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The in vitro susceptibility testing interpretive criteria (STIC) for piperacillin/tazobactam (TZP) against Enterobacterales were recently 
updated by the US Food and Drug Administration, Clinical and Laboratory Standards Institute, and European Committee on 
Antimicrobial Susceptibility Testing. The United States Committee on Antimicrobial Susceptibility Testing (USCAST) also recently 
reviewed TZP STIC for Enterobacterales and arrived at different STIC for Enterobacterales. Here, we explain our recommendations 
and rationale behind them. Based on our review of the available data, USCAST does not recommend TZP STIC for certain 
Enterobacterales species that have a moderate to high likelihood of clinically significant AmpC production (Enterobacter cloacae, 
Citrobacter freundii, and Klebsiella aerogenes only) or for third-generation cephalosporin-nonsusceptible Enterobacterales. USCAST 
recommends a TZP susceptibility breakpoint of ≤ 16/4 mg/L for third-generation cephalosporin-susceptible Enterobacterales and 
only endorses the use of extended infusion TZP regimens for patients with infections due to these pathogens.
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Piperacillin/tazobactam (TZP) is recommended as a first-line 
treatment for Enterobacterales infections [1–3]. Despite its 
wide-scale use [4], there has been considerable debate on its 
role for infections caused by extended-spectrum β-lactamase 
(ESBL) and AmpC-producing Enterobacterales [5–7]. Data 
indicate that 15%–20% of Escherichia coli and Klebsiella spp. 
in the United States are third-generation cephalosporin- 
nonsusceptible (3GC-NS) [8–11], a phenotypic marker of 
ESBL expression, and that a majority of these isolates harbor 
CTX-M enzymes [12]. Although tazobactam is a potent inhib-
itor of most CTX-M enzymes [13–15], TZP has variable in vitro 
activity against ESBL-producing Enterobacterales [16–18]. 
The reduced TZP susceptibility against ESBL-producing 

Enterobacterales is multifactorial but driven in large part by 
the copresence of other β-lactamases [16, 18]. Concerns have 
also been raised regarding the use of TZP for Enterobacterales 
(eg, Enterobacter cloacae, Citrobacter freundii, and Klebsiella 
aerogenes) that have a moderate to high likelihood of clinically 
significant AmpC production, given that tazobactam does not 
efficiently inhibit these enzymes [5, 19].

The in vitro susceptibility testing interpretive criteria (STIC) 
for TZP against Enterobacterales were recently updated by the 
US Food and Drug Administration (FDA) [20], Clinical and 
Laboratory Standards Institute (CLSI) [21, 22], and European 
Committee on Antimicrobial Susceptibility Testing (EUCAST) 
[23] (Tables 1 and 2). The United States Committee on 
Antimicrobial Susceptibility Testing (USCAST) also recently 
convened to review TZP STIC for Enterobacterales. While 
USCAST appreciates the expertise of these organizations, 
USCAST arrived at different TZP STIC for Enterobacterales. 
Here, we explain our recommendations (Table 1), the rationale 
behind them, and the future research that is needed to further 
inform these STIC. Of note, USCAST did not discuss the optimal 
method for incorporating their proposed TZP STIC across clinical 
microbiologic laboratories in their deliberations. USCAST recog-
nizes that many laboratories use obsolete breakpoints for a variety 
of reasons [24] and recommends that clinicians work with their 

1354 • CID 2024:79 (15 December) • Lodise et al

Clinical Infectious Diseases                                          

V I EW P O I N T S

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/article/79/6/1354/7696814 by U

niversidade Federal D
e M

inas G
erias user on 18 D

ecem
ber 2024

https://orcid.org/0000-0002-4730-0655
mailto:thomas.lodise@acphs.edu
mailto:thomas.lodise@acphs.edu
mailto:jmpogue@med.umich.edu
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/cid/ciae328


Ta
bl

e 
1.

