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Evolving cell states and oncogenic drivers 
during the progression of IDH-mutant 
gliomas

Jingyi Wu1,2,3,8, L. Nicolas Gonzalez Castro    2,4,5,6,8, Sofia Battaglia1,2,3, 
Chadi A. El Farran    1,2,3, Joshua P. D’Antonio1,2,3, Tyler E. Miller1,2,3,4, 
Mario L. Suvà    2,4 & Bradley E. Bernstein    1,2,3,7 

Isocitrate dehydrogenase (IDH) mutants define a class of gliomas that 
are initially slow-growing but inevitably progress to fatal disease. To 
characterize their malignant cell hierarchy, we profiled chromatin 
accessibility and gene expression across single cells from low-grade and 
high-grade IDH-mutant gliomas and ascertained their developmental 
states through a comparison to normal brain cells. We provide evidence 
that these tumors are initially fueled by slow-cycling oligodendrocyte 
progenitor cell-like cells. During progression, a more proliferative neural 
progenitor cell-like population expands, potentially through partial 
reprogramming of ‘permissive’ chromatin in progenitors. This transition is 
accompanied by a switch from methylation-based drivers to genetic ones. 
In low-grade IDH-mutant tumors or organoids, D NA h yp er me th yl ation 
appears to suppress interferon (IFN) signaling, which is induced by IDH o r 
DNA m et hy lt ra ns ferase 1 inhibitors. High-grade tumors frequently lose 
this h yp ermethylation and instead acquire genetic alterations that disrupt 
IFN and other tumor-suppressive programs. Our findings explain how 
these slow-growing tumors may progress to lethal malignancies and have 
implications for therapies that target their epigenetic underpinnings.

Diffusely infiltrating gliomas are progressive brain tumors with 
limited response to therapy and an invariably fatal outcome. The 
discovery of mutations in isocitrate dehydrogenase (IDH) genes in a 
subset of these tumors has led to major advances in our understanding 
of gliomas and their clinical prognostication1. IDH-mutant gliomas 
account for ~25% of adult gliomas, with patients presenting mainly 
in their third and fourth decades of life2. They are subdivided into 
oligodendrogliomas (with codeletion of chromosomal arms 1p/19q) 
and astrocytomas (ATRX and P53 mutations)3. Although both subtypes 

have a better prognosis than wild-type (WT) IDH glioblastoma, they 
nonetheless progress to a high-grade, fatal disease.

Mutations in IDH genes yield a mutant enzyme that produces 
the oncometabolite d-2-hydroxyglutarate (d-2HG)4. d-2HG is a com-
petitive inhibitor of α-ketoglutarate-dependent enzymes, including 
histone demethylases and ten-eleven DNA demethylases5. As a result, 
IDH-mutant gliomas exhibit a pattern of global DNA hypermethylation, 
known as the glioma CpG island methylator phenotype6,7. Although 
methylation changes are widespread, specific methylation events have 
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of malignant cell-specific (ASCL1), immune cell-specific (CD45 and 
CD3D) and oligodendrocyte-specific (MOBP) marker genes. We vali-
dated malignant cell assignments on the basis of tumor-specific CNAs 
(Methods and Extended Data Fig. 1b–d). We focused further analysis on 
the malignant cell data, including expression profiles for 31,835 single 
cells and accessibility profiles for 12,156 single cells.

Progenitor cell states and hierarchies in IDH-mutant gliomas
To evaluate the malignant populations, we benchmarked them against 
published single-cell transcriptomes and accessibility profiles for nor-
mal brain cells. Focusing initially on transcriptional data, we clustered 
and visualized normal cells from three published scRNA-seq datasets 
for fetal and adult brain24–26 (2,551 cells; Extended Data Fig. 1e). Evalu-
ation of marker genes across the single-cell clusters confirmed that 
the UMAP projection captured major cell types, including NPCs, glial 
progenitor cells (GPCs), OPCs and astrocytes (ACs), as well as mature 
and immature neurons (Fig. 1b and Extended Data Fig. 1e).

We next projected IDH-mutant malignant cells onto the normal 
brain scRNA-seq UMAP, positioning each cell according to the principal 
components derived from the reference brain data (Methods). A major-
ity of malignant cells mapped in the vicinity of normal OPCs, with most 
remaining cells correlating to NPCs, GPCs or ACs (Fig. 1b and Extended 
Data Fig. 1f). A small number of malignant cells roughly approximated 
neurons and expressed marker genes suggestive of immature neurons 
or differentiating NPCs. We also evaluated the malignant populations 
using non-negative matrix factorization (NMF), an unbiased method 
that decomposes single-cell expression data into sets of coordinately 
regulated genes or ‘expression programs’. NMF identified four major 
programs that were differentially expressed across malignant glioma 
cells (Fig. 1c). The respective programs were distinguished by the 
expression of markers for OPCs or GPCs (APOD, PDGFRA, OLIG2 and 
GFAP), NPCs or neurons (SOX4 and NEUROD1) and ACs (APOE and 
ALDH1L1). Hence, orthogonal analytical approaches identified the 
same major expression phenotypes among IDH-mutant glioma cells.

Comparison of the two IDH-mutant glioma subtypes (oligoden-
drogliomas and astrocytomas) revealed that the GPC-like, NPC-like 
and AC-like states were largely concordant in terms of their expression 
phenotypes and were represented in both subtypes. In both subtypes, 
cells that were assigned as GPC-like were intermediate between the 
OPC-like and NPC-like populations. However, the OPC-like progenitors 
showed subtle differences (Extended Data Fig. 1g). OPC-like cells in 
oligodendrogliomas expressed classical OPC markers and programs, 
while those in astrocytomas also expressed some GPC markers, poten-
tially indicative of broader developmental potential.

We used an analogous strategy to interpret the chromatin acces-
sibility data. We clustered and visualized single cells from published 
scATAC-seq data for normal brains and inferred the identity of the 
resultant clusters on the basis of marker gene accessibility (Extended 
Data Fig. 1e). The accessibility UMAP captured major neural cell types 
as highlighted in the transcriptomic data, including NPCs, GPCs, OPCs, 
ACs and mature and immature neurons. We next projected the malig-
nant cell accessibility profiles onto the normal brain UMAP. A majority 
of malignant cells mapped near OPCs, GPCs or ACs, while a smaller 
fraction mapped to NPCs or neurons (Fig. 1b). We validated these asso-
ciations by aggregating malignant cell profiles that projected to a given 
cluster (pseudobulk) and confirming that OPC-like and AC-like cells had 
relatively higher accessibility over the promoters of corresponding 
marker genes (Extended Data Fig. 1h).

Chromatin plasticity of IDH-mutant glioma cells
Our comparative analyses of scATAC-seq and scRNA-seq data were 
overall concordant in terms of the cellular identities nominated 
for the major malignant populations. However, the respective data 
types differed in important ways. When we performed unbiased 
clustering based on RNA expression of variable genes, the malignant  

been proposed as tumorigenic drivers. Methylation of a binding site 
for the CCCTC-binding factor insulator protein in the PDGFRA locus 
disrupts insulation and results in epigenetic activation of this canoni-
cal glioma oncogene8,9. In addition, methylation silences the CDKN2A 
tumor suppressor locus10,11. The extent to which other methylation 
changes or downstream effects of d-2HG also contribute to tumor 
fitness remains an area of active investigation. For example, impaired 
histone demethylation hinders differentiation of IDH-mutant glioma 
progenitors12, while non-cell-autonomous effects of d-2HG can pro-
mote T cell dysfunction13,14. Furthermore, the observation that DNA 
hypermethylation is lost as the tumors progress15 raises the question 
of how high-grade or recurrent IDH-mutant tumors are sustained in 
the absence of methylation-dependent drivers.

