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ABSTRACT
As cholinergic innervation is a major contributor to increased vagal tone and mucus secretion, inhaled long- acting muscarinic an-
tagonists (LAMA) are a pillar for the treatment of chronic obstructive pulmonary disease and asthma. By blocking the muscarinic 
receptors expressed in the lung, LAMA improve lung function and reduce exacerbations in asthma patients who remained poorly 
controlled despite treatment with inhaled corticosteroids and long- acting β2 agonists. Asthma guidelines recommend LAMA as a 
third controller to be added on before the initiation of biologicals. In addition to bronchodilation, LAMA also exert anti- inflammatory 
and anti- fibrotic effects by inhibiting muscarinic receptors present in neutrophils, macrophages, fibroblasts and airway smooth 
muscle cells. Thus, besides bronchodilation, LAMA might provide additional therapeutic effects, thereby supporting an endotype- 
driven approach to asthma management. The Position Paper, developed by the Asthma Section of the European Academy of Allergy 
and Clinical Immunology, discusses the main cholinergic pathways in the lung, reviews the findings of significant clinical trials 
and real- life studies on LAMA use in asthma, examines the placement of these drugs in asthma clinical guidelines, and considers 
the potential for personalised medicine with LAMA in both adult and paediatric asthma patients.

1   |   Introduction

Asthma is an environmentally driven chronic inflamma-
tory airway disease displaying a significant heterogeneity in 
terms of pathophysiology, severity and evolution [1]. Inhaled 

corticosteroids (ICS) are the cornerstone of asthma treatment in 
all severity steps, as they block most inflammatory mechanisms 
elicited by environmental stressors [2]. Asthma guidelines rec-
ommend increasing the ICS dose from low to medium in case 
of insufficient control [3–5]. Moreover, the combination of ICS 
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with an inhaled bronchodilator, as both controller and reliever 
medication, is advised from the first treatment step to simulta-
neously alleviate inflammation and limit bronchoconstriction. 
In recent years, guidelines favoured the use of formoterol in 
this respect, as it is a β2 agonist with both a fast onset of action 
and long duration of effect [3]. More recently, several large- scale 
clinical trials have shown that inhaled long- acting muscarinic 
antagonists (LAMA) provide additional bronchodilation and 
protection from exacerbations in asthma patients who remain 
poorly controlled with ICS/long- acting β2 agonist (LABA) [6–9]. 
Therefore, tiotropium (TIO) was approved for patients with 
asthma ≥ 6 years, whereas glycopyrronium (GLY) is indicated in 
patients ≥ 18 years (Table 1). LAMA inhibit acetylcholine (ACh) 
signalling through the G protein- coupled muscarinic receptors 
expressed in the lung, thus interfering with the actions of the 
parasympathetic nervous system [10]. LAMA have been a pillar 
of chronic obstructive pulmonary disease (COPD) treatment for 
decades [11], where ACh- driven bronchoconstriction is the main 
reversible component of airflow limitation [12]. Conversely, both 
decreased adrenergic stimulation and enhanced muscarinic ac-
tivation are prominent inducers of bronchoconstriction in asth-
matics [13]. Thus, in those patients who remain insufficiently 
controlled with ICS/LABA, asthma guidelines recommend 
adding- on LAMA, before conducting a phenotypic assessment 
to decide on a personalised management strategy with biolog-
icals or other targeted therapies [3–5]. This Position Paper by 
the Asthma Section of the European Academy of Allergy and 
Clinical Immunology (EAACI) describes the major neuronal 
and non- neuronal cholinergic pathways in the lung, together 
with the anti- inflammatory and anti- remodelling effect of mus-
carinic inhibition in airway diseases. The available evidence 
support LAMA clinical efficacy and provide further opportuni-
ties for an endotype- driven approach to asthma management.

2   |   The Heterogeneity of Asthma Endotypes

In most patients with asthma, airway inflammation arises from 
mixed exposure (coined as the exposome) to airborne allergens, 
indoor and outdoor pollutants, microbes, and several other envi-
ronmental stressors such as extreme weather events [14]. These 
environmental stimuli trigger both stromal cell- dependent and 
hematopoietic cell- dependent inflammation, which translates 
into airflow obstruction and bronchial hyperresponsiveness 
(BHR), via the dysregulation of adrenergic and cholinergic in-
nervation [1]. ACh signalling in airway epithelial cells (AEC), 
fibroblasts and smooth muscle cells (SMC) induces fibrosis and 
remodelling without concomitant infiltration by hematopoietic 
cells [12]. Stimulation of the muscarinic receptors on innate 
lymphoid cells and myeloid dendritic cells activates adaptive 
T1, T3 or T2 immune responses (dominated by IFNγ, IL- 8/IL- 
17 and IL- 4/IL- 5/IL- 13, respectively), including the synthesis 
of allergen- specific (s)IgG and sIgE by infiltrating B cells [15]. 
These inflammatory events can drive bronchoconstriction indi-
rectly, via the inhibition of adrenergic receptors [13]. Regardless 
of the involvement of adaptive immune responses, eosinophils 
and neutrophils are recruited to the airways, under the influ-
ence of IL- 5 and IL- 8, respectively [16]. Cholinergic stimulation 
of hematopoietic and stromal cells further augments granu-
locyte recruitment [12]. Airway remodelling arises from the 
effects of the mediators produced by recruited and bronchial 

