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Objective: Cerebrospinal fluid (CSF) provides unique insights into the brain and neurological diseases. However, the
potential of CSF flow cytometry applied on a large scale remains unknown.
Methods: We used data-driven approaches to analyze paired CSF and blood flow cytometry measurements from
8,790 patients (discovery cohort) and CSF only data from 3,201 patients (validation cohort) collected across neurologi-
cal diseases in a real-world setting.
Results: In somatoform controls (n = 788), activation of T cells increased with age in both CSF and blood, whereas
double negative blood T cells (CD3+CD4�CD8�) decreased with age. A machine learning model of CSF and blood
immune cells defined immune age, which correlated strongly with true biological age (r = 0.71). Classifying all diseases
solely based on the CSF/blood parameters in 8,790 patients resulted in clusters of 4 disease categories: healthy, auto-
immune, meningoencephalitis, and neurodegenerative. This clustering was validated in an analytically independent test
dataset (8,790 patients) and in a temporally independent cohort (3,201 patients). Patients with multiple sclerosis were
more likely to have progressive disease when assigned to the neurodegeneration cluster and to have lower disability in
the autoimmune cluster. Patients with dementia in the neurodegeneration cluster showed more severe disease pro-
gression. Flow cytometry helped differentiate dementia from controls, thereby enhancing the diagnostic power of rou-
tine CSF diagnostics.
Interpretation: Flow cytometry of CSF and blood thus identifies site-specific aging patterns and disease-overarching
patterns of neurodegeneration.
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Cerebrospinal fluid (CSF) is in constant contact with
the brain, thus providing a unique diagnostic

window into the study of neurological diseases.1

Despite improving imaging techniques, CSF analysis
remains indispensable to diagnose common neurological
diseases, such as meningitis, small subarachnoid hemo-
rrhage, and leptomeningeal metastases.2,3 Routine

CSF parameters include non-cellular parameters
(total protein, albumin, glucose, lactate, and immuno-
globulins) and cellular parameters (leukocytes and
erythrocytes).2 In most CSF laboratories, leukocytes are
only grossly classified as lymphocytes, monocytes, and
granulocytes. A more comprehensive flow cytometric
analysis is not routinely conducted in most centers,
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and, consequently, the full potential of CSF cells
remains unexploited.

A more detailed CSF immune cell analysis has been
performed in individual neurological diseases in the con-
text of studies, including multiple sclerosis (MS),4–6

dementia,7,8 inflammatory neuropathies,9 and neuropsy-
chiatric lupus.10 These studies demonstrate that a deeper
analysis of CSF immune cells can, per se, provide a better
pathophysiological understanding and support the differ-
ential diagnosis of neurological and other diseases. How-
ever, previous studies took a hypothesis-driven approach
to classifying the diseases and suffered from small sample
sizes.

Immunosenescence describes the age-dependent
deterioration of the immune system that leads to a
reduced immune response to infection, cancer, and vacci-
nation.11 Age-related immune cell alterations in the blood
have been described in several studies.12,13 Immunosene-
scence preferentially affects T cell subpopulations in the
blood. A recent single cell RNA-sequencing study13

detected that type 2 memory CD4+ and CD8+ T cells,
as well as HLA-DR CD4+ memory T cells and
GZMK+CD8+ T cells, accumulate with age. In contrast,
immunosenescence in the CSF has been poorly studied,
and available studies focused on age-associated immune
changes in small cohorts of patients with MS.14,15

Here, we present a large-scale atlas of CSF and
paired blood immune cells (n = 8,790 patients) across
neurological diseases. We defined immune alterations
induced by age, sex, and daytime in the CSF and blood,
and found that immunosenescence primarily affects T
cells in both compartments. An unsupervised machine
learning approach of CSF and blood yielded 4 clusters of
disease groups: healthy, autoimmune, meningoencepha-
litis, and neurodegenerative. The neurodegenerative
cluster correlated with clinical signs of underlying neu-
rodegeneration in MS and dementia.

Materials and Methods
Ethics Declarations
This study was approved by the local ethics committee (Ethik
Komission Medizinische Fakultät Münster, AZ 2023-113-f-S).
The data were collected as part of the clinical routine and
pseudonymized for analysis. Therefore, no written patient con-
sent was required according to German law and the ethics
committee.