 
U

ni
te

d 
St

at
es

 C
om

m
itt

ee
 o

n 
A

nt
im

ic
ro

bi
al

 S
us

ce
pt

ib
ili

ty
 T

es
tin

g,
 U

S 
Fo

od
 a

nd
 D

ru
g 

A
dm

in
is

tr
at

io
n,

 C
lin

ic
al

 a
nd

 L
ab

or
at

or
y 

St
an

da
rd

s 
In

st
itu

te
, 

an
d 

Eu
ro

pe
an

 C
om

m
itt

ee
 o

n 
A

nt
im

ic
ro

bi
al

 
Su

sc
ep

tib
ili

ty
 T

es
tin

g 
Su

sc
ep

tib
ili

ty
 T

es
t I

nt
er

pr
et

iv
e 

Cr
ite

ri
a 

fo
r 

Pi
pe

ra
ci

lli
n/

Ta
zo

ba
ct

am
 A

ga
in

st
 E

nt
er

ob
ac

te
ra

le
s

C
ur

re
nt

 S
TI

C
 (µ

g/
m

L)
 b

y 
O

rg
an

iz
at

io
n

E
nt

er
ob

ac
te

ra
le

s

U
ni

te
d 

S
ta

te
s 

C
om

m
itt

ee
 o

n 
A

nt
im

ic
ro

bi
al

 
S

us
ce

pt
ib

ili
ty

 T
es

tin
g

C
lin

ic
al

 a
nd

  
La

bo
ra

to
ry

 S
ta

nd
ar

ds
 In

st
itu

te
 [2

1]
U

S
 F

oo
d 

 
an

d 
D

ru
g 

A
dm

in
is

tr
at

io
n 

[2
0]

a

E
ur

op
ea

n 
C

om
m

itt
ee

 
on

 A
nt

im
ic

ro
bi

al
 

S
us

ce
pt

ib
ili

ty
 

Te
st

in
g 

[2
3]

b

S
us

ce
pt

ib
le

R
es

is
ta

nt
S

us
ce

pt
ib

le
S

us
ce

pt
ib

le
, d

os
e 

 
de

pe
nd

en
t

R
es

is
ta

nt
S

us
ce

pt
ib

le
In

te
rm

ed
ia

te
R

es
is

ta
nt

S
us

ce
pt

ib
le

R
es

is
ta

nt

A
ll 

E
nt

er
ob

ac
te

ra
le

s
N

o 
re

co
m

m
en

de
d 

S
TI

C
≤

 8
/4

c
16

/4
d

≥
 3

2/
4

≤
 8

/4
16

/4
≥

 3
2/

4
≤

 8
/4

>
 1

6/
4

E
nt

er
ob

ac
te

ra
le

s 
th

at
 h

av
e 

a 
m

od
er

at
e 

to
 h

ig
h 

lik
el

ih
oo

d 
of

 c
lin

ic
al

ly
 

si
gn

ifi
ca

nt
 A

m
pC

 p
ro

du
ct

io
n

N
o 

re
co

m
m

en
de

d 
S

TI
C

Th
ird

-g
en

er
at

io
n 

ce
ph

al
os

po
rin

-n
on

su
sc

ep
tib

le
 E

nt
er

ob
ac

te
ra

le
s

N
o 

re
co

m
m

en
de

d 
S

TI
C

Th
ird

-g
en

er
at

io
n 

ce
ph

al
os

po
rin

-s
us

ce
pt

ib
le

 E
nt

er
ob

ac
te

ra
le

s 
th

at
 d

o 
no

t 
ha

ve
 a

 m
od

er
at

e 
to

 h
ig

h 
lik

el
ih

oo
d 

of
 c

lin
ic

al
ly

 s
ig

ni
fic

an
t 

A
m

pC
 

pr
od

uc
tio

ne

16
/4

f
>

 1
6/

4

A
bb

re
vi

at
io

ns
: S

TI
C

, s
us

ce
pt

ib
ili

ty
 t

es
t 

in
te

rp
re

tiv
e 

cr
ite

ria
.  

a C
lin

ic
al

 e
ffi

ca
cy

 w
as

 s
ho

w
n 

fo
r 

Es
ch

er
ic

hi
a 

co
li 

an
d 

Kl
eb

si
el

la
 p

ne
um

on
ia

e.
  

b
M

in
im

um
 in

hi
bi

to
ry

 c
on

ce
nt

ra
tio

n 
of

 1
6 

m
g/

L 
is

 a
n 

ar
ea

 o
f 

te
ch

ni
ca

l u
nc

er
ta

in
ty

.  
c B

as
ed

 o
n 

la
be

le
d 

do
si

ng
 o

f 
3.