resident cells [17]. In this regard, sIgG can trigger the degranu-
lation of neutrophils, whereas sIgE activates resident mast cells 
and eosinophils, leading to the release of preformed mediators 
like proteases [1].

The features of the immune response driven by stromal and he-
matopoietic cells and of the neural dysregulation do not differ 
substantially between allergic and non- allergic asthmatics [17]. 
The diversity of mechanisms elicited by environmental expo-
sures in the airways has been recently highlighted in the new 
EAACI Nomenclature of Allergic Diseases [18]. In this regard, 
it is logical to believe that the relative contribution of these 
mechanisms varies across the asthma population, and that this 
heterogeneity accounts for the different disease theratypes [19]. 
Inflammatory events elicited by environmental stressors in 
asthma patients are summarised in Figure 1.

3   |   The Relevance of the Acetylcholine/
Muscarinic Axis in Asthma Pathogenesis

The vagus nerve connects the central nervous system with the 
parasympathetic airway ganglion where it releases ACh. In the 
synaptic cleft, this neurotransmitter binds to the nicotinic or 
muscarinic (M) 1 receptor expressed in postjunctional parasym-
pathetic fibres [20]. In turn, these nerves stimulate lung cells 
expressing M1, M2 or M3 receptors. Of note, both stromal and 
hematopoietic cells can respond to parasympathetic neurotrans-
mitters [21]. M1 and M3 activation in submucosal glands in-
duces mucus secretion, whereas M3 stimulation in SMC drives 
bronchoconstriction [20]. Vagal and parasympathetic fibres also 
express M2 receptors in the areas exposed to the synaptic cleft, 
so ACh can be recaptured in an autocrine manner, with sub-
sequent blocking of the stimulation of postjunctional nerves or 
target cells [22]. Moreover, unmyelinated C fibres connect the 
central nervous system with the sub- epithelial region of the 
bronchial mucosa, where they are activated by physical stimuli 
such as heat or cold [21]. Stimulated C fibres secrete neuroki-
nins, which promote neurotransmission in the airway ganglion 
(peripheral reflex arch). As the neuronal cholinergic system is 
one of the main regulators of airway homeostasis (Figure  2), 
dysfunction can lead to significant alterations resulting in dif-
ferent asthma endotypes [20].

3.1   |   Regulation of Airway Smooth Muscle Tone by 
Muscarinic Receptors in Asthma Patients

Airway SMC from the trachea and large bronchi express large 
numbers of M2 and M3 receptors [20]. Although M2 is more 
abundant, M3 receptor signalling is the main driver of ACh- 
mediated bronchoconstriction in the large airways, as illus-
trated by the lack of response to methacholine provocation in 
M3 knocked- out mice [23].

Patients with asthma are more sensitive to M3 receptor sig-
nalling as compared to healthy subjects, partially due to an 
enhanced ability to open large Ca2+ channels in SMC [24]. The 
intracellular signalling molecules include phospholipase Cβ1, 
1,4,5- trisphosphate, CD38 and cyclic adenosine diphosphate 
ribose. Although the activation threshold of Ca2+ channels 
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may be intrinsically decreased in asthmatics, several cyto-
kines (IL- 1β, IL- 13, TNFα or IFNγ) are known to potentiate 
this effect [25].

ACh signalling in SMC also increases contractility by Ca2+- 
independent mechanisms. M2-  and M3- receptor activation 
blocks the function of myosin light chain phosphatase, thus 
promoting actin cytoskeletal dynamics and bronchoconstriction 
[26]. This effect is mediated by the increased activity of RhoA/
Rho kinase cascade pathway which is also stimulated by expo-
sure to allergens, bacteria and cigarette smoke [26].