Routine CSF Analysis
Routine CSF parameters, as referred to in the present article,
denotes the following parameters: CSF cell count, lymphocytes,
granulocytes, erythrocytes, other cells, IgG/A/M ratios, protein,
glucose, lactate, albumin, and oligoclonal bands (OCBs). These

analyses were performed in a certified clinical laboratory
according to standard operating procedures, as described previ-
ously.6,10 For further details, see the Supplementary Methods.

Flow Cytometry
Flow cytometry of the CSF and EDTA-blood were processed in
parallel and simultaneously to routine CSF analysis with the
same protocol as described previously.6,10 The staining was per-
formed on a Navios flow cytometer (Beckman Coulter). The
flow cytometry raw data were gated by GateNet,16 which is a
neural network architecture specifically designed for automated
flow cytometry gating. Further details on the automated gating
procedure are described in Fisch et al.16 For the downstream
analysis, we used percentages, that is, the number of gated events
divided by the number of events in the parent gate. Further
details are provided in the Supplementary Methods.

Patient Cohort
For the discovery cohort, we retrospectively collected all flow
cytometry measurements that were processed in the CSF labora-
tory of the Department of Neurology of the University Hospital
Münster between February 2011 and September 2020 (27,131
measurements). For the validation cohort, we retrospectively col-
lected all flow cytometry data that were processed in the CSF
laboratory of the Department of Neurology of the University
Hospital Münster between October 2021 and June 2024 (8,036
measurements). Further details are provided in the Supplemen-
tary Methods.

Data Cleaning and Imputation
We used R version 4.3.1 for the data analysis. Further details are
provided in the Supplementary Methods.

Disease Categorization by International
Classification of Disease 10th Edition Codes
In total, discharge diagnoses included 1,121 different principal
International Classification of Disease 10th Edition (ICD-10)
codes. We manually classified 740 principal ICD-10 codes into
11 broader level 1 and 58 finer level 2 disease categories
(Supplementary Table S4).

Data Thinning
Because measurement splitting, and thus model evaluation, is
not available in unsupervised clustering, we performed data thin-
ning.17 Further details are provided in the Supplementary
Methods.

Uniform Manifold Approximation and Projection
and Clustering
We used Seurat version 5.0.118 to perform dimension reduction
and clustering because Seurat is a mature and user-friendly pack-
age with a wide range of functions to perform unsupervised
learning approaches. Although it is primarily used with single
sequencing data, it accepts other formats and proved to be a suit-
able tool in our use-case. Further details are provided in the Sup-
plementary Methods.
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Predictive Models
For predictive modeling, we used the tidymodels package version
1.1.1. We used XGBoost, as it represents the current state of the
art on tabular data and outperforms deep learning models on
tabular data.19 Further details are provided in the Supplementary
Methods.

Further Downstream Analysis
More details on further downstream analysis, such as age and sex
comparisons, and clinical phenotypes in disease clusters, are pro-
vided in the Supplementary Methods.

Results
Automated Gating of Paired CSF and Blood
Immune Cells of 8,790 Patients
In contrast to most centers worldwide, our center has
routinely analyzed the composition of CSF and blood
cells in all specimens collected during regular business
hours using a standardized multiparametric flow cyto-
metry antibody panel (see the Methods section). We ret-
rospectively identified 12,602 CSF and 14,529 blood
flow cytometry measurements in our center analyzed
between February 2011 and September 2020 (Fig 1A,
Methods). Applying identical flow cytometry gating to all
data failed to account for batch effects and technical
changes over this long time period. Manually optimizing
the gating of 27,131 raw measurements was equally infea-
sible. Therefore, we used a neural network for optimiza-
tion of gating that had previously achieved human-level
gating performance on a subset of this dataset (n = 127
patients) when compared with 4 independent human
experts.16 Because manually curating clinical metadata
was also infeasible, we extracted the main final diagnosis
(ICD-10 code) coded after discharge by the treating physi-
cians to serve as an approximation of the real diagnosis. We
also automatically extracted routine CSF parameters from
the medical records, including CSF cell count, lympho-
cytes, granulocytes, erythrocytes, other cells, IgG/A/M
ratios, protein, glucose, lactate, albumin, and OCBs. We
removed low-quality measurements (see the Methods sec-
tion) and those without paired blood or CSF. Measure-
ments with missing CSF results showed similar
characteristics compared to those with available paired
blood and CSF results (Supplementary Fig S1), indicating
that their removal did not introduce bias. Additionally, we
kept only the chronologically first CSF/blood pair of mea-
surements from each patient for all analyses to minimize
confounders, for example, due to treatment. This resulted
in 17,580 matched CSF/blood measurements from 8,790
patients—a dataset of unprecedented size.