37
5 

g 
or

 4
.5

 g
 e

ve
ry

 6
 h

ou
rs

 a
dm

in
is

te
re

d 
ov

er
 0

.5
 h

ou
rs

.  
d
S

us
ce

pt
ib

le
 d

os
e 

de
pe

nd
en

t.
 B

as
ed

 o
n 

a 
do

se
 o

f 
4.

5 
g 

ev
er

y 
6 

ho
ur

s 
ov

er
 3

 h
ou

rs
 o

r 
4.

5 
g 

ev
er

y 
8 

ho
ur

s 
ad

m
in

is
te

re
d 

ov
er

 4
 h

ou
rs

.  
e
E

nt
er

ob
ac

te
ra

le
s 

th
at

 h
av

e 
a 

m
od

er
at

e 
to

 h
ig

h 
lik

el
ih

oo
d 

of
 c

lin
ic

al
ly

 s
ig

ni
fic

an
t 

A
m

pC
 p

ro
du

ct
io

n 
du

e 
to

 a
n 

in
du

ci
bl

e 
ch

ro
m

os
om

al
 a

m
pC

 g
en

e 
in

cl
ud

e 
En

te
ro

ba
ct

er
 c

lo
ac

ae
, C

itr
ob

ac
te

r f
re

un
di

i, 
an

d 
Kl

eb
si

el
la

 a
er

og
en

es
.  

f Th
is

 r
ec

om
m

en
da

tio
n 

is
 b

as
ed

 o
n 

a 
pi

pe
ra

ci
lli

n/
ta

zo
ba

ct
am

 d
os

e 
of

 4
.5

 g
 in

fu
se

d 
ov

er
 3

 h
ou

rs
 e

ve
ry

 6
 h

ou
rs

 o
r 

4.
5 

g 
in

fu
se

d 
ov

er
 4

 h
ou

rs
 e

ve
ry

 8
 h

ou
rs

.

USCAST TZP STIC Recommendations for Enterobacterales • CID 2024:79 (15 December) • 1355

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/article/79/6/1354/7696814 by U

niversidade Federal D
e M

inas G
erias user on 18 D

ecem
ber 2024



microbiologic departments to ensure the most clinically appropri-
ate STIC are used for interpreting TZP susceptibility results.

Recommendation 1

USCAST does not recommend TZP STIC for Enterobacterales 
with a moderate to high likelihood of clinically significant 
AmpC production due to an inducible chromosomal ampC 
gene. This recommendation includes E. cloacae, C. freundii, 
and K. aerogenes only.

Rationale

This USCAST recommendation, which aligns with the recom-
mendations of the current Infectious Diseases Society of 
America (IDSA) guidance on the treatment of antimicrobial- 
resistant gram-negative infections [5], was largely based on the 
high potential for selection of derepressed AmpC mutants 
during TZP treatment of patients with infections due to these 
pathogens and the lack of in vitro activity of TZP against these 
derepressed mutants. Tazobactam does not efficiently inhibit 
most AmpC β-lactamases [19, 25–27]. While the degree of 
AmpC production varies by Enterobacterales that possess a 
chromosomal ampC gene, there is a high potential for selection 
of derepressed AmpC mutants when administering a labile 
weak inducer such as piperacillin for treatment of infections 
due to E. cloacae, C. freundii, and K. aerogenes [6, 19, 28–32]. 
Although TZP is considered a weak AmpC inducer [33], dere-
pressed mutants of these species are usually TZP-resistant [19].