Single-cell RNA sequencing (scRNA-seq) studies have shed light 
on the intratumoral heterogeneity of IDH-mutant gliomas, proposing 
a hierarchy of malignant cell states that mimics normal development, 
with stem cell-like populations, as well as more differentiated cells16,17. 
The cell state distributions vary across IDH-mutant subtypes and shift 
as the tumors progress. Single-cell studies of transposase-accessible 
chromatin by sequencing (scATAC-seq) have provided additional 
insights, including evidence that hypermethylation of myelination 
genes contributes to a differentiation block in oligodendrocyte pro-
genitor cell (OPC)-like cells18 and a role for ATRX loss in shaping the 
accessibility landscape and promoting myeloid cell infiltration in 
IDH-mutant astrocytomas19. Despite this progress, major gaps remain 
in understanding the molecular underpinnings and physiologic impor-
tance of the diverse malignant cell states in IDH-mutant gliomas.

Here, we address outstanding issues regarding the developmental 
hierarchies and progression of IDH-mutant gliomas through the com-
bination of scATAC-seq, scRNA-seq and organoid models. By profiling 
de novo ten IDH-mutant gliomas of different World Health Organiza-
tion (WHO) grades (2–4), integrating our findings with transcriptional 
and genetic data for primary and recurrent tumors and benchmarking 
against normal brain cells, we characterize the malignant progenitors 
and programs that fuel these gliomas. Our analyses support prominent 
roles for OPC-like and neural progenitor cell (NPC)-like progenitors, 
with a permissive epigenetic landscape facilitating transitions between 
these alternate states. Tumor progression is associated with a striking 
proportional shift toward the more proliferative NPC-like cells, which 
share gene markers with normal NPCs but appear deficient in neuronal 
lineage potential. Progression is also accompanied by a global reduc-
tion in DNA methylation and the acquisition of genetic copy num-
ber alterations (CNAs) affecting oncogenes, tumor suppressors and 
interferon (IFN) response genes. We suggest that IDH-mutant gliomas 
are initially fueled by OPC-like cells in which epigenetic mechanisms 
activate oncogenic signaling, silence tumor suppressors and sup-
press IFN responses. The tumors then progress to a more proliferative 
high-grade malignancy increasingly fueled by NPC-like cells, which 
lose their hypermethylation and, therefore, become dependent on 
acquired genetic alterations.

Results
Single-cell accessibility and expression of IDH-mutant gliomas
To investigate regulatory and expression states in IDH-mutant gliomas, 
we profiled ten tumors by scATAC-seq, including oligodendrogliomas 
and astrocytomas of different grades (Chromium, 10X Genomics) (Sup-
plementary Table 1 and Extended Data Fig. 1a). We analyzed three of 
these tumors by scRNA-seq and incorporated published scRNA-seq data 
for 28 additional tumors16,17,20–23 into our analyses (Fig. 1a). After apply-
ing standard quality control metrics, the scRNA-seq and scATAC-seq 
datasets included 54,475 and 47,436 cells, respectively (Methods). 
We clustered and visualized the single-cell data by uniform manifold 
approximation and projection (UMAP) (Fig. 1a and Extended Data 
Fig. 1b). We then distinguished malignant cell clusters from stromal 
and immune clusters on the basis of the expression (or accessibility) 
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cells segregated into OPC-like, GPC-like, NPC-like and AC-like cells 
(Fig. 2a, left). This result was qualitatively similar to the supervised 
projection of the malignant cells onto normal brain cells (Fig. 1b). By 
contrast, an analogous treatment of the chromatin accessibility data 
yielded discordant results. Unbiased clustering based on the accessibil-
ity of variable peaks (Fig. 2a, right) did not clearly separate the nominal 
malignant cell types that we had annotated by supervised projection 
onto the normal brain accessibility map (Fig. 1b).

This observation prompted us to further interrelate the expres-
sion and chromatin accessibility profiles of the different malignant 
cell types. Focusing initially on the scRNA-seq data, we computed 
cross-correlations among all pairs of cells. We then evaluated the coher-
ence among cells assigned to the same nominal cell type and the diver-
gence between cells assigned to different cell types. Visualization of 
a cross-correlation map for normal brain cells revealed consistent 
differences among NPCs, OPCs, GPCs and ACs in terms of their gene 
expression. A cross-correlation map for malignant cells revealed quali-
tatively similar differences among NPC-like, OPC-like, GPC-like and 
AC-like cells (Fig. 2b and Extended Data Fig. 2d).

We next performed an analogous analysis of the scATAC-seq data 
by computing cross-correlations among all pairs of cells on the basis 
of the accessibility of differential elements (Methods). Examination 
of the normal brain data revealed that the respective cell types have 
distinct chromatin landscapes, consistent with their divergent expres-
sion programs. However, examination of the malignant glioma cells 
revealed that the respective progenitor cell states (OPC-like, GPC-like 
and NPC-like) were barely distinguishable from one another (Fig. 2b and 
Extended Data Fig. 2d). To evaluate differences among progenitor cell 

states more quantitatively, we applied a correlation metric analogous 
to that previously used to evaluate cellular plasticity in pancreatic 
cancer27. We computed correlations among single cells annotated as 
the same state and compared the values to correlations among cells 
annotated as different states. Application of the metric to scATAC data 
for gliomas confirmed that the different malignant cell states were 
similar to one another (Fig. 2c). In contrast, an analysis of scATAC data 
for normal brain cells revealed a clear quantitative distinction (Fig. 2c). 
This suggests that the different malignant progenitors share a relatively 
unspecified epigenetic landscape that may be compatible with (or 
‘permissive of’) alternate expression phenotypes.

The notion that different IDH-mutant malignant cell types express 
distinguishing marker genes and programs without fully specifying 
their underlying epigenetic state is supported by additional evidence. 
Inferential analysis of transcription factor (TF) activities based on the 
accessibility of their cognate motifs revealed similar motif enrichments 
across the different malignant progenitors (Extended Data Fig. 2a,b). 
This contrasts with the normal progenitor cell types, whose TF 
 motif enrichments were relatively distinct from one another.

We, therefore, directly compared the respective malignant cell 
types against their normal counterparts using expression-based and 
accessibility-based similarity metrics. This revealed that the malignant 
OPC-like cells were similar to normal OPCs in terms of their transcrip-
tional state and accessibility patterns (Fig. 2d). However, the GPC-like 
and NPC-like malignant cells did not recapitulate normal GPCs and 
NPCs (Fig. 2d); rather, their TF motif enrichments were relatively close 
to those of OPC-like cells (Extended Data Fig. 2b). Hence, while GPC-like 
and NPC-like malignant progenitors may express GPC and NPC marker 
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genes (Fig. 1c and Extended Data Fig. 2a) and gain accessibility over the 
corresponding promoters (Extended Data Fig. 1h), their global epige-
netic landscapes are still closer to OPCs. We also examined OPC-specific 
enhancers in the MYC and PDGFRA loci that have been implicated in 
IDH-mutant gliomagenesis9,28. Both elements remained accessible in 
OPC-like, GPC-like and NPC-like malignant progenitors (Extended Data 
Fig. 2c). These data are consistent with the hypothesis that IDH-mutant 
glioma progenitors initially adopt an OPC-like epigenetic state that is 
permissive to partial reprogramming to GPC-like or NPC-like expres-
sion phenotypes.