Immunosenescence Primarily Affects T Cells in
CSF and Blood that Become Activated With Age
We next harnessed the data to understand how sex and
age influence the composition of CSF and blood. We used
the somatoform group (n = 788) to avoid disease-related
effects. This subgroup included 519 female subjects and
269 male subjects; whose age ranged from 8 to 88 years
(Fig 1B). We found several parameters that were signifi-
cantly different (adjusted p < 0.001, effect size > 0.5)
between male subjects and female subjects in this cohort
after adjusting for age (Fig 1C). The albumin, protein,
IgG, IgA, and IgM ratios were increased in male subjects,
whereas T cells in the blood were increased in female sub-
jects after correcting for age (see Fig 1C, 1D). In sum-
mary, our data suggest that the proportion of T cells in
the blood increased in female subjects, whereas the blood-
CSF barrier was more permeable in male subjects, a phe-
nomenon described previously.20

We then investigated how age influenced CSF and
blood cells. After regressing out sex and adjusting for mul-
tiple hypothesis testing, we identified variables that
showed a significant linear relationship with age (absolute
value of the coefficient >0.01 and p < 0.001; Fig 2A). The
parameters that increased the most with age were
HLA-DR-expressing CD4 and CD8 T cells in the CSF
and blood and the albumin ratio. In contrast, double neg-
ative T cells (CD3+CD4�CD8�) in the blood decreased
most strongly with age (see Fig 2A,B). Interestingly, CD8
T cells increased in the CSF with age but decreased in the
blood (see Fig 2A), suggesting that age-related changes are
partially compartment-specific. In summary, our findings
indicate that age predominantly induced activation of
CD4 and CD8 T cells. Whereas immunosenescence is
described in the blood,12,13 our findings provide insights
into CSF-specific age-related effects associated with signs
of increased T cell activation across compartments. Addi-
tionally, CSF and blood immune cell parameters may
need to be corrected for age and sex in the future.

We next inversely asked whether the CSF and blood
parameters were sufficient to predict biological age. We
trained an XGBoost model21 on 588 patients with
somatoform disorders after adjusting the parameters for
sex and validated it on the remaining 200 patients with
somatoform disorders. The prediction on the indepen-
dent test patients showed a strong correlation with true
biological age (Pearson r = 0.71; Fig 2C). In accor-
dance with our findings depicted in Figure 2A, double
negative T cells in the blood were by far the most impor-
tant predictor of age, followed by HLA-DR expressing
CD4 T cells in the CSF (Fig 2D). Collectively, we
defined immune age that correlated strongly with true
biological age.
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FIGURE 1: Overview of the study. (A) Schematic illustration of the study design. (B) Distribution of age and sex in the
somatoform cohort (n = 788). (C) Volcano plot showing sex-related differences in the somatoform cohort after adjusting for age.
The x axis represents the effect size (Algina Keselman and Penfield method), and the y axis represents the significance (Wilcoxon
rank-sum test adjusted by the Benjamini-Hochberg procedure). Parameters with an effect size > 0.5 and an adjusted p < 0.001
are marked in red and labeled. (D) Differences between male and female subjects with somatoform in selected parameters are
visualized in boxplots. Boxes show the median, the lower and upper quartiles. The whiskers include 1.5 times the interquartile
range of the box, further outliers are marked as dots. The routine CSF parameters are shown in blue, and the flow cytometry
parameters are shown in red. T = T cells. [Color figure can be viewed at www.annalsofneurology.org]
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Immune Cells in Blood and CSF Show No
Relevant Diurnal Variation
Studies have observed a circadian variation of leukocyte sub-
sets in blood22,23; whether the same is true for CSF remains
unknown. Therefore, we investigated variations of the
immune cell composition in blood and CSF throughout the
day. To exclude disease-related bias, we focused again on
patients with somatoform disorders (n = 788). The time of
sampling varied between 8 AM and 4 PM. However, we did
not detect any apparent alterations in the proportions of
immune cell populations in either the CSF or blood during
this time frame (see Supplementary Fig S1). This indicates

that analyzing CSF and blood immune cells is feasible at
any time of day. Of note, no nocturnal (4 PM to 8 AM) flow
cytometry data were available because flow cytometry is only
performed during regular working hours at our center,
which may account for the lack of diurnal variation.