The USCAST recommendation was also informed by the 
negative signals observed in the pilot (n = 72), multicentered, 
randomized, open-label trial that compared TZP with merope-
nem for definitive treatment of bloodstream infections caused 
by AmpC β-lactamase–producing Enterobacterales (MERINO-2) 
[34]. Overall, no significant difference in the primary compos-
ite failure outcome (30-day mortality, clinical failure, microbi-
ological failure, or microbiological relapse) was observed 
between treatment groups. However, 53% of patients in 
the trial were infected with Enterobacterales that are unlikely 
to develop clinically significant AmpC expression (ie, 
Citrobacter braakii, Morganella morganii, Serratia marcescens, 
Providencia spp., or Serratia spp.) [28]. Among the subgroup 
of 32 patients with infections due to Enterobacterales with a 
moderate to high likelihood of clinically significant AmpC pro-
duction (ie, Enterobacter spp.), a nonsignificantly higher propor-
tion of patients in the TZP arm met the primary composite failure 

outcome (28% vs 7%, respectively; P = .14). These findings were 
consistent with those from a recent observational study that dem-
onstrated significantly higher treatment failure rates among pa-
tients who received piperacillin ± tazobactam relative to those 
who received a carbapenem or cefepime for definitive treatment 
of wild-type AmpC β-lactamase–producing Enterobacterales 
bloodstream infections or pneumonia [35]. In this study,   
>75% of patients in the piperacillin group were infected with 
an Enterobacterales with a moderate to high likelihood of clini-
cally significant AmpC production.

USCAST acknowledges that the results of several real-world 
observational studies have not conclusively demonstrated that 
there is a significant increase in failure with TZP relative to car-
bapenems for patients with these infections [36, 37]. However, 
these studies were small and suffered from significant confound-
ing by indication where more severely ill patients received a car-
bapenem. These studies also included Enterobacterales species 
with a low risk of clinically significant AmpC production (eg, 
S. marcescens) and/or those that lacked a chromosomal AmpC 
enzyme altogether (eg, Citrobacter koseri), limiting their applica-
bility. Of note, the USCAST recommendation only includes 
E. cloacae, C. freundii, and K. aerogenes and does not apply to 
other Enterobacterales (eg, Hafnia alvei, Citrobacter youngae, 
Yersinia enterocolitica) with a moderate to high likelihood of clin-
ically significant AmpC production due to the dearth of TZP data 
against these pathogens. For use of TZP in the treatment of 
patients with infections due to these other AmpC β-lactamase– 
producing Enterobacterales with a moderate to high likelihood 
of clinically significant AmpC production, USCAST identified 
this as an area that merits further research.

Recommendation 2

USCAST does not recommend STIC for TZP against 3GC-NS 
Enterobacterales.

Rationale

This USCAST recommendation was based on its review of avail-
able microbiological, preclinical, in silico, and clinical data (pre-
dominately bloodstream infection data) and is in concordance 
with the recent recommendations of the IDSA Gram-Negative 
Guidance Panel [38]. TZP minimum inhibitory concentration 
(MIC) data for Enterobacterales from the US SENTRY 
Antimicrobial Surveillance Program (2020–2022) are shown in 
Figure 1. The tentative epidemiological cutoff (ECOFF) values 

Table 2. Previous Piperacillin/Tazobactam Susceptibility Testing Interpretative Criteria for Enterobacterales by Organization

Organization Susceptible Intermediate Resistant

US Food and Drug Administration [20] ≤16/4 32–64 ≥128/4

Clinical and Laboratory Standards Institute [21] ≤16/4 32–64 ≥128/4

European Committee on Antimicrobial Susceptibility Testing [23] ≤8/4 16 (area of technical uncertainty) >16/4