Glioma progression associated with expansion of NPC-like cells
We next considered how the malignant progenitors change as 
IDH-mutant gliomas progress from their initial slow-growing stage to 

a high-grade malignancy. Visualization of single cells in our scRNA-seq 
UMAP projection suggested that grade 2 tumors are primarily com-
posed of OPC-like, GPC-like and AC-like cells, while grade 3 and 4 tumors 
are relatively enriched for NPC-like cells (Fig. 3a). To further investigate, 
we integrated scRNA-seq data for 30 IDH-mutant gliomas ranging from 
grades 2 to 4, incorporating public datasets16,17,20–23. This confirmed 
that higher-grade tumors have increased proportions of NPC-like cells 
(Fig. 3b and Extended Data Fig. 3a). During brain development, normal 
NPCs are more proliferative than OPCs and their other differentiated 
progeny. Similarly, NPC-like cells appear considerably more prolifera-
tive than the other malignant cell types (Extended Data Fig. 3d). To 
explore this association across a larger clinical cohort, we examined 426 
bulk RNA-seq profiles for IDH-mutant gliomas (Supplementary Table 4) 
from The Cancer Genome Atlas (TCGA)29. For each tumor, we estimated 
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the relative proportions of NPC-like progenitors by comparing signa-
tures of NPC-specific and OPC-specific genes (Methods). Consistent 
with our scRNA-seq analyses, higher-grade tumors were enriched for 
NPC-like cells and exhibited a higher expression of proliferation genes 
(Fig. 3c and Extended Data Fig. 3b).

To evaluate more directly how the relative proportions of NPC-like 
and OPC-like cells evolve during tumor progression, we compared pri-
mary and recurrent IDH-mutant gliomas from the same cohort, using 
longitudinal data from the GLASS consortium and additional published 
data30,31. Evaluation of bulk RNA-seq data for 19 matched primary and 
recurrent tumors that progressed from low-grade to high-grade and 
scRNA-seq for six matched pairs confirmed that the estimated propor-
tions of NPC-like cells were much higher in recurrent tumors (Fig. 3e 
and Extended Data Fig. 3c). Only a small number of tumors progressed 
without an increase in the proportions of NPC-like progenitors. These 
analyses support our overall hypothesis that partial reprogramming of 
OPC-like progenitors to a proliferative NPC-like phenotype contributes 
to the progression of IDH-mutant gliomas.

Genetic events associated with NPC expansion and 
progression
The DNA hypermethylation that is characteristic of IDH-mutant  
gliomas is frequently lost as these tumors progress to a more aggres-
sive phenotype15. Methylation loss is likely because of accelerated 
replication-associated demethylation in more proliferative tumor 
cells. Indeed, when we ordered TCGA tumors by their proliferation 
scores, we confirmed that the most proliferative NPC-enriched tumors 
were relatively depleted of methylation (Fig. 3d). This suggests that 
proliferative NPC-like malignant progenitors have lower DNA methyla-
tion and may, thus, lose methylation-dependent oncogenic drivers.

Previous work by us and others suggests that DNA hypermethyla-
tion drives gliomagenesis by disrupting insulation, thereby inducing 
the PDGFRA proto-oncogene, and by silencing the CDKN2A tumor 
suppressor locus8–11. These epigenetic effects should decline as gli-
oma progenitors lose hypermethylation. We, therefore, investigated 
whether proliferative NPC-enriched tumors acquire genetic alterations 
that could compensate for the loss of methylation-dependent driv-
ers. Indeed, these advanced tumors were enriched for amplifications 
involving the PDGFRA, MYCN and CDK4 oncogenes and for deletions 
of CDKN2A and other tumor suppressor loci (Fig. 3d and Supplemen-
tary Table 2). These events could readily compensate for the loss of 
epigenetic oncogene activation and tumor suppressor silencing in 
proliferative NPC-like cells.

We extended this analysis through an in-depth characterization of 
a single IDH-mutant astrocytoma for which we generated scRNA-seq 
data for multiple regions of the tumor. We identified three major sub-
clones in this tumor on the basis of inferred CNAs, which included 
CCDN2 and MYCN amplifications and CDKN2A deletion (Methods). 

Integration of cell states and CNA information enabled us to infer a 
putative phylogeny in which this tumor first acquired CCND2 ampli-
fication (subclone 1), followed by CDKN2A deletion (subclone 2) and 
finally MYCN amplification (subclone 3). Each single-cell profile could 
be assigned to one of these subclones on the basis of inferred copy 
number variations (CNVs). Subclone 3, which harbored all three genetic 
alterations, was highly enriched for NPC-like cells with a high expres-
sion of proliferation genes (Fig. 3g,h). A similar analysis of a second 
tumor32 with multiple genetic subclones also revealed the enrichment 
of NPC-like cells in the more advanced subclone (Extended Data Fig. 3f).

We also leveraged bulk RNA-seq data for longitudinal specimens 
to evaluate these specific CNAs in matched primary and recurrent 
tumors30. This confirmed that CNAs involving PDGFRA, CCDN2 and 
MYCN amplification or CDKN2A deletion occur at a much higher fre-
quency in high-grade recurrent tumors than in the prior low-grade 
resections from the same cohort (Fig. 3f). These collective analyses are 
consistent with the hypothesis that, while OPC-like cells in low-grade 
IDH-mutant gliomas may be largely sustained by epigenetic alterations, 
the more proliferative progenitors in advanced tumors become increas-
ingly dependent on genetic drivers as their hypermethylation is lost.

Suppression of IFN responses in IDH-mutant gliomas
Another striking outcome of these genetic analyses was that 
NPC-enriched tumors harbor multiple deletions of immune genes 
implicated in IFN responses (Fig. 3d). These include a large IFNA and 
IFNB (IFNA/B) gene cluster on chr9 that is recurrently lost in conjunc-
tion with the adjacent CDKN2A tumor suppressor locus. The pattern 
and frequency with which the IFNA/B cluster is lost across many tumor 
types indicates that it confers fitness independently of CDKN2A (ref. 33). 
Remarkably, IFNA/B deletion was more prevalent in gliomas than other 
tumor types and, moreover, was strongly biased toward NPC-enriched 
grade 4 tumors (P < 2.2 × 10−16; Supplementary Table 3 and Fig. 3d).

In addition to the IFNA/B cluster, high-grade IDH-mutant gliomas 
were enriched for chromosomal deletions involving IFIT1, STAT1, IRF1 
and SETD2 (P  < 2.2 × 10−16; Fig. 3d and Supplementary Table 2). IFIT1, 
STAT1 and IRF1 encode direct mediators of IFN responses, while SETD2 
encodes a methyltransferase whose disruption in melanoma and other 
solid tumors has been shown to suppress IFN signaling34. IFN responses 
in cancer cells can cause cell-cycle arrest and drive both innate and 
adaptive immunity. Our analyses indicate that suppression of IFN 
responses confers a fitness advantage to IDH-mutant gliomas.

These genetic findings also raise the question of whether and how 
early OPC-enriched IDH-mutant gliomas evade IFN responses. We 
considered two possibilities: OPC-like progenitors might be relatively 
insensitive to IFN signaling or, alternatively, their DNA hypermethyla-
tion might suffice to suppress the pathway. To investigate, we com-
pared grade 2 IDH-mutant oligodendrogliomas (n = 81) to a cohort of 
grade 2 IDH-WT gliomas (n = 19) from TCGA (Fig. 4a and Extended Data 