Categorizing Neurological Diseases From ICD-10
Codes and Manual Validation in 991 Patients
We next aimed to understand disease-related cell patterns.
However, the available ICD-10 codes poorly reflect the
conceptual classification of diseases in neurology. There-
fore, we manually assigned ICD-10 codes into 11 broad

FIGURE 2: Immunosenescence primarily affects T cells in CSF and blood that become activated with age. (A) Volcano plot showing
age-related differences after adjusting for sex. The x axis represents the coefficients of the linear model and the y axis shows the
significance of the coefficients adjusted by the Benjamini-Hochberg procedure. Parameters with an absolute value of the
coefficient > 0.01 and an adjusted p < 0.001 are marked in red and labeled. (B) Correlation of selected parameters with age in the
somatoform cohort. The blue line represents the linear regression line. Its confidence interval is shown in light gray.
(C) Performance of the XGBoost model on the test set of the somatoform cohort (train/test 588/200 patients). The red line
represents the line of perfect correlation. (D) Predictor importance of the top 10 most important predictors of the XGBoost model
of C. The routine CSF parameters are shown in blue, and the flow cytometry parameters are shown in red. CD8 = CD8 T cells;
CD4 = CD4 T cells; dn T = double negative T cells (CD3+CD4�CD8�); CSF = cerebrospinal fluid; dp T = double positive T cells
(CD3+CD4+CD8+); Mono = monocytes; coeff = coefficient; r = Pearson correlation coefficient; RMSE = root mean squared error.
[Color figure can be viewed at www.annalsofneurology.org]
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categories (named “level 1” classification of diseases;
Fig 3A, see Supplementary Table S4) and 52 finer
categories (named “level 2”; Supplementary Fig S2). Level
1 categorization included central nervous system (CNS)
diseases classified as autoimmune (e.g. MS), neurodegen-
erative (e.g. dementia and Parkinson’s syndrome), psycho-
genic, infectious (e.g. meningitis), epileptic, control
(e.g. idiopathic intracranial hypertension), malignancy
(e.g. glioblastoma), ischemic (ischemic stroke and tran-
sient ischemic attack), and other vascular diseases
(e.g. cerebral venous thrombosis). The frequency of diag-
nostic categories was overall plausible for patients receiving
CSF analysis in our center (Supplementary Fig S3). To

validate our approach, 991 patients were manually anno-
tated into the given categories by trained neurologists
based on their detailed medical records, and this was com-
pared to their ICD-10-based level 2 diagnostic categories.
The ICD-10-based categories were in high agreement with
the manually annotated diagnoses (Fig 3B). The only par-
tial mismatch occurred between ischemic stroke and tran-
sient ischemic stroke, 2 closely related diagnoses. As a
second validation, we plotted and compared alterations of
routine CSF (colored in blue) and CSF flow cytometry
(colored in red) results in level 1 categories (Fig 3C). As
expected, infectious diseases (e.g. bacterial/viral meningo-
encephalitis) showed an increase in cell count, CSF

FIGURE 3: Categorizing neurological diseases from ICD-10 codes and manual validation in 991 patients. (A) Number of patients
per level 1 category. Categories were manually assigned from the ICD-10 codes (see the Methods section). (B) Comparison of
ICD-10-based diagnostic categories (columns) to manual expert annotations (rows) in 991 patients. (C) Clustered heatmap
displaying the group mean of routine CSF and CSF flow cytometry parameters across level 1 categories. The routine CSF
parameters are shown in blue, and the flow cytometry parameters are shown in red. brightNK = CD56brightNK cells;
cMono = classical monocytes; CSF = cerebrospinal fluid; dimNK = CD56dim NK cells; dp T = double positive T cells
(CD3+CD4+CD8+); ery = erythrocytes; granulo = granulocytes; ICD = International Classification of Disease 10th edition;
iMono = intermediate monocytes (CD14+CD16dim); lympho = lymphocytes; Mono = monocytes; ncMono = non-classical
monocytes (CD14lowCD16+); OCB = oligoclonal bands; T = T cells. [Color figure can be viewed at www.annalsofneurology.org]
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protein, and Ig ratios, whereas CNS autoimmune diseases
(e.g. MS) displayed elevated lymphocytes, OCB, B cells,
and plasma cells. Diseases associated with tumors
(e.g. leptomeningeal metastasis) showed very high CSF
protein and Ig ratios. In summary, our ICD-10-based dis-
ease classification provided a plausible approximation of
the true diagnosis, and all diagnostic categories showed
expected CSF alterations.