United States Committee on Antimicrobial Susceptibility Testing Never addressed
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for thresholds from 95.0% to 99.9% were calculated for Proteus 
mirabilis, E. coli, Klebsiella oxytoca, and Klebsiella pneumoniae 
and ranged from 0.5 to 1, 4 to 8, 4 to 8, and 8 to 16 mg/L, re-
spectively (Supplementary Table 1). While these data suggest 
the ECOFF can be used to help inform the TZP susceptibility 
breakpoint for Enterobacterales, there were stark differences 
in the TZP MIC distributions between ceftriaxone- 
nonsusceptible (CRO-NS) and ceftriaxone-susceptible 
(CRO-S) isolates (Figure 2, Supplementary Figures 1–3). 
USCAST believed the highly discordant TZP MIC distributions 
between CRO-NS vs CRO-S Enterobacterales isolates limited 
the utility of the ECOFF in informing the TZP susceptibility 
breakpoint against 3GC-NS Enterobacterales.

Available preclinical pharmacokinetic/pharmacodynamic 
(PK/PD) data suggest that currently approved TZP dosing 
schemes are inadequate against the range of MIC values currently 
considered susceptible for 3GC-NS Enterobacterales. Using a pi-
peracillin 50% free time above the MIC (piperacillin 50% fT >  
MIC) as the PK/PD target associated with efficacy for TZP, 
most studies demonstrate that the probability of achieving this 
PK/PD target with TZP administered as a 0.5-hour intermittent 
infusion or ≥ 3-hour extended infusion is >90% for pathogens 
with MIC values ≤ 8/4 mg/L and ≤16/4 mg/L, respectively [39– 
44]. Although organizations have used this as part of their 
STIC justifications, there are 2 main issues with limiting the 
PK/PD assessment to this target. First, while generally accepted, 
data to support this fT > MIC target for piperacillin are lacking 
[20]. Second, in addition to the piperacillin probabilty of target 
attainment profile, tazobactam exposures are a critical 

determinant in defining the PK/PD profile of TZP against 
3GC-NS Enterobacterales as piperacillin is readily hydrolyzed 
by ESBLs. Data from hollow fiber infection models of 
ESBL-producing Enterobacterales infections indicate tazobac-
tam exposures associated with intermittent-infusion or 
extended-infusion TZP regimens are insufficient for restoring 
the activity of piperacillin against 3GC-NS E. coli and Klebsiella 
spp. within the range of TZP MIC values currently considered 
susceptible by the FDA, CLSI, and EUCAST [20, 21, 23, 45, 46].

The failure demonstrated in these models can be explained 
by a close assessment of tazobactam PK/PD. The most infor-
mative preclinical PK/PD assessment of tazobactam was a 
1-compartment in vitro infection model that examined a range 
of tazobactam doses in combination with piperacillin 4 g IV 
(intravenous; 0.5 hour) every 6 hours against 3 ESBL-producing 
strains of Enterobacterales (1 E. coli and 2 K. pneumoniae) 
with TZP MIC values of 4/4 mg/L, 2/4 mg/L, and 1/4 mg/L 
[47]. In this analysis, the percentage of time during the dosing 
interval that free tazobactam concentrations exceeded the TZP 
MIC value was identified as the PK/PD index most associated 
with activity. Importantly, free tazobactam concentrations 
had to exceed the TZP MIC value for 64% and 77% of the 
dosing interval to achieve net bacterial stasis and 1 log10 

colony-forming unit reduction, respectively, when tazobactam 
was administered with piperacillin 4 g IV (0.5 hour) every 
6 hours. In Monte Carlo simulations of critically ill [48] patients 
with estimated creatinine clearances (CLCR) of 60–100 mL/min 
[27], the probabilities of achieving these critical tazobactam ex-
posures associated with stasis and 1 log10 killing for TZP 4.5 g 

Figure 1. Piperacillin-tazobactam activity against Enterobacterales from US medical centers (2020–2022). Enterobacterales include Escherichia coli (n = 8750), Klebsiella 
pneumoniae (n = 5436), Klebsiella oxytoca (n = 1597), and Proteus mirabilis (n = 2187).
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IV every 6 hours administered as an 0.5- or 3-hour infusion were 
less than approximately 90% for 3G-R Enterobacterales with 
TZP MIC values greater than 4/4 mg/L and 2/4 mg/L, respec-
tively, depending on infusion duration and CLCR 

(Supplementary Table 2). Considering that >50% of the ob-
served TZP MIC values among 3G-R Enterobacterales in 
SENTRY were ≥4/4 mg/L (Figure 2), USCAST believes that 
even the most favorable interpretation of the in silico data 
[27] does not support the use of TZP in the treatment of pa-
tients with 3GC-NS Enterobacterales infections.