Fig. 3 | Cell states and genetic alterations associated with glioma 
progression. a, Malignant cells projected onto scRNA-seq UMAP for normal 
brain as in Fig. 1b but with malignant cells colored by tumor grade. b, Box plots 
depict estimated proportions of OPC-like and NPC-like cells in scRNA-seq data 
(n = 30) for tumors stratified by grade (n = 12 for grade 2, n = 13 for grade 3 and 
n = 5 for grade 4). Boxes depict the 25th, 50th and 75th percentiles and whiskers 
depict extreme values. One-tailed t-test P values from left to right: 0.04 and 0.015. 
c, Box plots depicting relative proportions of NPC-like versus OPC-like cells (left) 
or proliferation scores (right), inferred from TCGA RNA-seq for IDH-mutant 
gliomas (n = 426) stratified by grade (n = 195 for grade 2, n = 174 for grade 3 and 
n = 7 for grade 4). One-tailed t-test P values from left to right: 0.028, 2.1 × 10−3 and 
0.011; ***P < 0.001. d, IDH-mutant gliomas (columns) ordered by proliferation 
scores (n = 417). Top rows depict tumor grade, global DNA methylation and 
relative proportions of NPC-like versus OPC-like cells. Additional rows depict 
copy number gains (red) and losses (blue) for variable cytobands with indicated 
genes. e, Line plot depicting relative proportions of NPC-like versus OPC-like 
cells, inferred from bulk RNA-seq for matched primary and recurrent IDH-mutant 

gliomas (n = 19)30. Thin gray lines connect data points for the same participant, 
while the red line and shaded area depict the imputed average and confidence 
interval. f, Heat maps showing focal copy number gains (red) and losses (blue) 
for indicated gene loci in primary (P) and recurrent (R) IDH-mutant gliomas 
(each row corresponds to one of 64 participants)30. Heat ranges from +2 (likely 
high-level amplification) to −2 (likely homozygous deletion), while intermediate 
values predict likely amplification (+1), deletion (−1) or copy neutral (0)70. g, Plot 
depicting CNAs for loci containing CCND2, CDKN2A and IFNA/B clusters or MYCN 
(rows) across 2,350 cells (columns) from one IDH-mutant glioma. Malignant 
cells are grouped into three subclones on the basis of CNAs and compared to 
normal cells from the same resection (left). Malignant cell state assignments 
are indicated. h, Subclonal hierarchy reconstructed from CNAs in single cells: 
CCND2 amplification is followed by CDKN2A and IFNA/B deletion and then MYCN 
amplification. Initial clones comprise OPC-like cells (blue), while the late-arising 
clone is enriched for NPC-like cells (yellow). Glioma progression is associated 
with the expansion of proliferative NPC-like cells with characteristic CNAs.
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Fig. 4a). Both cohorts exhibited similarly low proliferation signatures 
per RNA-seq, consistent with their histology (Extended Data Fig. 4b). 
As expected, global methylation levels were substantially higher in the 
IDH-mutant tumors (Extended Data Fig. 4b and Fig. 4a). Notably, the 
IDH-mutant cohort had significantly lower IFN scores (P < 2.2 × 10−16), 
consistent with the possibility that hypermethylation subdues IFN 
responses (Fig. 4a,b and Extended Data Fig. 4a,b). These data suggest 

that OPC-like and NPC-like malignant progenitors both evade IFN sign-
aling but do so through distinct strategies predicated on epigenetic or 
genetic mechanisms, respectively.

DNMT1 inhibition activates IFN signaling in glioma models
To test the impact of DNA methylation on IFN signaling directly, we 
established short-term organoid cultures from a low-grade IDH-mutant 
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glioma (MGH314) and a high-grade IDH-mutant glioma with IFN locus 
deletion (MGH240)35,36. The single-cell transcriptomic analysis con-
firmed that the organoids recapitulate key aspects of the primary 
tumor, including the presence of varying proportions of OPC-like, 
NPC-like and AC-like malignant cells with faithful expression pheno-
types (Extended Data Fig. 4d,e). We treated both models with a DNA 
methyltransferase 1 (DNMT1) inhibitor (GSK-3484862) to reduce 
global DNA methylation and evaluated transcriptional changes by 
scRNA-seq (Fig. 4c). The demethylating agent led to robust upregula-
tion of methylation-sensitive genes and IFN pathway genes (Fig. 4d, 
Supplementary Table 5 and Extended Data Fig. 5a,b). The changes were 

most pronounced in the grade 2 model, consistent with a critical role 
for methylation in suppressing IFN programs (Fig. 4d and Extended 
Data Fig. 5b). We also detected upregulation of transposable elements, 
including the LINE1 family, which is implicated in the production of 
RNA–DNA hybrids capable of activating the cyclic GMP–AMP synthase 
(cGAS)–stimulator of interferon genes (STING) pathway and down-
stream IFN signaling37 (Fig. 4e).

We next explored whether emerging clinical data could provide 
insight into our study and findings. A recent clinical study showed 
that a small-molecule inhibitor of the mutant IDH enzyme prolonged 
progression-free survival in participants with grade 2 IDH-mutant 
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WT gliomas (n = 19) from TCGA (per 2016 WHO classification). Boxes depict the 
25th, 50th and 75th percentiles and whiskers depict extreme values. One-tailed 
t-test P values: ***P < 0.001. b, Box plot depicting IFN scores for malignant cells 
in scRNA-seq data for IDH-mutant16,17 (n = 16 specimens) and IDH-WT gliomas71 
(n = 15 specimens). One-tailed t-test P value: 0.017. c, Schematic depicting two 
IDH-mutant glioma organoids treated with DNMT1 inhibitors and profiled by 
scRNA-seq. The MGH314 organoid was prepared from a grade 2 tumor with an 
intact IFNA/B cluster, while the MGH240 organoid was prepared from a grade 
4 tumor with IFNA/B cluster deletion. d, Bars depicting enrichment scores for 

gene sets upregulated by DNMT1 inhibitors per GSEA. e, Plots showing the 
relative change in transposable element expression upon DNMT1 inhibitor 
treatment per scRNA-seq. Colors indicate three technical replicates. f, Bars 
depicting enrichment scores for gene sets upregulated in an IDH-mutant glioma 
resected from a person treated with an IDH inhibitor per scRNA-seq, relative to 
pretreatment control. g, Box plots depicting IFN signature scores (RNA-seq) 
for IDH-mutant oligodendrogliomas (grade 2, n = 21 specimens) resected from 
persons treated with an IDH inhibitor compared to control oligodendrogliomas 
(grade 2, n = 81, specimens) from TCGA. One-tailed t-test P values: ***P < 0.001. 
These analyses suggest that mutations in IDH genes and DNA hypermethylation 
suppress IFN responses in low-grade gliomas.
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gliomas38. RNA-seq data for tumors in a surgical window-of-opportunity 
study evaluating this inhibitor revealed that inhibitor treatment was 
associated with a shift toward more differentiated cell states, consistent 
with progenitor differentiation39,40. The study noted upregulation of 
IFN pathway genes in a subset of participants but did not distinguish 
whether this reflected malignant cell changes or increased immune 
infiltration39. However, reanalysis of these data using our malignant 
cell-specific IFN signature suggested that IDH inhibitor treatment 
increases IFN signaling in the malignant glioma cells (Fig. 4g and 
Extended Data Fig. 4c). We also examined scRNA-seq data for three 
additional gliomas from persons treated with IDH inhibitors40. Unbi-
ased analysis of these data identified an IFN signaling program as a top 
upregulated gene set in malignant cells from the treated tumors (Fig. 4f 
and Extended Data Fig. 5d). The cells also exhibited gene markers of 
methylation loss, consistent with the expected mechanism of the IDH 
inhibitors (Extended Data Fig. 5c). Together, these bulk and single-cell 
analyses suggest that IDH inhibition can reduce DNA methylation levels 
and induce an IFN response in lower-grade IDH-mutant gliomas, with 
a potential impact on progenitor differentiation. They provide strong 
in vivo support for our hypothesis that DNA hypermethylation sup-
presses IFN responses in these tumors.

Lastly, we examined the impact of demethylation on cell type 
distributions in the glioma organoids. DNMT1 inhibition led to a pro-
portional increase in the number of AC-like cells in the IDH-mutant 
models (Fig. 5a). A similar shift toward AC-like cells was evident in 
tumors from persons treated with IDH inhibitors40. This differentia-
tion could be a consequence of the increased IFN signaling, at least in 
part, as prior studies have shown that inflammatory cytokines such as 
tumor necrosis factor induce AC differentiation41. Moreover, normal 
brain ACs tolerate higher IFN activity than progenitor cells42. This phe-
nomenon appears to be recapitulated in gliomas as our scRNA-seq data 
confirm that AC-like cells have higher IFN signatures than the malig-
nant progenitors (Fig. 5b). This difference is also evident at the level 
of chromatin accessibility in that IFN-regulatory factor (IRF)–signal 
transducer and activator of transcription (STAT) motif enrichments in 
the scATAC-seq data were most pronounced for the AC-like population 
(Fig. 5c). Given that higher proportions of NPC-like cells are associated 
with reduced overall survival (Fig. 5d and Extended Data Fig. 5e), these 
data suggest the potential of demethylating agents and IDH inhibitors 
to activate an IFN response and slow the progression of IDH-mutant 
gliomas, particularly in tumors that have yet to acquire genetic CNAs 
of IFN-related gene loci.