Unsupervised Analysis of CSF Yields Disease
Clusters of Four Neurological Categories:
Healthy, CNS Autoimmune,
Meningoencephalitis, and Neurodegenerative
We next speculated that CSF or blood analysis could
allow us to classify neurological diseases in an unbiased,
data-driven approach—inverse to routine clinical neurol-
ogy. We combined all parameters (i.e. parameters of the
routine CSF analysis, CSF flow cytometry, and blood flow
cytometry) of all patients with paired CSF and blood mea-
surements (8,790 patients and 62 parameters). The
resulting dataset showed complex between-parameter cor-
relations (see Supplementary Fig S3A). We observed a
high correlation between activated T cells in both CSF
and blood (see Supplementary Fig S3A), suggesting that
the activation of T cells is shared across compartments.
Within CSF, one set of highly correlated features showed
signs of CSF inflammation (e.g. cell count and lympho-
cytes). Another set of correlated features showed B cell
activity in the CSF (OCB and CSF B and plasma cells).
Additionally, immunoglobulin levels/ratios in the CSF,
CSF albumin, and CSF protein were highly correlated. In
summary, our findings indicate that T cell activation
in the blood may serve as a surrogate parameter of CSF
T cell activation. However, blood analysis cannot replace
CSF sampling in detecting CSF inflammation, CSF B cell
activation, or blood-CSF barrier disruption.

We then aimed to identify diagnostic categories in
this complex dataset. We performed normalization by
ordered quantiles, uniform manifold approximation and
projection (UMAP) dimension reduction, and cluster detec-
tion using Seurat,18 an established framework for the analy-
sis of single cell sequencing data (see the Methods section).
In order to determine the correct number of clusters and
validate our approach, we used a data thinning approach,17

which splits an observation into 2 or more independent
datasets. We calculated the adjusted Rand index (ARI),
which is a statistical measure for agreement between 2 parti-
tions in cluster validation, between the test and train set.

In CSF, the ARI was highest at a clustering re-
solution of 0.5 (Supplementary Fig 4A), resulting in
6 clusters (Supplementary Fig 4B). We found that
the same approach yielded only one cluster in blood

(see Supplementary Fig S3B), showing that CSF flow
cytometry is superior to blood flow cytometry in catego-
rizing neurological diseases. Next, we aimed to attribute
these clusters to diagnoses and parameters in a data-
driven approach. We therefore adopted a method which
is based on the “term frequency” (see the Methods sec-
tion). In an effort to identify a unifying disease term for
each cluster, we annotated each cluster manually based
on the top enriched diseases as “healthy CSF,” “CNS
autoimmune,” “meningoencephalitis,” or “neurodegen-
erative” as abbreviated terms for the respective disease
categories. Notably, not all of the enriched diseases
within a cluster necessarily align with the simplified term.
A first “healthy” cluster showed the highest enrichment
for diseases with inconspicuous CSF, such as somatoform
diseases and headaches (Supplementary Fig 4C). It showed
a relative increase of CD4 T cells in the CSF. A second
“CNS autoimmune” cluster was dominated by MS,
followed by other infectious or autoimmune CNS diseases
(see Supplementary Fig 4C). This cluster displayed a CSF
B cell profile (B cells and plasma cells), but also an
increase in classical monocytes and double negative T cells
(Supplementary Fig 4D). A third “neurodegenerative”
cluster was mostly enriched in neurodegenerative diseases,
including dementia, Parkinson’s syndrome, and mild cog-
nitive impairment, but also contained neuropathies (see
Supplementary Fig 4C). As expected, patients in the neu-
rodegenerative cluster were older (see Supplementary
Fig S3D, S3E). Therefore, we cannot differentiate whether
T cell activation in this cluster is merely age-related, as
shown earlier, or also disease-related. In contrast, interme-
diate monocytes and bright NK cells in the CSF were
increased in the neurodegenerative cluster but not in the
immunosenescence analysis (see Supplementary Fig 2A),
suggesting that they are specific for neurodegeneration.
Two further clusters were annotated as “meningoencepha-
litis 1” and “meningoencephalitis 2” due to their enrich-
ment of bacterial meningitis and viral/other encephalitis.
The “meningoencephalitis 2” cluster, as expected,
exhibited elevation in various CSF parameters, including
cell count, granulocytes, protein, lactate, albumin, and
IgM/A/G. In contrast, the “meningoencephalitis 1” clus-
ter showed T cell activation and a less prominent increase
in cell count and lactate (see Supplementary Fig 4D). This
might be due to a higher enrichment of viral encephalitis
and potentially a higher enrichment of bacterial meningitis
with a less typical profile, such as neuroborreliosis, com-
pared to the “meningoencephalitis 2” cluster. A last clus-
ter, annotated as “undefined,” did not show a specific
disease enrichment (see Fig 4C).