The USCAST recommendation was also informed by the 
MERINO trial [49], which compared definitive treatment 
with meropenem 1 g every 8 hours (0.5-hour infusion) or 
TZP 4.5 g every 6 hours (0.5-hour infusion) in adult patients 
with TZP-S, ceftriaxone-R (CRO-R) E. coli, or K. pneumoniae 
bloodstream infections. In this international, multicenter, 
open-label, randomized clinical trial, 30-day mortality was 
higher in the TZP arm relative to the meropenem arm 
(12.3% vs 3.7%, respectively; risk difference, 8.6%; 1-sided 
97.5% confidence interval [CI], −α to 14.5%; P = .90 for nonin-
feriority) [49]. Similar trends in favor of meropenem were dem-
onstrated in the secondary outcomes of clinical cure, 
microbiological cure, and the development of resistance [49].

To investigate the potential reason(s) for the observed 30-day 
mortality differences between treatments in MERINO-1, post 

hoc analyses were performed, and an unexpectedly high rate of 
nonsusceptibility to TZP was demonstrated using broth micro-
dilution at the central laboratory compared to Vitek or disk dif-
fusion at the local site [50]. When the analysis was limited to 
patients with TZP-susceptible isolates via broth microdilution 
by the current FDA, CLSI, and EUCAST TZP susceptible break-
point of ≤8/4 mg/L [20, 21, 23], 30-day mortality was still higher 
with TZP but no longer reached statistical significance (9% vs 
5%, respectively; 95% CI, −2% to 11%). In the multivariate re-
gression analyses, TZP MIC >16/4 mg/L was identified as the 
TZP MIC threshold best associated with 30-day mortality 
(30-day mortality was 50% [5 of 10] in patients with isolates 
that had TZP MIC values >16/4 mg/L vs 9% [13 of 147] in pa-
tients with isolates that had TZP MIC values ≤16/4 mg/L) [50].

While the findings from these post hoc clinical analyses sup-
port the FDA, CLSI, and EUCAST TZP susceptibility break-
points [20, 21, 23], USCAST did not find them to be sufficient 
for endorsing a TZP susceptibility breakpoint of ≤8/4 mg/L 
for several reasons. First, initial isolates were only available in 
84% of patients for the post hoc analysis, and 30-day mortality 
was higher among patients in the TZP arm with nonavailable vs 
available isolates (16.7% vs 11.5%, respectively) [50]. USCAST 
was concerned that this may have biased the findings in favor of 
TZP. Second, closer inspection of the 30-day mortality data 
by TZP MIC demonstrated that mortality exceeded 10% in 

Figure 2. Piperacillin-tazobactam activity against Enterobacterales from US medical centers (2020–2022) stratified by ceftriaxone susceptibility. Enterobacterales include 
Escherichia coli (n = 8750), Klebsiella pneumoniae (n = 5436), Klebsiella oxytoca (n = 1597), and Proteus mirabilis (n = 2187). Enterobacterales were considered susceptible 
if the ceftriaxone MIC value was ≤1 mg/L. Enterobacterales were considered nonsusceptible if the ceftriaxone MIC value was ≥2 mg/L [21]. Abbreviation: MIC, minimum 
inhibitory concentration.
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TZP-treated patients with CRO-R Enterobacterales that had a 
TZP MIC value of 2 mg/L. Among, TZP-treated patients 
with TZP MIC values ≤1 mg/L, 30-day mortality exceeded 
25%. This “u-shaped” mortality curve as a function of increasing 
TZP MIC values weakens any association between TZP MIC 
and outcome in this study [50]. Third, although not powered 
to examine subgroups, the differences in 30-day mortality be-
tween TZP- and meropenem-treated patients in the original 
analyses were considerably more pronounced in sicker and/or 
more complicated populations [49]. Despite the well-recognized 
limitations associated with subgroup analyses, USCAST believed 
these populations were more representative of patients encoun-
tered in practice with 3GC-NS Enterobacterales bloodstream in-
fections [51].

