherapy: A prospective analysis. Strahlenther 
Onkol. 2016 Sep;192(9):609-16. English. doi: 10.1007/s00066-016-0981-0.

[138] Duma MN, Baumann R, Budach W, Dunst J, Feyer P, Fietkau R, et al. Breast 
Cancer Expert Panel of the German Society of Radiation Oncology (DEGRO). 
Heart-sparing radiotherapy techniques in breast cancer patients: a 
recommendation of the breast cancer expert panel of the German society of 
radiation oncology (DEGRO). Strahlenther Onkol. 2019 Oct;195(10):861-871. 
English. doi: 10.1007/s00066-019-01495-w.

F. De Rose et al.                                                                                                                                                                                                                                 Radiotherapy and Oncology 202 (2025) 110591 

14 

https://doi.org/10.1016/j.prro.2023.11.001
https://doi.org/10.1016/j.ejca.2014.12.013
https://doi.org/10.1016/j.ejca.2014.12.013
https://doi.org/10.1016/j.radonc.2018.04.009
https://doi.org/10.1016/j.ctro.2024.100752
https://doi.org/10.1016/j.ctro.2024.100752
https://doi.org/10.1016/j.ijrobp.2017.10.040
https://doi.org/10.1016/j.ijrobp.2017.10.040

	Dose constraints in breast cancer radiotherapy. A critical review
	Introduction
	Literature overview of organ specific toxicity and resulting recommendations regarding DVCs for WBI with or without RNI
	Lung toxicity and DVCs for lung
	Heart toxicity and DVCs for heart
	DVCs for contralateral breast
	Brachial plexus toxicity and DVCs for brachial plexus
	DVCs for humeral head
	Esophageal toxicity and DVCs for esophagus
	Hepatic toxicity and DVCs for liver
	Thyroid gland toxicity and DVCs for thyroid gland
	Chest wall toxicity and DVCs for chest wall
	Spinal cord toxicity and DVCs for spinal cord

	DVCs for partial breast irradiation (PBI)
	Discussion
	Conclusions
	CRediT authorship contribution statement
	Funding
	Declaration of competing interest
	References