In summary, data-driven analysis of CSF parameters
allows an unbiased classification of patients into broad
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FIGURE 4: Unsupervised analysis of blood and CSF yields disease clusters of 4 neurological categories. (A) The ARI between the
train and test set is shown for different cluster resolutions for 10 data thin splits in CSF. (B) UMAP plot of CSF parameters from
8,790 patients/measurements. Each point represents one patient/measurement. (C) Enrichment of level 2 disease categories per
cluster based on the TF-IDF and the adjusted statistical significance (qval). The “undefined” cluster did not show any significant
disease enrichment. (D) Significantly expressed cluster markers are visualized. (E) ROC curves of the XGBoost model to predict
the disease clusters evaluated on the test set (8,790 patients). ROC AUC were calculated in a one-vs-all fashion for each cluster
separately and a macro-weighted averaging ROC AUC for the overall performance. Routine CSF parameters are shown in blue,
flow cytometry parameters are shown in red. ARI = adjusted Rand index; AUC = area under the curve; CSF = cerebrospinal
fluid; TF-IDF = term frequency-inverse document frequency; ROC = receiver operating characteristic; UMAP = uniform manifold
approximation and projection. [Color figure can be viewed at www.annalsofneurology.org]
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neurological disease categories: healthy, CNS autoim-
mune, meningoencephalitis, and neurodegenerative.

Dual Validation of CSF Disease Clusters
To validate the CSF clusters, we used 2 methods: first, by
predicting the performance on an established data thin-
ning approach,17 and, second, on a temporal validation
cohort.

For the first approach, we trained an XGBoost
model on the datathin train set (8,790 patients, 10-fold
cross validation, and 10 repeats) and predicted its perfor-
mance on the independent datathin test set (8,790
patients). This approach avoids overfitting the model by
“double dipping”24 and provides more reliable perfor-
mance results. We found that the clusters could be
predicted with good performance: receiver operating
characteristic area under the curve (ROC AUC) macro-
weighted averaging 0.79 (Fig 4E). In each individual one-
versus-all comparison, the “healthy CSF,” “CNS
autoimmune,” “meningoencephalitis 1,” and “neurode-
generative” clusters showed good performance, as mea-
sured by the ROC AUC (see Fig 4E). The model is
available on our GitHub repository.

For the second validation approach, we identified a
second collection of CSF measurements analyzed in our
center between October 2021 and June 2024, which we
call a temporally independent validation cohort. Subse-
quent analysis was performed in the same way as in the
discovery cohort, including gating by GateNet,16 removal
of low-quality measurements, and retention of only the
chronologically first CSF measurement of each patient.
This resulted in 3,201 CSF measurements. The manually
assigned ICD-10 based level 2 categories had a similar dis-
tribution compared to the discovery cohort (see Supple-
mentary Fig S4). We used the XGBoost model trained on
the discovery cohort to predict the cluster in these 3,201
measurements based on the CSF parameters and per-
formed disease enrichment. Overall, the disease enrich-
ment in this temporally independent cohort validated our
annotations, although the “healthy CSF” cluster did not
show significant enrichment (Supplementary Fig S5A),
likely due to a smaller sample size.

To assess whether clustering was affected by differ-
ent technical thresholds, we applied an additional stricter
filter (> 500 CD45+ cells), yielding 7,514 measure-
ments. The clustering remained highly similar, indicating
that the results are technically robust (Supplementary
Fig S5B).

Taken together, we could validate neurological dis-
ease categorization and provide a retest-reliable model,
which allows predicting disease clusters in future patients.

CSF-Defined Clusters Are Associated with
Specific Clinical Phenotypes in MS and Dementia
Because certain diseases were predominant in one cluster
but also present in other clusters, we wondered whether
cluster membership corresponded to a particular clinical
phenotype. We focused on 2 clinically important diseases:
MS and dementia. To minimize age-related effects, we
first adjusted the data for age. The MS subtype was deter-
mined in 409 patients by trained neurologists. We found
that patients with MS with a progressive disease course,
that is, primary or secondary progressive MS, were
enriched in the “neurodegenerative” cluster (Fig 5A).
Other clusters with at least 30 patients with MS, the
“CNS autoimmune” and “healthy” clusters, were not sig-
nificantly enriched for a particular subtype. The disability
resulting from MS, as measured by the Expanded Disabil-
ity Status Scale (EDSS), was assessed among 454 patients.
Patients with MS in the “CNS autoimmune” cluster had
lower EDSS scores and were thus less severely disabled
than patients with MS in the remaining clusters (Fig 5B).
CSF-based classification thus allows stratifying patients by
MS-driven disability.