Increased ACh availability also accounts for M1 and M3 height-
ened signalling in asthmatics. ACh is synthetised in vagal or 
parasympathetic fibres by the enzyme choline acetyltransferase 
(ChAT), the expression of which is boosted by prostaglandins 
(PG) or thromboxane A2 (TXA2) [27]. Conversely, ACh is me-
tabolised in the synaptic cleft by acetylcholinesterase, an en-
zyme that is inhibited by allergen exposure [28]. Moreover, the 
ability of presynaptic M2 receptor to recapture ACh is decreased 
in asthmatics exposed to several environmental triggers. For ex-
ample, major basic proteins released from eosinophils recruited 
to the airways upon allergen-  or ozone- induced inflammation 
compete with ACh to bind to M2 receptors in the synaptic clefts 
[29]. Similarly, neuraminidases and IFNγ produced during viral 

FIGURE 1    |    Mechanisms elicited by environmental stressors in 
asthma patients. Allergens can activate tissue- dependent, innate im-
mune system- dependent and adaptive immune system- dependent 
mechanisms.
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FIGURE 2    |    Neuronal cholinergic system in the airways. The vagus nerve connects the central nervous system with the airway ganglion, where 
cholinergic neurotransmission takes place. Subsequently, parasympathetic fibres stimulate smooth muscle cells and submucosal glands in the air-
ways. Cholinergic neurotransmission in the airway ganglion is enhanced by neurokinins released from unmyelinated C fibres. ACh, Acetylcholine; 
M, Muscarinic; NAChR, Nicotinic acetylcholine receptor.
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infections cleave M2 receptor and prevent the recapture of ACh 
[30]. In this regard, asthmatics are more responsive to antimus-
carinic bronchodilation during viral infections than during 
steady state [31].

The epithelial barrier defect in patients with asthma facilitates 
the interaction between sub- epithelial C fibres and the environ-
mental stressors [32]. C fibres respond with the production of 
neurokinins, which boosts the release of histamine, PG, TXA2 
or bradykinin to the airway ganglion, and favours M1 recep-
tor activation in the postjunctional parasympathetic fibre [33]. 
Figure 3 depicts the mechanisms driving cholinergic bronchoc-
onstriction in asthma patients.

3.2   |   Regulation of Mucus Secretion by Muscarinic 
Receptors in Asthmatics

Airway mucus is a heterogeneous gelatinous mix of secretions 
and cell debris that facilitates homeostatic clearance of external 
agents from the lumen. Goblet cells and submucosal glands are 
the primary source of the secretions. Besides water (98%) and 
electrolytes (1%), secretions contain glycoproteins like mucins, 
especially MUC5AC and MUC5B [34]. These glycopolymers are 
held together by disulphide bonds and contribute substantially 
to the viscosity of airway mucus [34]. As submucosal glands 
from the trachea and large bronchi express high amounts of M1 
and M3 receptors, ACh is the main driver of mucus secretion 
in the central airways [35]. Isolated M3 signalling stimulates 
mucin secretion, whereas the co- activation of M1 and M3 re-
ceptors results in the release of water and electrolytes by sub-
mucosal glands [36]. Conversely, direct goblet cell stimulation 
in the central airways requires relatively high amounts of ACh 
[37], which probably implies a minor role for this pathway in 
physiological conditions.

Asthma patients have an altered mucus composition with in-
creased MUC5AC and additional mucin types, together with 
less abundant water and electrolytes [38]. Moreover, M1 and M3 
stimulations in submucosal glands transactivate the receptor for 
epithelial growth factor (EGF) in goblet cells, making them more 
sensitive to EGF- mediated goblet cell hyperplasia and mucus hy-
persecretion [39]. Thus, ACh pathway indirectly contributes to 
goblet cell alterations in asthma patients.

3.3   |   Regulation of Airway Inflammation 
and Remodelling by Muscarinic Receptors

Hematopoietic cells infiltrating the asthmatic airways express 
ChAT and can synthetise ACh, while their exposure to in-
flammatory milieu upregulates the expression of muscarinic 
receptors [40]. Indeed, the non- neuronal cholinergic system 
is believed to regulate airway inflammation in an autocrine/
paracrine manner. For example, major basic protein from eo-
sinophils favours ACh release, which in turn activates group 
2 innate lymphoid cells, thus furthering eosinophil activation 
[41, 42]. Airway lymphocytes also express M1–M3 receptors, 
although high inter- individual variability exists [43]. The acti-
vation of M3 receptors on CD8+ T cells enhances their cytotox-
icity and cytokine production, whereas cholinergic stimulation 
in T and B cells promotes their proliferation [44]. M1 receptors 
are present in airway mast cells and eosinophils, while neutro-
phils, macrophages and monocytes display M1–M3 receptor ex-
pression [45]. ACh promotes the activation of intracellular MAP 
kinases in macrophages and neutrophils, leading to leukotriene 
(LT) B4 synthesis and chemotaxis of hematopoietic cells [46]. 
Bronchial stromal cells also express ChAT and muscarinic 
receptors. M1/M3 receptor activation in AEC triggers the re-
lease of LTB4 among other chemotactic factors for eosinophils, 
monocytes and neutrophils [47]. Moreover, the stimulation of 