Taken together, our data support a model in which DNA hyper-
methylation confers fitness to OPC-like cells that fuel early tumori-
genesis by silencing tumor suppressors, suppressing IFN responses 
and inducing oncogene expression. As IDH-mutant gliomas progress, 
a population of cells with NPC-like transcriptional programs expands, 
potentially through partial reprogramming of OPC-like cells. As the 
proliferative NPC-like cells lose their global hypermethylation, they 
acquire genetic CNAs that drive the aggressive and ultimately lethal 
phenotypes of high-grade IDH-mutant gliomas.

Discussion
Our single-cell study of the heterogeneous epigenetic cell states, tran-
scriptional programs and genetic alterations in IDH-mutant gliomas 
uncovers biological insights and presents a mechanistic model of pro-
gression with implications for diagnosis and treatment. In particular, 
we identify epigenetic plasticity of glioma progenitor states, interplay 
between epigenetic and genetic tumor drivers and alternate mecha-
nisms of IFN suppression as critical for the progression of these tumors.

First, we examined the gene-regulatory circuits and plasticity 
of glioma cells by comparing their single-cell chromatin accessibil-
ity and gene expression to normal fetal and adult neural cell types. 
Malignant glioma cells enact gene expression programs reminiscent of 
OPCs, GPCs, NPCs or ACs. Yet despite their transcriptional differences, 

OPC-like, GPC-like and NPC-like malignant cells share similar chromatin 
landscapes and do not appear to specify in terms of their epigenetic 
regulation. In fact, our analysis suggests that most glioma progenitors 
exhibit accessibility profiles and TF motif enrichments largely consist-
ent with an OPC-like state.

These results raise the question of how cells with an OPC-like 
chromatin state can enact such a broad spectrum of transcriptional 
programs, including the expression of NPC gene signatures and mark-
ers. A clue comes from our observation that the alternate malignant 
cell states change in proportion as gliomas progress. Low-grade 
IDH-mutant tumors are composed primarily of OPC-like and AC-like 
cells, presumably fueled by the former, where cell-cycle activity is 
confined17. High-grade IDH-mutant tumors are relatively enriched for 
NPC-like cells whose increased proliferation rates coincide with an 
aggressive clinical phenotype. Although these NPC-like cells exhibit 
distinguishing transcriptional programs and surface phenotypes16,17, 
their epigenetic landscapes and core regulatory circuits do not 
notably diverge from the originating OPC-like cells. We suggest that 
IDH-mutant glioma initiation involves the transformation of OPCs 
to OPC-like malignant cells whose acquisition of epigenetic plastic-
ity facilitates a partial reprogramming of their expression state to a 
proliferative NPC-like phenotype (Extended Data Fig. 3e). We note that 
contemporary studies provide orthogonal support for the hypothesis 
that OPCs represent a cell of origin for IDH-mutant gliomas. We and 
others have established causal roles for the OPC marker gene PDGFRA 
and a nearby OPC-specific enhancer in gliomagenesis9,43–45. A genetic 
variant in the MYC locus that is associated with IDH-mutant glioma risk28 
also coincides with an OPC-specific enhancer. Lastly, a recent study of 
normal human brains detected clonal IDH1 mutations in glial fractions 
enriched for OPCs, consistent with a fitness role for mutant IDH in 
OPCs46. A scenario in which IDH-mutant gliomas initiate as OPC-like 
progenitors that subsequently transition to a more aggressive NPC-like 
state may help explain how a single stereotyped transformation event 
can yield such heterogeneous malignant cell states and tumor pheno-
types (Fig. 5e and Extended Data Fig. 3e).

Second, our analyses suggest that tumor progression is associated 
with a switch from epigenetic to genetic drivers (Fig. 5e). IDH-mutant 
tumors produce high levels of the oncometabolite d-2HG, which inhib-
its DNA demethylases, causing their characteristic hypermethyla-
tion. We and others have shown that DNA hypermethylation induces 
the proto-oncogene PDGFRA by unleashing a nearby OPC-specific 
enhancer and silences the tumor suppressor locus CDKN2A (refs. 
9,47,48). Although methylation-dependent drivers may sustain indo-
lent OPC-like progenitors in low-grade IDH-mutant tumors, hyper-
methylation is lost upon tumor progression15, presumably because of 
passive methylation loss in the proliferative progenitors. Consistently, 
high-grade tumors acquire additional genetic alterations, includ-
ing CDKN2A locus deletion and amplifications of PDGFRA and other 
oncogenes, which enable NPC-like cells to drive progression. This 
recognition that IDH-mutant gliomas of different stages are driven 
by distinct molecular mechanisms is consistent with clinical obser-
vations and has important therapeutic implications2. Progressed or 
relapsed tumors with characteristic genetic alterations will be less 
likely to respond to interventions that target mutant IDH or associated 
methylation changes.

Third, we find that IDH-mutant gliomagenesis is dependent on the 
suppression of IFN responses. The underlying mechanisms again vary 
by grade, with low-grade gliomas reliant on the suppressive impact 
of methylation49,50 and high-grade gliomas reliant on genetic lesions. 
The latter include deletions of the IFNA/B cluster, IRF1, STAT1 and the 
chromatin regulator gene SETD2, which has established roles in IFN 
signaling. The observation that the genetic alterations are relatively 
specific to NPC-enriched, high-grade tumors implies that low-grade 
tumors must either tolerate IFN responses or suppress them by other 
mechanisms. In support of the latter, we find that IFN expression 
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signatures are low in hypermethylated low-grade IDH-mutant gliomas, 
relative to low-grade IDH-WT gliomas. Suppression may be mediated 
by methylation-dependent silencing of transposable elements51, STING 
and/or the IFN-related genes themselves52. Alternatively or additionally, 
it could involve direct effects on cGAS–STING reactivity53,54.

NPCs are highly sensitive to IFN, which drives differentiation and/
or cell death41. Our data suggest that malignant glioma progenitors are 
similarly sensitive to innate IFN responses, which may drive their differ-
entiation and/or apoptosis. These responses may be cell autonomous 
or may be augmented by IFN released into the tumor microenviron-
ment by myeloid cells or T cells. Either way, the malignant progeni-
tors appear to be under strong selection to evade these responses, 
initially through hypermethylation and subsequently through the 
various genetic deletions associated with NPC-enriched, high-grade 
IDH-mutant gliomas.

We also recognize caveats to our data and conclusions. Our chro-
matin accessibility profiles were relatively limited in terms of par-
ticipant numbers. Although we sought to augment all conclusions 
with scRNA-seq and bulk expression profiles for much larger cohorts, 
characterization of additional tumors by scATAC-seq or other epige-
netic assays may implicate additional mechanisms and loci or oth-
erwise refine our proposed progression model. Furthermore, our 
conclusions on the temporal order of events in tumorigenesis are 
inferential. We propose the transformation of an OPC cell of origin to an 
OPC-like malignant progenitor as an initiating step that is followed by 
partial reprogramming to an NPC-like state during tumor progression. 

However, our analysis of paired primary and recurrent tumors suggests 
that a small number of progressed tumors are driven by progenitors 
that retain an OPC-like phenotype. Moreover, we cannot rule out the 
possibility that a subset of tumors initiate as NPC-like progenitors, a 
scenario that would also be consistent with prior single-cell studies16 
and with prior reports that introduction of mutant IDH into ACs or glio-
masphere cultures reprograms their epigenomes toward an NPC-like 
state55. That being said, the rarity of NPC-like progenitors in low-grade 
tumors, the OPC-like character of their epigenetic states and our related 
findings lead us to favor an OPC-centric model of initiation.

