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KEY POINTS

� Robotics and virtual reality (VR) are widely studied in stroke rehabilitation to facilitate
intensive, repetitive, and engaging therapies.

� Currently, there are some discrepancies between the findings of meta-analyses and some
of the larger clinical trials in the field.

� More large, high-quality, randomized, multicenter trials are required to improve our under-
standing of the impact of robotics and VR on stroke recovery.

� Robotics and VR can augment and complement conventional therapy and have the po-
tential to be used as precision rehabilitation approaches.
INTRODUCTION

Stroke is a leading cause of disability, including reduced mobility, aphasia, depression,
and cognitive decline.1 Studies have estimated that the yearly cost of post-stroke care,
including rehabilitation, ranges from 40 to 60K USD per patient in high-income coun-
tries, including the United States, Canada, Western Europe, Russia, Australia, and
China (as of 2020).2 Traditional rehabilitation methods rely on multidisciplinary teams
(physiotherapy, occupational, recreational therapy, etc.) that often focus efforts on
frequent and intense repetition to gradually improve skilled, goal-oriented move-
ments.3,4 Specifically, the frequency and duration of rehabilitation appear to be
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important in facilitating better outcomes. In cases where remediation is not possible, the
rehabilitation focusmay turn toward teaching the patient to compensate for lost function
using devices (eg, gait aids, orthoses). Despite the critical role of rehabilitation after a
stroke, several challenges can limit its effectiveness. Common obstacles include access
to care, resource constraints, coordination of multidisciplinary teams, and insurance
coverage.5 There is an increasing need to develop effective rehabilitation interventions
that help stroke survivors regain independence. Therefore, integrating appropriate
technology-based therapies may allow the potential for objective, repetitive, engaging,
and personalized rehabilitation to help complement and augment traditional rehabilita-
tion approaches.

Robots for Rehabilitation

The integration of robotics in rehabilitation began in the late 1990s and has steadily
gained attention from researchers studying how to optimize stroke recovery.6 For
rehabilitation purposes, robotics can be categorized into end effectors and exoskele-
tons (Fig. 1). End effectors are designed to guide the distal parts of the limb to interact
with the environment and perform specific tasks, such as grasping and reaching. In
contrast, exoskeletons are designed to work with torque actuators that control joint
movement and therefore can augment the movements of each joint they cross.7 These
systems enable the design of specific rehabilitation tasks and provide objective feed-
back through visual, motor/sensory, and cognitive mechanisms. Robotic devices tend
to focus on either the upper or lower extremity and are employed to target improving
motor function, patterns of muscular activity, range of motion, and in some cases
enhanced activity and mobility in the community.8 Although most studies have
explored the use of robots in a therapeutic nature, they can also be used as an
orthosis, replacing a particular body function.9,10 Further, robots can be used to mea-
sure the kinematics and/or kinetics of movement to track changes in impairment over
time.11,12 This information can be critical to understanding therapy-induced improve-
ments in impairment.

Upper-limb Robotics

Early studies of robotics in the upper-limb focused on their ability to provide a rehabil-
itative treatment intervention.13 However, soon after their implementation as
Fig. 1. Upper limb robotic solutions for stroke rehabilitation with stroke patient seated in a
wheelchair (black) using (A) an end effector sometimes paired with a video screen (green)
such as InMotion2,20,21,23 NEREBOT,84 Haptic Master,85 ArmeoSpring,86 and Bi-Manu Track87;
(B) an exoskeleton (green) such as KINARM,15 ARMin,26 T-WREX,88 and ARMOR89; (C) soft
wearable hand robotic device (green) with a power supply backpack such as GloReha.90