FIGURE 3    |    Cholinergic control of bronchial smooth muscle tone in asthma patients. Asthmatics display intrinsic abnormalities in the contrac-
tility of smooth muscle cells. These alterations arise from calcium- dependent and calcium- independent mechanisms. Increased availability of ace-
tylcholine in the synaptic cleft also accounts for cholinergic bronchoconstriction. In this regard, many environmental stressors can either promote 
acetylcholine synthesis or decrease acetylcholine metabolism. ACh, Acetylcholine; AChE, Acetylcholinesterase; cADPR, Cyclic adenosine diphos-
phate ribose; ChAT, Choline acetyltransferase; IFN, Interferon; IL, Interleukin; IP3, 1,4,5- trisphosphate; M, Muscarinic; MBP, Major basic protein; 
MLCP, Myosin light chain phosphatase; PG, Prostaglandin; PLCβ1, Phospholipase Cβ1; SMC, Smooth muscle cell; TNF, Tumour necrosis factor; 
TXA2, Thromboxane A2.
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nicotinic receptors in AEC increases granulocyte and monocyte 
colony- stimulating factor (GM- CSF) production [48]. Thus, the 
epithelial cholinergic system becomes a potent initiator of in-
flammatory responses.

Besides promoting contractility, the M3 receptor activation en-
hances the expression of IL- 6, IL- 8 and cyclooxygenase 1, and 
the responsiveness to mitogenic factors such as EGF in SMC [49]. 
Moreover, M2 and M3 signalling in mesenchymal cells trigger the 
expression of contractile proteins via RhoA/Rho kinase and phos-
phoinositide 3 kinase pathways, a crucial step in their maturation 
into SMC [50]. Of note, this effect is driven by allergen exposure, 
due to its capacity to release ACh from airway stromal cells [51]. 
Interestingly, ACh stimulation also induces directly the prolifera-
tion of airway fibroblasts [52]. Of note, sub- epithelial fibrosis, ex-
tracellular matrix deposition and SMC hyperplasia are cardinal 
features of airway remodelling in asthma [53]. Together with the 
ability to induce goblet cell hyperplasia and mucus secretion, this 
evidence indicates the relevance of non- neuronal cholinergic sys-
tem in airway remodelling [54]. The effects of cholinergic stimula-
tion on mucus secretions, airway inflammation and remodelling 
in asthma patients are detailed in Figure 4.

4   |   In Vivo and In Vitro Data Showing the 
Anti- Inflammatory Effect of LAMA

A multitude of animal studies, especially mouse models of 
asthma/COPD exacerbations triggered by bacterial or viral in-
fections, demonstrate the anti- inflammatory effects of LAMA 
[43, 55–59]. Collectively, these models show a reduction of in-
flammatory mediators and cells in the bronchoalveolar lavage 
fluid following treatment with LAMA [60].

Numerous in  vitro studies described anti- inflammatory ef-
fects of LAMA on primary or immortalised human AEC [61]. 
TIO (100 nM) and aclidinium were able to suppress tobacco 

smoke- induced production of IL- 8 by AEC [62]. Moreover, 
TIO attenuated IL- 8 and NF- κB expression on human AEC 
following their incubation with IL- 17A or sputum from COPD 
patients [63]. TIO also reduced the production of chemok-
ines (e.g. CCL2) by AEC after their incubation with TGFβ1, 
ACh or sputum from COPD individuals [64]. Interestingly, 
TIO concentrations similar to those usually seen in the sera 
of patients taking 18 μg/day suppressed the release of IL- 1β, 
IL- 6 and IL- 8 induced by rhinoviruses in AEC sampled from 
healthy subjects and from patients with asthma or COPD [65]. 
Similarly, the LPS- triggered production of IL- 8 and expression 
of NF- κB was inhibited by TIO in cultured epithelial cells [66]. 
Moreover, TIO reduced the secretion of IL- 8 by human lung 
fibroblasts following their stimulation by IL- 1β, TGFβ1 or cho-
linergic drugs [64].

Importantly, TIO (30 nM), but not ipratropium bromide, re-
duced the activation of neutrophils (TNFα secretion, and ex-
pression of adhesion molecules) following their incubation 
with the supernatant of cultures of LPS- stimulated lung mac-
rophages [67]. Moreover, TIO increased the apoptosis of CD3+ 
and CD8+ T cells in peripheral blood of COPD patients, while 
inhibiting the release of IL- 5 and IL- 13, but not IL- 4, following 
the bacterial stimulation of peripheral mononuclear cells from 
asthmatics [65]. Conversely, the synthesis of GM- CSF, IL- 6, 
IL- 8 and LTB4 by neutrophils following their incubation with 
sputum from COPD subjects was not suppressed by TIO [68].