In conclusion, we present single-cell accessibility and expression 
profiles for malignant cells within IDH-mutant gliomas at successive 
stages of clinical progression. Integration of these and complementary 
datasets leads us to a model in which IDH-mutant gliomas are initially 
fueled by indolent OPC-like progenitors that are sustained in large part 
by methylation-dependent activation of oncogenic signaling, CDKN2A 
silencing and suppression of IFN responses. The initiating progenitors 
have inherent plasticity that facilitates their partial reprogramming to 
an NPC-like phenotype that underlies tumor progression. The relatively 
higher proliferation rates of the NPC-like progenitors cause them to 
lose their methylation-dependent epigenetic drivers, which in turn 
creates intense selection pressure for the acquisition of genetic altera-
tions that activate oncogenic signaling, inactivate CDKN2A and disrupt 
IFN signaling. The acquired genetic lesions underpin an aggressive 
and ultimately fatal tumorigenesis and likely constrain the efficacy of 
epigenetic therapies.
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patient outcomes. a, Pie charts showing the distribution of malignant cell 
states, assigned by scRNA-seq, in patient-derived organoids treated with 
DNMT1 inhibitor or control. b, Box plots depict IFN signature scores across 
individual malignant cells stratified by their assigned states (243 AC-like cells, 
1,113 GPC-like cells, 7,378 OPC-like cells and 311 NPC-like cells). Boxes depict the 
25th, 50th and 75th percentiles and whiskers depict extreme values. One-tailed 
t-test P values: ***P < 0.001. c, Box plots depicting the enrichment of IRF–STAT 
motif accessibility across individual malignant cells stratified by assigned 
cell state (each state downsampled to n = 100 cells). One-tailed t-test P values: 

0.011 between AC-like and GPC-like; ***P < 0.001. d, Kaplan–Meier curves for 
high-grade (grades 3 and 4) IDH-mutant gliomas (n = 185), stratified by NPC 
enrichment score. Hazard ratios (HRs) and P values associated with NPC-enriched 
tumors are indicated. e, Schematized model proposing that IDH-mutant 
gliomas initiate through the transformation of OPC cells (blue) to slow-growing 
OPC-like malignant cells (purple) driven by epigenetic changes involving DNA 
hypermethylation. During tumor progression, OPC-like cells partially reprogram 
to proliferative NPC-like cells (red) that lose their hypermethylation and become 
dependent on genetic drivers.
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Methods
Tumor acquisition and single-cell sorting
All subjects gave their informed consent before their tumor samples 
were obtained for study. There was no selection for race, ethnicity 
or other socially relevant groupings. Demographic information on 
the subjects is provided in Supplementary Table 1. The protocol was 
approved by the Institutional Review Board of the Dana-Farber and 
Harvard Cancer Center (protocol #10-471). Subjects did not receive 
compensation. Tumor samples were collected from the pathology 
laboratory shortly after surgical resection. The presence of a mutation 
in IDH genes was predicted on the basis of age and radiographic tumor 
appearance and subsequently confirmed by clinical immunohisto-
chemistry and next-generation sequencing assays. Fresh tumor samples 
were dissociated using a papain-based brain tumor dissociation kit 
(Miltenyi Biotec) and processed for single-cell analysis as previously 
described17. Briefly, cells were blocked and stained with CD45–VioBlue 
direct antibody conjugate (Miltenyi Biotec, 130-113-122), washed with 
cold PBS and then resuspended in 1 ml of BSA and Hank’s balanced salt 
solution with 1 mM calcein AM (Thermo Fisher Scientific, C1430) and 
0.33 mM TO-PRO-3 iodide (Thermo Fisher Scientific, T3605) for 30 min. 
Sorting was performed on an FACS Aria Fusion (Becton Dickinson) using 
488-nm (calcein AM, 530/30 filter), 640-nm (TO-PRO-3, 670/14 filter) 
and 40-nm (CD45–VioBlue, 450/50 filter) lasers. Doublets and gate-only 
singleton cells were discriminated by strict forward scatter height 
versus area criteria. We sorted individual viable (positive for calcein 
AM and negative for TO-PRO-3) immune and nonimmune single cells 
into 1.5-ml Eppendorf tubes with PBS and 1% BSA. After the sorting, we 
immediately proceeded to the scRNA-seq and scATAC-seq experiments.

scRNA-seq and scATAC-seq experiments
scRNA-seq was performed using Seq-Well as previously described56, 
applying 12,000 cells to the arrays, performing 18 PCR cycles for 
whole-transcriptome amplification and using a template-switching 
oligo with a locked nucleic acid modification of the last nucleotide. 
Sequencing libraries were prepared using Nextera reagents (Illumina, 
FC-131-1096) and sequenced on an Illumina NextSeq 500. The read 
lengths were 20 cycles for read 1, 8 cycles for the library index and 50 
or 64 cycles for read 2.

scATAC-seq was performed using the 10X Genomics platform as pre-
viously described57. Briefly, nuclei were prepared, pelleted, resuspended 
in lysis buffer, washed with 200–400 μl of wash buffer and counted with 
trypan blue. They were resuspended in nuclei buffer such that there 
were ~2,000 nuclei per μl. For tagmentation, 5 μl of this suspension was 
combined with 7 μl of ATAC buffer (10X Genomics) and 3 μl of Tn5 and 
incubated at 37 °C for 1 h. Libraries were prepared per the 10X Genom-
ics scATAC-seq protocol and sequenced on an Illumina NextSeq 500.

Generation of patient-derived IDH-mutant glioma organoid 
and DNMT1 inhibitor treatment
IDH-mutant glioma organoids were established and cultured as previ-
ously described35. Briefly, primary tumor pieces from the operating room 
were distributed in six-well culture plates with 4 ml of organoid medium 
and placed on an orbital shaker rotating at 120 rpm in an incubator (37 °C, 
5% CO2 and 90% humidity). The medium was changed every other day 
without disturbing the organoid by tilting the plates. Tumor pieces 
generally formed rounded organoids within 2 weeks. After 2–3 weeks of 
maturation of the organoids, 4 μl of DNMT1 inhibitor (GSK-3484862)58 
or DMSO were added to the medium to a final concentration of 1 μM. 
The medium was changed every other day with new DNMT1 inhibitor 
added to the same concentration. Treatment was continued for 14 days 
until the samples were isolated for Seq-Well scRNA-seq experiments.

Processing of scRNA-seq data
For scRNA-seq performed using Seq-Well, FASTQ files were aligned to 
GRCh38 with STARsolo59 using the following parameters: ‘--soloType 

CB_UMI_Simple --soloCBstart 1 --soloCBlen 12 --soloUMIstart 
13 --soloUMIlen 8 --outSAMtype BAM SortedByCoordinate 
--outSAMattributes CR UR CY UY CB UB’. The resulting raw matrices 
were gzipped and used as input for Seurat through the Read10X() 
function with default parameters. Gene module scores were calcu-
lated using the Seurat AddModuleScore function. Malignant cells 
were identified by calculating the usage values of glioma expression 
programs. We uploaded a normalized gene expression matrix using 
the ‘annotation mode’ in the glioma program calculator32. For a cell to 
be annotated as malignant, the cell had to have the highest usage for 
one of the malignant glioma programs and less than 20% usage for any 
other nonmalignant expression program. For scRNA-seq in published 
cohorts, we used the malignant cell identification from the literature 
and validated by gene expression.