The USCAST recommendation was not unanimous, and 1 
dissenting voter was concerned the available data were pre-
dominately related to patients with bloodstream infections 
and did not rule out the potential role of TZP for the treatment 
of patients with complicated urinary tract infections (cUTIs) 
due to 3GC-NS Enterobacterales as there is some evidence 
that supports TZP usage in this setting [52–55]. However, there 
are significant limitations to the observational studies that have 
addressed the role of TZP for cUTIs, most notably confounding 
by indication [52, 54, 55], and the lone cUTI randomized clinical 
trial had a small sample size, limiting interpretation [53]. 
Additionally, the tazobactam PK/PD concerns previously de-
scribed remain relevant to cUTIs. While USCAST acknowledges 
that the role of TZP for 3GC-NS Enterobacterales in cUTIs re-
mains unresolved, USCAST believed the most prudent recom-
mendation at this time was not to have a TZP susceptibility 
breakpoint for 3GC-NS Enterobacterales given the uncertainties 
regarding the effectiveness of TZP in these patients.

The USCAST members were in full agreement that additional 
preclinical PK/PD studies with a more diverse group of 3GC-NS 
Enterobacterales isolates are needed to better understand the 
PK/PD of TZP against 3GC-NS Enterobacterales. If TZP use is 
supported by additional preclinical evidence, further random-
ized clinical trials would then be warranted to better quantify 
the efficacy of TZP for patients with 3GC-NS Enterobacterales 
infections. As part of these proposed studies, TZP should be eval-
uated in patients with less invasive 3GC-NS Enterobacterales 
infections, such as cUTIs, given the commonality of these infec-
tions and uncertainty of TZP’s role for these patients. Of note, 
PETERPEN [56] is an ongoing, open-label, randomized clinical 
trial comparing extended-infusion TZP and meropenem for 
ESBL Enterobacterales bloodstream infections, and results of 
this study will help inform this conversation.

Recommendation 3

USCAST recommends that the STIC for TZP against 3GC-S 
Enterobacterales that do not have a moderate to high likelihood 
of clinically significant AmpC production due to an inducible 

chromosomal AmpC gene are susceptible at MIC values 
≤16/4 mg/L and resistant at MIC values >16/4 mg/L. This rec-
ommendation is based on TZP dosing regimens administered 
as an extended infusion (4.5 g infused over 3 hours every 6 
hours or 4.5 g infused over 4 hours every 8 hours).

Rationale

The USCAST recommendations were primarily based on re-
view of available microbiological and in silico data. TZP MIC 
distribution data from the SENTRY Antimicrobial Surveillance 
Program for CRO-S Enterobacterales (Figure 2) indicate that 
more than 95% of isolates have a TZP MIC ≤ 8/4 mg/L, support-
ing the FDA, CLSI, and EUCAST susceptibility breakpoint 
of ≤ 8/4 mg/L [20, 21, 23]. However, nearly 5% of CRO-S 
K. pneumoniae had a TZP MIC of 16/4 mg/L (Supplementary 
Figure 2), and USCAST therefore deemed that a 3GC-S 
Enterobacterales susceptibility breakpoint of ≤16/4 mg/L would 
be preferred if pharmacokinetically justified. USCAST endorses 
2 extended-infusion TZP regimens (ie, 4.5 g infused over 3 hours 
every 6 hours or 4.5 g infused over 4 hours every 8 hours) for its 
proposed 3GC-S Enterobacterales susceptibility breakpoint giv-
en that the results of published target attainment analyses indi-
cate the probability of achieving 50% piperacillin fT > MIC 
with these extended-infusion TZP regimens is >90% for patho-
gens with TZP MIC values ≤ 16 mg/L [40, 42, 57, 58]. Of note, 
these are the same 2 extended-infusion TZP regimens recom-
mended by CLSI for Enterobacterales with MIC values of 16/4 
mg/L (susceptible-dose dependent) [21, 22]. However, 
UCSAST preferentially recommends TZP 4.5 g (3-hour infu-
sion) every 6 hours for patients with CLCR ≥ 100 mL/min based 
on Monte Carlo simulation studies that evaluated the effect of 
varying CLCR on the observed probabilities of achieving 50% pi-
peracillin fT > MIC (Supplementary Table 3) [57, 59]. USCAST 
was opposed to the use of intermittent infusion TZP (4.5 g 
IV over 0.5 hours every 6 hours) for patients with 3GC-S 
Enterobacterales infections as the probability of achieving 
50% fT > MIC was <90% in simulated patients with (1) CLCR 