The evidence of the anti- inflammatory effect of LAMA other 
than TIO is much scarcer. In one study, GLY (100 nM) prevented 
both mRNA and protein expressions of IL- 8 following ACh 
stimulation of primary AEC [67]. Bronchial provocation via his-
tamine in patients with asthma leads to the release of IL- 4, IL- 5, 
IL- 6, IL- 9, IL- 13, TNFα and TSLP in the distal airways [69]. 
Pre- treatment with ICS/LAMA or ICS/LABA/LAMA combina-
tions suppressed the synthesis of these mediators and improved 
histamine- triggered BHR [70].

FIGURE 4    |    Cholinergic control of mucus secretion, inflammation and remodelling in asthma patients. Cholinergic stimulation increases mucus 
secretion by submucosal glands together with an altered mucus composition. Moreover, acetylcholine signalling also promotes goblet cell metaplasia 
in an indirect manner. Airway epithelial cells and most hematopoietic cells present in the airway mucosa express choline acetyltransferase together 
with muscarinic receptors. The activation of these receptors promotes granulocyte chemotaxis and lymphocyte proliferation by direct and indirect 
mechanisms. Cholinergic stimulation via muscarinic receptors drives the differentiation of mesenchymal cells into smooth muscle cells with a se-
cretory phenotype. Moreover, acetylcholine stimulates directly bronchial fibroblasts to induce sub- epithelial fibrosis. ACh, Acetylcholine; ChAT, 
Choline acetyltransferase; COX- 1, Cyclooxygenase 1; EGF, Epithelial growth factor; EGFR, Epithelial growth factor receptor; GM- CSF, Granulocyte 
and monocyte colony- stimulating factor; IL, Interleukin; IP3K, Phosphoinositide 3 kinase; LTB4, Leukotriene B4; M, Muscarinic; MUC, Mucin.
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A recent systematic review identified 49 original articles exam-
ining the in vivo and in vitro effects of LAMA in patients with 
asthma or on human cells [22]. The collective analysis of TIO 
studies provided low-  to medium- quality evidence for an anti- 
inflammatory effect of LAMA in patients with stable airway 
disease. A one- month TIO course (18 μg/day) suppressed LTB4 
release by blood neutrophils primed with GM- CSF but did not 
modify IL- 6 and TNFα levels in the exhaled breath condensate 
[71]. Studies with longer treatment periods showed inconsis-
tent results. A three- month TIO course did not change serum 
C- reactive protein (CRP) or blood granulocyte and monocyte 
counts [72], whereas a six- month course reduced blood eosin-
ophil, neutrophil and monocyte counts without affecting CRP, 
TNFα or fibrinogen levels in serum [73]. Conversely, one- year 
TIO treatment (18 μg/day) resulted in enhanced sputum IL- 8, 
while no change was observed for sputum IL- 6 or serum CRP 
or IL- 8 [74].

In summary, only TIO has shown clear anti- inflammatory ef-
fects in animal models of airway diseases and in vitro studies 
with human cells (mostly AEC), but definitive evidence for a 
clinical effect of LAMA beyond bronchodilation is still lacking 
in asthma patients [75].

5   |   Clinical Data on the Efficacy of LAMA in 
Moderate- To- Severe Asthmatics

The co- administration of ICS, LABA and LAMA is commonly 
referred to as triple therapy (TT). TT regimens can be adminis-
tered once or twice daily, via a single inhalation device (SITT) 
or through multiple inhalers (MITT) [76]. In asthma patients, 
SITT is associated with a higher adherence and persistence 
as compared to MITT [77]. Moreover, several works focusing 
on COPD individuals demonstrate a higher adherence and 
persistence, a lower rate of severe exacerbations and reduc-
tions in healthcare resource utilisation for SITT [78–80]. On 
the other hand, MITT has the advantage of greater flexibility 
when adjusting for the ICS dose [76]. In any case, adherence to 
both SITT and MITT is relatively low and typically decreases 
over 12 months [81]. Further research is warranted to assess 
whether once- daily SITT dosing translates into additional 
clinical benefits.

Four clinical trials assessed the efficacy of SITT administered in 
different combinations and doses versus medium-  to high- dose 
ICS/LABA, or MITT in asthma patients [6–9]. Importantly, no 
significant differences in exacerbation rate were found between 
SITT (high- dose ICS) and high- dose ICS/LABA (same mole-
cules) in the CAPTAIN study (fluticasone furoate plus vilanterol 
plus UME) [9], IRIDIUM study (mometasone furoate plus inda-
caterol acetate plus GLY) [7] and TRIGGER study (beclometha-
sone dipropionate plus formoterol plus GLY) [6]. Nevertheless, a 
lower number of severe exacerbations were observed for SITT, 
when compared with dose- matched ICS/LABA combinations 
with the same (TRIMARAN) [6] or different (IRIDIUM) [7] mol-
ecules. Moreover, a pooled analysis of CAPTAIN study showed 
that TT was associated with a higher and clinically relevant 
improvement in asthma control questionnaire at week 24 (63% 
for TT versus 55% for ICS/LABA) [9]. A recent meta- analysis 
pooling these trials concluded that (i) SITT with high- dose ICS 

is more effective than SITT with medium- dose ICS in reducing 
exacerbations; (ii) SITT with medium- dose ICS is equally effec-
tive as high- dose ICS/LABA in reducing exacerbations; and (iii) 
SITT with medium- dose ICS improves FEV1 significantly more 
than high- dose ICS/LABA [82].