Dementia subtypes were determined in 464 patients
and were evenly distributed across all clusters (see Supple-
mentary Fig S5B). Dementia severity, as measured by the
Mini Mental Status Examination (MMSE), had been
assessed as part of neuropsychological examinations in
266 patients. The MMSE scores did not differ between
the “neurodegenerative” cluster and the remaining clusters
(Supplementary Fig S5C). Additionally, 354 longitudinal
MMSE scores from 231 patients were available. Patients
with dementia in the “neurodegenerative” cluster showed
a more severe disease progression with a significant decline
in MMSE scores beginning 30 months after CSF collec-
tion in a linear mixed-effects model (Fig 5C). CSF cell
analysis may thus help predict the progression of
dementia.

Flow Cytometry Can Support the Diagnosis of
Neurological Diseases
Next, we sought to quantitatively benchmark the diag-
nostic potential of CSF and blood parameters. We uti-
lized an XGBoost model to predict MS (train/test
cohort = 461/154 patients) versus somatoform (train/
test cohort = 591/197 patients) and dementia (train/test
cohort = 455/152 patients) versus patients with
somatoform disorders. MS and patients with somatoform
disorders could be classified correctly with high sensitiv-
ity and specificity with routine parameters only (ROC
AUC test cohort 0.9). The performance did not change
substantially with the addition of flow cytometry param-
eters (ROC AUC test cohort 0.91; Supplementary
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Fig S6A). The most important predictor in both models
was OCB in the CSF, followed by plasma cells in the
CSF in the combined model and Ig ratios in the routine
model (Supplementary Fig S6B, S6C). Classification per-
formance was generally lower when differentiating
dementia from somatoform. Interestingly, the combined
model was superior to the routine model (ROC AUC
test cohort 0.79 vs 0.69; Supplementary Fig S6D). Acti-
vated CD4 T cells and NK T cells in the CSF and dou-
ble negative T cells and activated CD8 T cells in the
blood were the most important predictors in the com-
bined model (Supplementary Fig S6E). Adding CSF and
blood flow cytometry to the established CSF routine
diagnostics can thus improve the accuracy of diagnosing
neurological diseases. Flow cytometry of CSF and blood
is thus especially valuable in diseases that are difficult to
differentiate with routine CSF diagnostics.

Discussion
We present the largest atlas of CSF cells so far,
encompassing data from 8,790 patients with paired blood
measurements, and we used a data-driven approach to
infer knowledge. Age and sex significantly impacted the

immune cell composition of CSF and blood.
Immunosenescence primarily affected T cells: activated T
cells in both compartments increased most strongly with
age, whereas double negative T cells in the blood
decreased with age. We trained a machine learning model
of immune age that correlated strongly with true biologi-
cal age. Using an unsupervised machine learning
approach, we demonstrated that CSF cell analysis allowed
classifying patients into clusters that correspond to 4 clini-
cally neurological categories: healthy, CNS autoimmune,
meningoencephalitis, and neurodegenerative. These clus-
ters displayed specific immune profiles. We validated the
clusters by 2 methods: first using a data thinning approach
(8,790 measurements) and second on a temporally inde-
pendent cohort comprising 3,201 CSF measurements. It
has been shown that cytotoxic T cells in CSF contributed
to neurodegeneration in dementias25,26 and predicted dis-
ease progression in motor neuron diseases,27 and such
CSF alterations become tangible through flow cytometry.
In our study, patients with dementia in the “neurodegen-
erative cluster” tended to progress more rapidly, and
patients with MS were more likely to have a progressive
MS disease course. CSF cells thus mirror and predict more
pronounced neurodegeneration in the brain parenchyma.

