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KEY POINTS

� Anterolateral approaches to the spine have undergone significant advances in the past few
decades.

� Advances in intraoperative imaging, such as three-dimensional (3D) imaging and computer-
assisted navigation, have demonstrated advantages for patients and surgeons.

� Technologies such as robotics, augmented reality, and machine learning show great potential but
require careful evaluation.
HISTORICAL PERSPECTIVES

The history of spine surgery has been a continual
journey of innovation and adaptation, driven by
the relentless pursuit to better the human condi-
tion. Early documented treatments for spine pa-
thology date back to the sixteenth century BC
with accounts of the cervical spine and associated
cord injury management by Egyptian priests, the
physicians of that era. Simply put, the prescription
was rest, bandages, and dressings.1 It was only
two millennia later that the first surgical interven-
tion of the spine was reported.2 This article dis-
cusses the technological advances since then,
particularly related to anterolateral approaches to
spine surgery. The term anterolateral encom-
passes anterior, lateral, and oblique approaches.
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Anterior Approach

In 1906, Müller documented one of the earliest
anterior approaches to the lumbar spine. Müller
attempted to use a transperitoneal approach to
excise a tuberculosis abscess of the spine (ie,
Pott’s disease). Unfortunately, the procedure did
not have favorable outcomes overall and was aban-
doned.3 Nonetheless, NormanCapener built on this
approach in 1932 and described the anterior lum-
bar interbody fusion (ALIF). In 1960, Paul Harmon
revised Capener’s ALIF procedure to use an
extraperitoneal approach instead of a transperito-
neal approach. In particular, this procedure was
employed for those patients who had already failed
two or more posterior surgeries.4 Harmon demon-
strated satisfactory outcomes, even at a 12-year
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follow-up.4 Despite Harmon’s efforts early on, the
ALIF remained controversial.3

However, in 1997, the ALIF was reinvigorated by
Michael Mayer with the introduction of his mini-
open approach. The new approach reduced
operative time and resulted in less trauma to the
patient.5 The mini-open ALIF also became the
seed for the lateral and oblique approaches that
followed in the decades after.3

The anterior approach to the spine is achieved by
making an incision in the lower abdomen, moving
aside the abdominal viscera, and carefully retract-
ing the abdominal vasculature in front of the spine.
This creates a corridor that allows direct access to
the disc space and avoids direct manipulation of
the spinal nerves, reducing the risk of nerve injury.6

In its current form, the ALIF allows surgeons to
achieve maximal disc space visualization and
consequentially maximize the implant footprint. To
this end, endplate subsidence can be minimized.7

For degenerative disc disease, the stand-alone
ALIF has been shown to have better clinical and
radiographic outcomes, reduced operative time,
and blood loss compared to conventional posterior
approaches.8 In addition, the ALIF demonstrates
adequate clinical and radiographic outcomes for
spinal deformity. However, there remains a 13%
overall complication rate.7,9,10 Complications
include vascular injury, abdominal organ injury,
and retrograde ejaculation.11
Lateral Approach

Despite the advances of the ALIF, there was still a
need for less traumatic approaches to the spine.
This need was met by Luiz Pimenta in 2006 with
his pioneering of the lateral lumbar interbody
fusion (LLIF). The patient is placed in the lateral de-
cubitus position. The surgeon makes an incision in
the side of the patient’s torso before traversing
through the psoas muscle to the intervertebral
disc. This retroperitoneal, transpsoas approach
avoids the great vessels, thecal sac, and spinal
nerve roots.12 Furthermore, the LLIF does not
require a general or vascular surgeon for access
as the norm for spine surgeons employing the
ALIF approach. Moreover, the incision is smaller,
and there is earlier postoperative patient mobiliza-
tion.11 In addition, the LLIF with posterior spinal
fusion (PSF) is superior to conventional PSF tech-
niques (ie, TLIF and PLIF) in clinical and radio-
graphic improvements without differences in
complication rates.13,14