Clinical trials assessing the efficacy of adding a LAMA to pa-
tients who remained poorly controlled on dose- matched ICS/
LABA have shown an increase in FEV1 as compared with pla-
cebo [83–85]. A reduction of exacerbation risk was also reported 
for TT by the PrimoTinA- asthma study [83]. Moreover, MITT 
improved control and quality of life (QoL), although the mini-
mal clinically important difference was not reached.

Interestingly, a recent study including > 12,000 adolescents and 
adults with uncontrolled asthma indicated that TT did not re-
duce disease- related hospitalisations [86]. On the other hand, 
the addition of TIO reduced short- acting β2 agonist utilisation 
and improved lung function and sleep quality in school- age chil-
dren receiving ICS/LABA in the context of persistent moderate 
asthma [87]. The safety profile of ICS/LABA/LAMA is consid-
ered favourable in adolescent and adult asthmatics [88–91]. A 
pairwise meta- analysis of clinical trials identified an increased 
risk (RR 0.74) of vascular serious adverse events for TT [90] in 
this population, but other studies have not confirmed this effect 
[91, 92]. Of note, indirect evidence from systematic reviews in-
cluding both children and adults with persistent uncontrolled 
asthma showed that TT was associated with increased dry 
mouth and dysphonia (high- certainty evidence), but serious ad-
verse events were not significantly different between active and 
placebo groups (moderate- certainty evidence) [92].

The results of major clinical trials of TT in asthma patients are 
summarised in Table 2.

6   |   Comparative Performance of ICS/LABA/LAMA 
in Patients With Asthma or With COPD

As a whole, inflammation in asthma is regarded more sensitive 
to ICS than in COPD [2, 88]. On the other hand, cholinergic stim-
ulation is a relevant driver of bronchoconstriction in both asthma 
and COPD individuals, whereas decreased adrenergic activation 
is more prominent in asthma than in COPD [93, 94]. Of note, 
the performance of LABA and LAMA as an add- on therapy to 
ICS in asthma patients is comparable in terms of improvement 
of control, exacerbation rate and need for systemic corticoste-
roids [93, 94]. On the other hand, LAMA perform slightly bet-
ter for lung function, while LABA improves the quality of life in 
asthmatics [89, 94]. Thus, unlike COPD, LAMA are not recom-
mended as monotherapy in asthma [95–97].

In patients with COPD, inhaled muscarinic antagonists or β2 
agonists in monotherapy are advised for mild patients with 
≤ 1 moderate exacerbations not leading to hospitalisation 
in the previous year (long- acting drugs are preferred) [11]. 
Conversely, patients with moderate- to- severe disease, or those 
with ≥ 2 moderate exacerbations or ≥ 1 exacerbation leading 
to hospitalisation, should receive LAMA/LABA combination 
[98]. Of note, the addition of ICS is only encouraged in COPD 
individuals with frequent exacerbations and a pre- ICS blood 
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eosinophil count ≥ 300 cells/μL. Indeed, TT in this population 
may reduce the risk of all- cause mortality [99]. LAMA improve 
FEV1, symptoms (dyspnoea, cough and expectoration) and QoL 
while reducing exacerbations, hospitalisations and death rate 
in COPD individuals [100]. Of note, LAMA enhance the bene-
fits of pulmonary rehabilitation by increasing its ability to re-
duce symptoms and improve QoL, peripheral muscle function 
and exercise capacity in patients with COPD [98]. Moreover, 
LAMA are superior to LABA in decreasing exacerbation and 
hospitalisation rates in moderate- to- severe COPD patients 
[100]. Nevertheless, LAMA/LABA combination is still recom-
mended in this population because both drug types modulate 
the bronchial tone differently and have an additive effect on the 
inhibition of Ca2+channels and SMC tyrosine kinases [99]. No 
preference for bronchodilator type is given for mild COPD pa-
tients with infrequent exacerbations, due to a high inter- patient 
variability in the responsiveness to these drugs [11].

The safety profile of LAMA is considered favourable in COPD 
individuals [101]. A slightly higher incidence (adjusted hazard 
ratio of 1.28 (95% CI: 1.05–1.55) relative to LABA- ICS) of major 
adverse cardiovascular events has been recently reported for 
TT [102], but this finding requires confirmation. Table 3 sum-
marises the comparative efficacy/safety of LAMA, LABA and 
ICS in asthma and COPD patients.