FIGURE 5: CSF-driven clusters are associated with specific clinical phenotypes in MS and dementia. (A) Enrichment of MS
subtypes in the “neurodegenerative” cluster based on the TF-IDF and the adjusted statistical significance (qval) after adjusting for
age. The remaining clusters did not show significant enrichment. (B) EDSS scores in 454 patients with MS after age adjustment in
the “CNS autoimmune” cluster versus all remaining clusters. Statistical significance was assessed using the Wilcoxon rank sum
test. (C) Progression of 354 age-adjusted MMSE scores from 231 patients with dementia in the “neurodegenerative” versus the
remaining clusters. Time zero is defined as the date of CSF collection. Statistical significance was assessed using a linear mixed-
effects model followed by post hoc pairwise comparisons. Boxes in B and C show the median, the lower and upper quartiles. The
whiskers include 1.5 times the interquartile range of the box. Further outliers are marked as dots. CNS = central nervous system;
CSF = cerebrospinal; EDSS = Expanded Disability Status Scale; MS = multiple sclerosis; MMSE = Mini Mental Status Test;
PPMS = primary progressive multiple sclerosis; SPMS = secondary progressive multiple sclerosis; TF-IDF = term frequency-
inverse document frequency. * p < 0.05. [Color figure can be viewed at www.annalsofneurology.org]
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Understanding immunosenescence is of increasing
importance because of a higher life expectancy and a poor
understanding of immunomodulatory therapies in the
elderly. The literature describes drastic changes in
the peripheral T cell compartments, featuring a reduction
of naive T cells11 and an increase of memory-like T
cells.11 The most striking age-associated changes in our
data were an increase in HLA-DR expressing CD4 and
CD8 T cells in both compartments. This indicates that
the known increase in HLA-DR expression in the blood28

also applies to the CSF compartment. CD8 T cells in the
blood decreased with age, whereas CD8 T cells in the
CSF increased with age, indicating compartment-specific
immune effects induced by age. An earlier study did not
detect age-dependent immune cell alterations in the CSF
of the healthy controls,15 which might be due to the lower
number of patients (n = 85) compared to our study
(n = 788). Our model predicted true biological age and
featured double negative T cells in the blood and HLA-
DR expressing CD4 T cells as the most important fea-
tures. Previously, a blood-based immune aging score
predicted mortality beyond established risk factors.29 It is
tempting to speculate that our model, which represents
immune age, is a better predictor of mortality than
biological age.

In current clinical medicine, patients are categorized
into diagnoses based on their clinical presentations, and
biomarkers are then sought to differentiate these diagno-
ses. Here, we inverted this approach and for the first time
sought to identify patterns in neurology purely based on
blood and CSF parameters. This data-driven approach
enables the discovery of disease groups without relying on
prior assumptions, which may be incorrect. Inspired by
recent advances in dimensional reduction in single-cell
data,30 we used Seurat18 to identify clusters in our large
and complex dataset. Recently, other studies have taken
similar data-driven approaches to gain better understand-
ing of clinical data.31,32 We found clusters that cor-
responded to 4 clinical categories: healthy, CNS
autoimmune, meningoencephalitis, and neurodegenera-
tive. Diagnosis in neurology could therefore be rethought
driven by CSF analysis. We believe that this data-driven
approach becomes increasingly important in the future
with progressive data collection and digitalization of medi-
cal records.

CSF and blood immune profiles have previously
been used to support the differential diagnosis of various
neurological diseases.6,9,10,33 However, these studies have
mostly focused on differentiating 2 diseases, such as
Guillain-Barre syndrome and chronic inflammatory demy-
elinating polyneuropathy, in a comparatively small num-
ber of patients (n = 58).9 A recent study analyzed a larger

cohort of 777 manually curated patients, including auto-
immune, neurodegenerative, vascular, and non-
inflammatory (i.e. somatoform disorders) healthy controls,
to develop classifiers for identifying neuroimmunological
diseases.6 Here, we utilized a cohort that was over 10 times
larger. Our findings support that the combination of
established routine CSF diagnostics with CSF and blood
flow cytometry parameters can support the diagnosis of
common neurological diseases. Additionally, it also
allowed stratifying patients for disability. Integration with
additional biomarkers, such as neurofilament light chain,
which were not available in our cohort, would likely
enhance the accuracy of the predictions significantly. We
anticipate that the use of predictive models with multiple
biomarkers will refine and accelerate diagnosis in the field
of clinical medicine in the future.1,34

Our study is limited by its retrospective design and
can therefore not establish causality. The results might be
biased by treatment-induced effects. The diagnosis was
based on ICD-10 codes and could not be verified in all
patients. However, we found few misdiagnoses in nearly
1,000 patients with manually curated diagnoses and
reproduced known CSF alterations. To reduce treatment-
induced effects, we excluded specimens collected more
than 7 days after admission.
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