Processing of scATAC-seq data
CellRanger ATAC (version 1.1.0) was used for alignment, deduplica-
tion and generation of the single-cell matrix, using GRCh38 as a refer-
ence. Cells with more than 30,000 reads or fewer than 3,000 reads 
were excluded from the analysis. Quality control was performed using 
Signac with the following parameters: ‘pct_reads_in_peaks > 15, black-
list_ratio < 0.05, nucleosome_signal < 4 and TSS.enrichment > 3’. Cus-
tom scripts were used to estimate copy number variants. cisTopic60 
and Signac61 were used to cluster all cells for the identification of 
cluster-specific peaks and UMAP visualization. Gene activity scores 
were calculated by Signac. We used shared nearest neighbor clustering 
to distinguish malignant cell clusters with gene activity scores from 
several specific gene categories: genes specific to malignancy (EGFR, 
ASCL1, PDGFRA and DCX), genes unique to normal oligodendrocytes 
(MBP and MOBP), genes specific to myeloid cells (PTPRC) and genes 
unique to T cells (CD3D and CD3E). This approach enabled us to accu-
rately identify clusters of malignant cells. To refine our analysis and 
reduce the inclusion of potential doublets, we excluded malignant 
cells exhibiting high gene activity scores (greater than 1) for markers 
associated with nonmalignant cells. We validated these assignments 
using CNVs for individual tumors. We conducted CNV analysis using 
two distinct methods. First, we generated a gene activity matrix using 
Signac, which was then used as input for inferCNV16. Second, we pro-
duced a genome-wide bin-based count matrix with the FeatureMatrix 
function of Signac. The matrix was normalized by subtracting the 0.2 
or 0.8 percentile values of the normal cell types to reflect deviations 
from a baseline established by the normal cell type distribution.

Reference projections
Projections of the scRNA-seq and scATAC-seq malignant cells onto the 
normal brain cells was performed using Seurat62. Published fetal and 
adult data from scRNA-seq24–26 and scATAC24,25 were integrated into 
the normal brain cell reference map and cell types were annotated on 
the basis of the original reports. For scRNA-seq data, variable genes 
for principal component analysis (PCA) were selected on the basis of 
the normal brain cell data. Transfer anchors were identified using PCA 
reduction. For scATAC-seq data, all malignant cell fragments were quan-
tified on the peak feature of normal brain cells. Transfer anchors were 
identified using latent semantic indexing reduction. Cell states were 
assigned on the basis of the maximum prediction score for each lineage.

NMF analysis
We performed NMF analysis using the consensus NMF (cNMF) pack-
age63. Briefly, we identified the top 2,000 variable genes in the oligoden-
droglioma and astrocytoma Smart-seq2 scRNA-seq datasets16,17 using 
Seurat’s ‘FindVariableFeatures()’ function. In addition to these variable 
genes, we included genes defined as markers for stemness, oligocyte 
and AC lineages16. We filtered the gene expression matrix to include 
only these variable genes and marker genes. In the ‘prepare’ script of 
cNMF, we set ‘-n-iter’ to 200 and tested over K values ranging from 2 to 
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25. We then performed factorization (‘factorize’), combination and K 
plot generation (‘k_selection_plot’) scripts. We selected K = 7 from the 
K plot because of the high stability and low error rate at this value. We 
ran the ‘consensus’ script with ‘--local-density-threshold’ set to 0.025 
and ‘--components’ set to 7. This script generated the usage matrix and 
the gene spectra.

Differential motif enrichment analysis
Motif enrichment scores for scATAC-seq data of glioma cells and normal 
brain cells were identified by chromVAR64. The top differential motifs 
were selected on the basis of the s.d. of the motif enrichment score. 
Motifs with similar sequences were collapsed into one motif through 
motif clustering65. Representative motifs in glioma cells and normal 
brain cells are shown in Extended Data Fig. 2.

Identification of CNAs
For scRNA-seq, we used the inferCNV package16 to identify the CNV 
events in MGH240. We used myeloid cells and T cell clusters as refer-
ence cells. We used the argument ‘--denoise --HMM --cluster_by_groups’ 
and set ‘--cutoff’ to 0.1. For scATAC-seq, the number of reads that fell 
into different cytobands of chromosomes was calculated and normal-
ized by sequencing depth. Regions on the blacklist were excluded. To 
avoid the considerable impact of short high-signal regions, we limited 
the relative read count to the 20–80% range by replacing values out of 
this range. The CNV estimation was performed for each cell compared 
to the oligodendrocyte cells.

Permutation tests between NPC ratio and proliferation scores 
and between genetic lesions and DNA methylation
To evaluate the significance with which genetic lesions were associ-
ated with alternate cell states, we first ranked tumors on the basis of 
their NPC ratio or proliferation score. We then assessed the frequency 
of each genetic event in the top 50 tumors compared to 50 tumors 
randomly selected from TCGA cohort. This random selection process 
was repeated 1,000 times to calculate the probability (P value) that the 
frequency of genetic events in the randomly selected group would be 
as high or higher than the top 50 tumors. Similarly, for the permutation 
test on DNA methylation, tumors were ranked by NPC ratio or prolifera-
tion score. We calculated the average DNA methylation level in the top 
50 tumors and compared it to the average level in 50 tumors randomly 
selected from TCGA cohort. This random selection was performed 
1,000 times to determine the probability (P value) that the average 
DNA methylation level in the randomly selected group would be as low 
or lower than the top 50 tumors.

Statistical analysis of IFNA/B and CDKN2A codeletion and 
other IFN-related gene deletions
To ascertain the prevalence of codeletion of IFNA/B and CDKN2A, we 
analyzed various cancer types within TCGA database. For each cancer 
type, we randomly selected 100 tumor samples and repeated this 
process 1,000 times to calculate the average codeletion frequency. 
A similar method was applied to assess the frequency of codeletion 
across different grades of IDH-mutant gliomas. Furthermore, to evalu-
ate the statistical enrichment of deletions among other IFN-related 
genes (for example IRF1, STAT1, SETD2 and IFIT1) within various grades 
of IDH-mutant gliomas, we randomly sampled different grades of 
IDH-mutant gliomas 1,000 times and computed the average deletion 
frequency of these IFN-related genes. Then, t-tests were conducted 
to assess the statistical differences in the average percentages for all 
examined conditions.

Identification of malignant cell-specific IFN signature
IFN signature genes were extracted from the gene set enrichment 
analysis (GSEA)66 hallmarks gene database and clustered on the basis 
of their expression across malignant cells, oligodendrocytes, T cells 

and myeloid cells in scRNA-seq data for IDH-mutant gliomas (Extended 
Data Fig. 4c). Genes with the highest expression in malignant cells 
were integrated into a malignant cell-specific IFN signature. Gene set 
variation analysis (GSVA) scores for the original IFN signature and the 
malignant cell-specific IFN signature were calculated and compared.

DNA methylation analysis
The 450K DNA methylation data15 of TCGA IDH-mutant gliomas was 
downloaded from UCSC Xena67 and global DNA methylation levels were 
calculated across all probes in the matrix for each sample. We defined 
a set of methylation-sensitive genes using published data68. Here, we 
collated genes that were both hypomethylated and upregulated by 
treatment with DNMT1 inhibitor in a glioma cell line.

Gene enrichment variation score analysis
Bulk RNA-seq data for TCGA IDH-mutant gliomas were downloaded 
from UCSC Xena and the gene enrichment variation scores were cal-
culated using the GSVA r package.

Quantification of transposable elements
Malignant cells from scRNA-seq data were identified and their raw reads 
were extracted by all reads and processed by SalmonTE to quantify the 
expression levels of each transposable element subfamily. The value 
of all retroelements in major categories (L1, SVA, LTR, ERV, Alu and 
MER) was summed.