7   |   LAMA Positioning in Asthma Guidelines

The 2024 update of the Global Initiative for Asthma (GINA) [3] 
recommends adding inhaled TIO or GLY to asthma patients in-
sufficiently controlled with medium- dose ICS/formoterol (step 

5). GINA considers that TT should be advised in every patient 
before high- dose ICS or before the initiation of biologicals, in-
cluding prior phenotypic assessment. Similarly, the addition 
of inhaled TIO is regarded as an intermediate step before bio-
logicals for subjects 6–11 years insufficiently controlled with 
medium- dose ICS/LABA.

The Focused Updates of the Asthma Management Guidelines gen-
erated in 2020 by the National Asthma Education and Prevention 
Program (NAEPP) established by the US Government reviewed 
the evidence regarding LAMA use [5]. In patients ≥ 12 years, ICS/
TIO is listed as an alternative to ICS/formoterol in step 3 (low- 
dose ICS) and step 4 (medium- dose ICS), whereas TT with me-
dium-  to high- dose ICS is advised for every individual in step 5. 
Conversely, LAMA is not recommended for patients 5–11 years, 
or adolescents and adults on OCS therapy (step 6).

The European Respiratory Society/American Thoracic Society 
Guideline on the Management of Severe Asthma conducted a 
systematic review on the use of LAMA in paediatric and adult 
patients in 2020 [4]. The document formulates a strong rec-
ommendation for the addition of inhaled TIO to children, ad-
olescents and adults with severe asthma uncontrolled despite 
GINA steps 4–5 or NAEPP step 5 (moderate- quality evidence). 
Table 4 summarises the positioning of LAMA in major asthma 
guidelines.

8   |   Real- Life Studies of LAMA in Severe Asthma

Published registries report that 36%–39% of severe asthmatics 
receive a LAMA [103–105]. In this regard, the capacity of TT to 

TABLE 3    |    Comparative efficacy of ICS, LABA and LAMA in patients with asthma or COPD.

Asthma COPD

ICS Benefits Improves lung function, quality 
of life and asthma control

Decreases exacerbation rate

Decreases exacerbation rate only in 
patients with high blood eosinophils

Harm Depends on the dose
Low/medium dose:

Oral candidiasis
Decreased growth in children

High dose:
Osteoporosis/bone fractures

Adrenal insufficiency
Metabolic syndrome

Severe (increased risk of osteoporosis, 
bone fractures and severe infections)

LABA Benefits Improves lung function better than 
LAMA. Improves quality of life and 

control. Benefit all patients.

Improves lung function, quality 
of life and exacerbation rate in all 

patients, but less than LAMA.

Harm Mild (tachycardia, muscle- skeletal tremor), 
but more frequent than LAMA

Mild (tachycardia, muscle- skeletal tremor), 
but more frequent than LAMA

LAMA Benefits Improves lung function
Decreases exacerbation rate in patients 

on medium- to- high ICS/LABA
Decreases mucus production

Improves lung function, quality of 
life and symptoms, and decreases 
exacerbation rate in all patients

Harm Mild and reversible (dry mouth) Mild and reversible (dry mouth)
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reduce exacerbations as compared with dose- matched ICS/LABA 
regimens was reported in a large retrospective real- life cohort 
of 7857 patients [103] and in a real- life prospective study of 2042 
asthmatics [104]. The previous smoking habit, older age, concom-
itant bronchiectasis and body mass index (BMI) > 30 kg/m2 were 
associated with increased LAMA prescription in real- life studies.

9   |   LAMA Guiding Precision Medicine in Asthma

Seventy- five percent of severe asthmatics on TT remain uncon-
trolled, thus leading to > 80% of severe asthmatics on biologicals 
receiving or having received a LAMA [105]. The relatively low 
success rate of LAMA in severe asthma might arise from the 
lack of a phenotype- guided prescription [103–105]. In this re-
gard, patients with high total IgE in serum at baseline are less 
likely to respond to a three- month course of inhaled TIO [106]. 
In line with this, a sub- analysis of the CAPTAIN study suggests 
that increasing ICS dose from medium to high may especially 
benefit patients with elevated T2 biomarkers, whereas TT with 
medium- dose ICS might be a more meaningful approach to pre-
vent exacerbations in subjects without evidence of T2 biomarkers 
[107]. Conversely, a post hoc analysis of PrimoTinA- asthma trial 
indicated that the efficacy of add- on TIO to ICS/LABA was in-
dependent of gender, BMI, disease evolution, smoking habit and 
FEV1 reversibility [108]. Smoking habit (current vs. former) did 
not influence the improvement of lung function in COPD indi-
viduals treated with GLY [109]. On the other hand, a post hoc 
analysis of the IRIDIUM trial showed that TT benefits equally 
asthma patients with/without fixed airflow limitation [110].