However, the LLIF has its limitations. These
limitations include difficulty accessing the L5-S1
disc space, increased lumbar plexus injury
risk, psoas muscle trauma, and reliance on
neuromonitoring.11,15 Furthermore, using the pro-
cedure in isolation may not be ideal in cases with
severe central canal stenosis, bony lateral recess
stenosis, and high-grade spondylolisthesis.11

Oblique Approach

The anterior-to-psoas technique (ATP), also
known as the oblique lateral interbody fusion
(OLIF), was introduced to address the limitations
of the LLIF.3 The ATP is a retroperitoneal, ante-
psoas method to access the lumbar spine. In this
approach, the patient is situated in the lateral de-
cubitus position, and a slightly ventral incision is
created to grant entry into the retroperitoneal
space. The psoas muscle is gently retracted aside
and safeguarded instead of being penetrated. The
disc space can then be visualized.16,17 The bene-
fits of this approach included shorter operative
times and reduced risk of injuring the psoas mus-
cle and nearby nerves, with some reports citing a
lower incidence of transient and permanent weak-
ness (1% vs 3%) compared to the LLIF.18

Additionally, the ATP can be performed at the
L5-S1 disc level, which, in essence, is an ALIF per-
formed in the lateral position. This approach allows
access to the traditional ALIF corridor but with the
benefits of a lateral/anterolateral approach. Evi-
dence in the current literature shows that stand-
alone ATP is safe and effective for mild to
moderate adult spinal deformity.19 Additionally, it
may allow greater sagittal deformity correction
without needing a posterior subtraction osteot-
omy, although further studies are needed to
confirm this.15,20,21

Nevertheless, the ATP has several associated
risks, such as a higher rate of vascular complica-
tions than the LLIF (2% vs <0.5%). Other risks
include abdominal ileus from manipulation of the
retroperitoneal space and numbness or weakness
in the psoas or quadriceps muscles from exces-
sive muscle retraction.16 Overall, there is still a
high incidence of intraoperative (4.9%) and post-
operative (29.6%) complications.19

TECHNOLOGICAL INNOVATIONS
Interbody Cages

There have been significant developments in cage
technology that have translated to improved post-
operative outcomes. One example is the introduc-
tion of the polyetheretherketone (PEEK) cage in
the 1990s, which allowed surgeons to address
the issue of cage subsidence. Subsidence refers
to the phenomenon whereby the operated disc
space decreases postoperatively.22 This occurs
when the cage sinks into the vertebral body lead-
ing to several clinical implications such as loss of
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spinal alignment, persistent or recurrent symp-
toms of pain, instability, and in severe cases,
neurologic symptoms due to compression.23

PEEK cages have been reported to have similar
fusion rates as solid titanium cages but with
decreased subsidence rates.23

On the contrary, studies have also indicated that
titanium cages have superior fusion and subsi-
dence rates.24,25 In particular, three-dimensional
(3D) printed porous titanium (pTi) cages were
approved in 2017 and have been shown to yield
lower subsidence rates than PEEK.26 This is partly
due to the low modulus of elasticity of pTi, which is
closer to the modulus of elasticity of native bone
than solid titanium.27

Apart from making pTi viable, 3D printing has
revolutionized interbody graft technology by mak-
ing patient-specific cages a reality. Spine sur-
geons can order cages that are customized
specifically for the anatomy of each patient and
that can distribute the load more evenly due to
increased contact area.28 There is weak evidence
that this translates to potentially superior subsi-
dence and pseudarthrosis rates. However,
patient-specific cages are estimated to cost two
to five times more than off-the-shelf cages. Addi-
tionally, it may take up to two to four weeks for
the production of a patient-specific cage.29

Another significant advancement in interbody
cage technology has been the hyperlordotic
cage for complex spinal deformity surgery.
Correction of severe spinal deformities has tradi-
tionally been from the posterior approach using
the posterior subtraction osteotomy (PSO).30