Statistics and reproducibility
The sample size of ten tumors for our scATAC-seq experiments was 
based on prior scATAC-seq studies in glioma, where sample sizes 
of fewer than ten tumors were sufficient to capture overall pat-
terns of chromatin accessibility across tumors20,69. No tumors were 
excluded in our analyses but cells not meeting quality control met-
rics described above were excluded. Tumor samples were collected 
prospectively without randomization or blinding procedures. The 
specific statistical tests used for the different analyses performed are 
described in the relevant sections above. Before statistical testing, 
data were analyzed to confirm that they met the assumptions of the 
statistical tests used.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Processed scATAC-seq and scRNA-seq data are available through 
the Gene Expression Omnibus under accession number GSE241745. 
Raw data are available through the dbGaP under accession number 
phs003697. The human glioma bulk RNA-seq and methylation data 
were obtained from TCGA Research Network (http://cancergenome.
nih.gov/). All other data supporting the findings of this study are avail-
able from the corresponding author on reasonable request. Source 
data are provided with this paper.

Code availability
Original code for the analyses performed in this study was depos-
ited on GitHub (https://github.com/BernsteinLab/IDH_mutant_ 
gliomas_progression_2024).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Identification of malignant cells and their 
developmental states from scRNA-seq and scATAC-seq data. a. Genome 
tracks show aggregated (pseudo-bulk) scATAC-seq data for IDH-mutant gliomas 
(n=10) over a representative neural locus (ASCL1). b. UMAP visualization of 
IDH-mutant glioma cells profiled by scRNA-seq and scATAC-seq. The leftmost 
plots indicate annotated malignant cells, while the others depict expression or 
promoter and gene body accessibility (red) of cell type-specific genes. c. Genome 
tracks show aggregated scRNA-seq and scATAC-seq data over representative 
cell type-specific genes. d. CNAs inferred from scATAC-seq data for malignant 
cells from IDH-mutant cohorts used in this study (see Methods). CNAs inferred 

directly from the scATAC-seq data (right) were consistent with CNAs derived by 
applying inferCNV to imputed gene activity scores (left). e. UMAP visualizations 
of integrated scRNA-seq and scATAC-seq data from normal fetal and adult brain 
cells. Cells are colored by annotated cell types (left) and donor types (right). f. Pie 
charts depict the distributions of cell state annotations nominated by scRNA-
seq (left) or scATAC-seq (right). g. Gene programs enriched in OPC-like cells 
from IDH-mutant oligodendrogliomas (IDH-O) or astrocytomas (IDH-A) by NMF 
analysis. h. Genome tracks show aggregated scATAC-seq data for each cell state 
over oligodendrocyte- (APOD) and astrocyte-specific (APOE) genes.
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Extended Data Fig. 2 | See next page for caption.

http://www.nature.com/natcancer


Nature Cancer

Article https://doi.org/10.1038/s43018-024-00865-3

Extended Data Fig. 2 | Marker genes and TF motifs associated with glioma 
cell states. a. Heatmaps show the expression of variable genes (rows) across 
individual brain or malignant cells (columns). Cells are grouped by their assigned 
states. b. Heatmaps depict TF motif enrichments (rows) in scATAC-seq profiles 
for individual brain or malignant cells (columns). c. Genome tracks show 
aggregate accessibility over portions of the MYC and PDGFRA loci in normal brain 
and malignant glioma cell types. Shaded intervals correspond to an OPC-specific 

enhancer in the MYC locus that harbors a genetic variant associated with glioma 
risk (left) and an OPC-specific enhancer implicated in PDGFRA induction.  
d. Heatmaps show pairwise correlations of scRNA-seq (top) or scATAC-seq 
(bottom) data for normal brain cells or malignant glioma cells grouped by their 
cell type classifications, as in Fig. 2c, but with data from three high-grade IDH-
mutant gliomas with matched scRNA-seq and scATAC-seq data.
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Extended Data Fig. 3 | Glioma progression associated with increasing 
proportions of NPC-like cells. a. Box plots depict proportions of OPC-like and 
NPC-like cells in IDH-mutant gliomas, stratified by grade and subtype (n=7 for 
IDHO grade 2, n=2 for IDHO grade 3, n=5 for IDHA grade 2, n=11 for IDHA grade 3, 
n=5 for IDHA grade 4). Boxes depict 25th, 50th and 75th percentiles, and whiskers 
depict extreme values. One-tailed t-test P-value: 0.013 for NPC-like proportions. 
b. Box plots depict relative proportions of NPC-like versus OPC-like cells, inferred 
from bulk expression data for IDH-mutant gliomas (TCGA), stratified by grade 
and subtype (n=81 for IDHO grade 2, n=70 for IDHO grade 3, n=114 for IDHA 
grade 2, n=104 for IDHA grade 3, n=7 for IDHA grade 4). One-tailed t-test P-value: 
0.039; *** defines p<0.001. c. Barplot depicts the ratio of NPC-like to OPC-like 
cells in scRNA-seq data for six matched pairs of primary and recurrent tumors. 

Data are presented as mean values +/- SEM. d. UMAP visualization of malignant 
cells projected onto normal brain cells, as in Figs. 1b and 3a, with heat depicting 
the proliferation scores of individual malignant cells. e. Trajectory analysis was 
performed on combined scRNA-seq data for malignant cells and normal OPCs, 
using the Monocle package. The pseudotime coloring and best-fit trajectory 
are consistent with progression from normal OPC to OPC-like and then NPC-like 
malignant cells. f. Plot depicts CNAs for loci subject to CNAs (rows) across 
single cells (columns) from a second IDH-mutant glioma (OPK438), as in Fig. 
3g. Malignant cells are grouped into subclones based on CNAs, and compared 
to normal cells from the same resection (left). Malignant cell state assignments 
indicated.
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Extended Data Fig. 4 | Validation of IFN signature in malignant cells and 
glioma organoids. a. Boxplot depicts IFN signature scores (RNA-seq) for grade 
2 IDH mutant and WT gliomas (n=35 for IDH mutant and n=5 for IDH WT) with 
high purity estimates (>80%). Boxes depict 25th, 50th and 75th percentiles, and 
whiskers depict extreme values. One-tailed t-test P-values: *** defines p<0.001. 
b. Heatmap shows DNA methylation levels, proliferation scores, and IFN scores 
(rows) in grade 2 IDH-mutant and grade 2 IDH WT TCGA gliomas (columns) 
based on the 2016 WHO classification. c. Heatmap depicts the expression of IFN 

pathway genes (columns) clustered by their expression across malignant cells, 
immune cell lineages, and oligodendrocytes (rows). This analysis distinguished 
malignant cell-specific IFN-related genes. d. UMAP visualization of scRNA-seq 
data compares cells from a glioma organoid (red) and the primary tumor from 
which it was derived (blue). e. Heatmaps depict the expression of variable genes 
associated with different cell states (rows) in single cells (columns) grouped 
by nominal cell identity. The glioma organoids recapitulate cell types and 
transcriptional programs as seen in the primary tumors.
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Extended Data Fig. 5 | IFN genes are upregulated by DNMT1 and IDH 
inhibitors. a. Box plots depict module scores (Seurat) for gene correlates of 
DNA methylation loss in IDH-mutant glioma organoids treated with DNMT1 
inhibitor or control (n=3 technical replicates). Boxes depict 25th, 50th and 
75th percentiles, and whiskers depict extreme values. b. Running Enrichment 
Score (GSEA) for IFNa genes regulated by DNMT1 inhibitor. c. Box plots depict 
module scores (Seurat) for gene correlates of methylation loss in IDH-mutant 
gliomas resected from patients treated with IDH inhibitors. Left: paired pre- 

and post-treatment samples from a single patient. Right: unpaired samples 
from 6 untreated and 2 treated patients. Two-tailed t-test P values: ***p<0.001. 
d. Running Enrichment Score (GSEA) for IFNa genes in IDH-mutant gliomas 
resected from patients treated with IDH inhibitor (as in c). e. Multivariate survival 
analysis for high-grade IDH-mutant gliomas (grade 3 and 4) stratified by NPC 
enrichment score and tumor grade. Hazard ratios (HR) and P-value associated 
with NPC-enriched tumors are indicated.
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