Interestingly, M1–M3 receptors are more abundant in the cen-
tral airways which might account for a higher benefit from 
LAMA in patients with predominant proximal airway obstruc-
tion, as compared with those with primary involvement of the 
distal airways [20]. The same rationale might apply for patients 
with increased mucus production [34–36].

Moreover, the relative importance of the vagal tone increases 
with age [111]. Therefore, it is tempting to speculate that asth-
matics with older age, increased mucus production, exacerba-
tions triggered by infections, decreased FEV1 (as a measure of 
central airways obstruction) with preserved FEF25- 75 or other 
measures of the peripheral airways, and with absent T2 bio-
markers are particularly good candidates for TT [112]. Table 5 
shows the visible properties of an asthma patient theratype ben-
efiting from LAMA addition.

10   |   Knowledge Gaps and Research Needs

The evidence available from mechanistic and real- life stud-
ies points at a phenotype- specific performance for LAMA 
[22, 103–105]. Thus, it is crucial to investigate whether indi-
viduals with non- T2 asthma benefit better from these drugs, 
and how LAMA interact with other non- T2 interventions (e.g. 
azithromycin or bronchial thermoplasty) [113]. The impact on 
lung function decline and on other surrogates of remodelling 
deserves further evaluation. There is also a need to analyse the 
impact of current and former smoking habit on LAMA perfor-
mance in asthmatic populations. Of note, most clinical trials of 

TABLE 4    |    LAMA positioning in major asthma guidelines.

GINA 2024 NAEPP 2020 ERS/ATS 2020

Adolescents and adults

Add- on preferred Medium- dose ICS/formoterol Medium-  or high- 
dose ICS/LABA

Medium-  or high- dose 
ICS/formoterol

Step 5 5 GINA 4–5
NAEPP 5

Molecule TIO or GLY TIO or GLY TIO

Add- on alternative Medium/high- dose 
ICS/LABA

Low- dose ICS
Medium- dose ICS

No

Step 4
5

3
4

—

Molecule TIO or GLY TIO or GLY —

Children 6–11 years

Add- on preferred No No Medium- dose ICS/formoterol

Step — — GINA 5

Molecule — — TIO

Add- on alternative Medium- dose ICS/formoterol No No

Step 4 — —

Molecule TIO

Abbreviations: ATS, American Thoracic Society; ERS, European Respiratory Society; GINA, Global Initiative for Asthma; GLY, glycopirronium bromide; ICS, inhaled 
corticosteroids; LABA, long- acting beta2 agonists; NAEPP, National Asthma Education and Prevention Program; TIO, tiotropoim bromide.
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TT in asthmatics exclude current smokers and include only a 
limited number of former non- heavy smokers [6, 7, 9]. Similarly, 
it would be interesting to investigate if certain patients' profiles 
on low- to- medium ICS/LABA would improve their asthma con-
trol by adding LAMA rather than increasing the ICS dose.

The efficacy and safety of LAMA in children also require further 
investigation. The comparative performance of LAMA molecules 
needs to be tested in head- to- head trials. Similarly, the real ca-
pacity of LAMA to delay the introduction of biological in severe 
asthma patients needs to be established. In this regard, there is 
a need to analyse the long- term performance of TT and whether 
the delay of biologicals is harmful for patients. Overall, the unmet 
needs about LAMA potential in asthmatics can only be addressed 
by sufficiently powered clinical trials, registries and real- life stud-
ies incorporating long- term surveillance and follow- up.

11   |   Conclusion and Final Remarks

The therapeutic arsenal for patients with asthma has been re-
cently enlarged by the addition of LAMA, the indication of 
which was previously restricted to COPD. Cytokine- mediated 
inflammation and decreased adrenergic stimulation are major 
drivers of bronchoconstriction and remodelling in most asth-
matics, especially in patients with T2 asthma. These traits 
respond relatively well to the combination of ICS and LABA. 
Nevertheless, patients with T2 asthma on ICS/LABA can obtain 
additional benefit from the blockage of muscarinic receptors. In 
this regard, large- scale clinical trials indicate the capacity of TT 
to improve lung function and decrease exacerbations in poorly 
controlled moderate- to- severe asthmatics. Moreover, the cho-
linergic system might be the main driver of bronchoconstric-
tion, mucus secretion and remodelling in some asthma patients 
of varying phenotypes and severity. Indeed, some data suggest 
that the addition of LAMA can delay the prescription of biolog-
icals in some individuals with severe asthma. Further studies 
are needed to identify the LAMA responsive theratypes, and 
thus to position LAMA in the personalised and cost- efficient 
strategies for the management of asthma patients.
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