≥60 mL/min and TZP MIC of ≥8/4 mg/L, (2) CLCR ≥80 mL/ 
min and TZP MIC of ≥4/4 mg/L, and (3) CLCR ≥100 mL/min 
and TZP MIC of ≥2/4 mg/L (Supplementary Table 3) [57, 59].

While piperacillin retains activity against most 3GC-S 
Enterobacterales, data from the SENTRY Antimicrobial 
Surveillance Program (2007– 2010) demonstrate that the addi-
tion of tazobactam increases the piperacillin susceptibility 
rates (at a breakpoint of ≤16/4 mg/L) from 86% to 97% for 
K. pneumoniae and from 53% to 97% for E. coli (Figure 3). 
Thus, the presence of tazobactam is not immaterial to the 
considerations that surround TZP breakpoints for 3GC-S 
Enterobacterales. USCAST acknowledges that there are limited 
preclinical data that characterize the PK/PD targets associated 
with efficacy for piperacillin alone and piperacillin in the pres-
ence of tazobactam against 3GC-S Enterobacterales [20]. 
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However, there are clinical data that suggest that critically ill 
patients with gram-negative infections who achieve 50% fT >  
MIC with piperacillin and other β-lactams are more likely to 
have a positive clinical outcome [60–62].

Despite the notable data gaps, USCAST was in favor of 
these breakpoint recommendations based on the belief that 
use of TZP will largely be empiric for patients with 3GC-S 
Enterobacterales infections and that good stewardship practic-
es will foster deescalation in most circumstances to a narrower 
agent when 3GCs demonstrate susceptibility. It is important to 
note that the 3GC-S Enterobacterales susceptibility breakpoint 
of ≤16/4 mg/L is contingent upon use of extended-infusion 
TZP. If institutions find administration of extended-infusion 
TZP infeasible, a reasonable susceptibility breakpoint with 
intermittent-infusion TZP would be 8/4 mg/L, as recommend-
ed by the FDA, CLSI, and EUCAST [20, 21, 23]. However, 
the probability of achieving 50% piperacillin fT > MIC 
would be <90% for 3GC-S Enterobacterales with TZP MIC 
values ≤8 mg/L among some renal function subgroups with 
intermittent-infusion TZP (Supplementary Table 3) [57, 59]. 
Based on the Monte Carlo simulation studies that evaluated 
the effect of varying CLCR on achieving 50% piperacillin fT >  
MIC [57, 59], USCAST was not in favor of endorsing a TZP 
STIC for 3GC-S Enterobacterales that included a susceptible 
breakpoint for intermittent-infusion TZP dosing. USCAST 
unanimously agreed that additional preclinical PK/PD studies 
are needed to assess the piperacillin and tazobactam PK/PD 

targets associated with efficacy and using such targets to deter-
mine TZP dosing schemes necessary to ensure piperacillin’s 
activity against 3GC-S Enterobacterales.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, so 
questions or comments should be addressed to the corresponding author.
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