However, the PSO is a particularly morbid proced-
ure with a complication rate of up to 58% (11% of
which is neurologic), mean estimated blood loss of
1.1 L, and high rates of pseudarthrosis. Hyperlor-
dotic cages allow similar lordosis correction but
with drastically reduced complication rates (21%
overall and 4.1% neurologic) and blood loss
(240 mL) in combination with the ALIF.30 More-
over, hyperlordotic cages can overpower prior
posterior spinal instrumentation to restore lumbar
lordosis in patients with pseudarthrosis.31
Intraoperative Image Guidance

Intraoperative image guidance has significantly
improved the accuracy of surgical procedures
such as pedicle screw fixation. Posterior fixation is
oftenusedwithLLIFandATPprocedures, especially
in cases demonstrating abnormal preoperative dy-
namic motion.32 Some suggest that intraoperative
image guidance for screw placement yields fewer
complications and improved clinical measures.33

One advancement in the intraoperative imaging
realmwas the introduction of 3D fluoroscopic imag-
ing which showed significantly higher screw place-
ment accuracy (95.5%) than conventional
fluoroscopy (68.1%) or two-dimensional (2D) fluo-
roscopy (84.3%).34 An additional downside of con-
ventional fluoroscopy is the continuous radiation
exposure to the patient and surgical staff. This has
been effectively addressed with computer-
assisted navigation in which an apparatus utilizes
stereotactic cameras to track instruments in 3D
space. This is then overlayed with a computed to-
mography (CT) or MRI image to generate a map
that can guide instrumentation.33 In a single-center
study comparing navigation with conventional fluo-
roscopy for theATP, therewasnodifference inoper-
ative time, estimated blood loss, length of
hospitalization, or perioperative complications.
However, there was significantly less radiation in
the navigation group (which a single CT
image) than in the fluoroscopy group (which used -
several X-rays). However, the authors noted that
the opposite may be true at centers where fewer
fluoroscopy images are captured.35
Robotics

The accuracy of surgical procedures can be
further enhanced using robotic assistance. Ro-
botic assistance has been shown to place pedicle
screws with improved accuracy and yield
decreased average length of stay for patients.36

Regarding anterolateral approaches, studies
have investigated the utility of robots for percuta-
neous PSF in the lateral position while performing
single-position LLIF and ATP. Single-position LLIF
and ATP eliminate the need for patient reposition-
ing, reducing the risk of injury and operative
time.37,38 However, percutaneous PSF is difficult
in the lateral position. Some initial studies showed
that robotic assistance increased the safety and
accuracy of percutaneous PSF in this position.39,40

However, a systematic review by Patel and col-
leagues found no significant difference in pedicle
screw placement accuracy with robotic assistance
compared to conventional techniques.39 Aside
from pedicle screw fixation, there is limited litera-
ture on using robots for anterior, lateral, and obli-
que approaches to the spine. Case series have
been published reporting fusion rates, complica-
tion rates, and clinical and radiographical out-
comes for robot-assisted ALIFs that are
comparable to the mini-open ALIF.41,42 Despite
the feasibility and safety of robot-assisted ALIF,
large-scale studies need to be conducted before
widespread adoption. Furthermore, small-scale
studies need to be undertaken to evaluate robot-
assisted approaches to the LLIF and ATP.
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Spatial Computing

Despite the promise of robotics for surgery, there
exist multiple limitations, including a lack of
tactile feedback, misplacement of pedicle screws
due to skiving, and the exorbitant cost of pur-
chasing a robot (often over $1,000,000).43 In addi-
tion, other advancements, such as computer-
assisted navigation, also pose challenges,
including interruption of the surgeon’s workflow
due to line of sight disturbances and attention
displacement.44

Spatial computing (SC) devices seek to bypass
the challenges of robotics and computer-
assisted navigation. One subtype of SC is
augmented reality (AR) which, in the spine, gener-
ally works by overlaying 3D reconstructions of the
spine on the surgeon’s view, generating a “see-
through effect.”45 Although there is limited litera-
ture on the effectiveness of AR devices for spine
surgery, a recent dual-center prospective study
examined the use of AR devices for pedicle screw
placement supplementing ALIFs and LLIFs. The
study found that the accuracy of screw placement
with AR was comparable to screw placement with
a robot. Additionally, the intraoperative screw revi-
sion rate was 0.49%, and no instrumentation was
revised postoperatively.46

Virtual reality (VR) is another subtype of SC. In
VR, the surgeon’s entire environment is com-
puter-generated.45 VR allows the surgeon to
assess musculature, ligaments, abdominal
viscera, and neurovasculature preoperatively and
plan the trajectory appropriately. Postoperatively,
VR allows surgeons to assess the placement of
instrumentation and changes in radiographic pa-
rameters.47 However, a drawback of VR is that it
cannot be used intraoperatively.47 Additionally,
an obstacle common to AR and VR use is the
physical discomfort (eg, vertigo and headaches)
associated with head-mounted devices.45 More-
over, as with AR, there is limited literature on the
effectiveness of VR.

Machine Learning

Machine learning is increasingly being used to opti-
mize outcomes, particularly in the field of surgery.
Prior to surgical procedures, machine learning can
assist in conducting a comprehensive risk-benefit
analysis. By analyzing large volumes of data from
similar previous cases, these algorithms can pro-
vide accurate predictions regarding patient-
specific outcomes, such as the potential complica-
tions and expected improvement in quality of life
measures. Such data-driven insights can signifi-
cantly enhance point-of-care decision-making and
facilitate tailored surgical planning.48 For instance,
Agarwal and colleagues used machine learning to
predict surgical outcomes based on body mass in-
dex for patients with preoperative obesity and lum-
bar spondylolisthesis.49 Additionally, Shahrestani
and colleagues utilized machine learning to predict
the postoperative length of stay in patients who un-
derwent decompression for spondylolisthesis
based on comorbidities, intraoperative factors,
and socioeconomic attributes.50 Moreover, ma-
chine learning has begun to find its place in surgical
navigation systems through the integration of AR by
generating patient-specific 3D reconstructions of
the spine based on CT or MRI scans.51 Overall,
the incorporation of machine learning into surgical
practice holds great promise for improving patient
outcomes and the overall efficiency of health care
delivery.
LIMITATIONS

The technologies such as robotics, extended real-
ity, and machine learning covered in this article are
still in the early stages of clinical use. The current
body of literature on these technologies is rela-
tively limited; as such, additional robust, large-
scale studies on these topics are required. There-
fore, it is difficult to draw definitive conclusions
about their effectiveness and utility based solely
on the available literature. Even more so, given
the rapid pace of advancements in spinal surgery,
the information contained in this article may soon
become outdated.
SUMMARY

The field of spine surgery has seen remarkable
progress over the centuries, with unprecedented
advancements in the last few decades. The evo-
lution of anterolateral approaches to the spine
has greatly expanded the surgical armamen-
tarium available for treating spinal pathologies.
Modern technological innovations, such as
interbody cages, intraoperative image guidance,
robotics, augmented reality, and machine
learning, have significantly improved surgical out-
comes and patient safety. Despite these achieve-
ments, challenges and limitations persist,
presenting opportunities for further research and
development. The future of spine surgery lies in
harnessing the full potential of these advance-
ments, addressing the existing limitations, and
continuing the trend of patient-centered,
outcome-focused innovation. As the understand-
ing of the spine and its pathologies grows and
technology advances, the emergence of even
more effective and minimally invasive techniques
is anticipated.
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CLINICS CARE POINTS
� Hyperlordotic cages coupled with the ante-
rior or lateral approaches can yield compara-
ble results to posterior subtraction osteotomy
for spinal deformity without the associated
morbidity.

� When feasible, computer-assisted navigation
should be considered for pedicle screw place-
ment to improve accuracy.

� Robotics, augmented reality, and machine
learning for spine surgery are nascent tech-
nologies that still require large-scale studies
before broader adoption.
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dence—A multifactorial matter. Orthopädie 2023.
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