(Figure is adapted from Gassert and Dietz, with permission.91)
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rehabilitation tools, researchers and clinicians recognized their ability to act as assess-
ment tools14 to quantify various aspects of impairment. Conventional clinical assess-
ments tend to be largely observer-based, ordinal scales, posing challenges related to
floor and ceiling effects and reliability, robots, on the other hand, can allow for precise
and accurate quantification of sensory-motor impairments,15,16 spasticity,17 kinaes-
thesia,18,19 and proprioception.11,12 A variety of robotic devices that have been
used for assessment include the InMotion,20–23 KINARM,15 ARM Guide,24 MIME,25

and ArmIn26 among others.
As mentioned above, a substantial focus in the early literature was the use of robots

as a therapeutic tool. A 2018 Cochrane review included 45 randomized clinical trials
(RCT), 9 robotic devices, and 1619 stroke patients and found high evidence support-
ing the use of robot-assisted arm therapy (RAAT) in improving overall arm function as
measured by Upper Extremity Fugl-Meyer Assessment (UE-FM). Specifically, the
author concluded that RAATs contributed to improvement in function, muscle
strength, and performance of activities of daily living, with a caveat that there was
high variability in training intensity (duration and frequency), the robotic device used,
participant characteristics, and clinical outcomes.27 Similarly, a network meta-
analysis summarizing the effects of RAAT on motor function and activitya in upper-
limb rehabilitation from 18 RCTs reported that the effectiveness of RAAT depended
on 3 main factors: duration of intervention, level of impairment, and time since
stroke.28 Although RAAT was most effective in improving motor function as measured
by UE-FM in subacute patients with severe tomoderate impairments with 6 to 15 hours
of intervention delivered, chronic patients with mild impairments benefited from RAAT
with 15 to 30 hours of intervention delivered. However, RAAT did not result in signifi-
cant improvements in activities of daily living (Barthel Index) when compared to con-
ventional therapy. Despite these reviews suggesting chronic patients would benefit
from RAAT, the largest clinical trial, the RATULS trial with 770 participants (largely
chronic stroke) concluded that RAAT (delivered with the InMotion2 robot, 45 minutes
session, three times a week, for 12 weeks) had no clinically meaningful functional im-
provements compared with conventional therapy (45 minutes a session, a minimum of
5 weeks, until rehabilitation goals were met).29 Furthermore, another systematic re-
view and meta-analysis of 11 RCTs in subacute stroke reported that the only require-
ment for effective upper-limb rehabilitation was highly intensive and repetitive
movements, regardless of whether they were facilitated by robots or therapists.30 A
recommendation for future trials has been to carefully consider the optimal
therapy dose and time since stroke in any ensuing RAAT studies.31,32

It is important to recognize that thereweresubstantialdifferences in the typesof robotic
devices included in the above metanalyses.27,28,30 Robots varied in their design and in
what part of the upper extremity was targeted (ie, shoulder, elbow, wrist, hand, finger).
A systematic review (149 participants, 5 trials) found exoskeletons to be more effective
than end-effectors for finger-hand motor recovery.33 In contrast, a larger review (2654
participants, 55 trials) compared the relative efficacy of 28 different types of robotic de-
vices on activities of daily living, arm function, and strength and concluded that no one
type of intervention (either unilateral or bilateral end-effector vs exoskeleton for distal
vs proximal) was significantly better than the other.34 Overall, there is weak evidence in
the literature favoring either the exoskeletons or end effectors for improving arm func-
tion35–37 but it is rare to see an actual head-to-head comparison of the robotic devices.
a By the International Classification of Functioning, Disability and Health (ICF) definition, activity is
the execution of a task by an individual.
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The integration of exoskeletons with noninvasive brain stimulation (through trans-
cranial direct current stimulation [tDCS]), neuromuscular stimulation, and functional
electrical stimulation has gained some attention in chronic stroke patient rehabilitation
(368 patients, 10 trials)38 with upper-limb impairment. Although there was some prom-
ise of functional improvements with wrist and hand components when RAAT is
coupled with stimulation,39,40 there was weak evidence to suggest that arm training
is benefited by coupling RAAT with stimulation.41 More high-quality studies are war-
ranted to establish when to employ brain stimulation in rehabilitating upper extremities
with RAAT.
In summary, although RAAT has demonstrated some promise as a tool for the

assessment and treatment of the post-stroke upper extremity, there are still funda-
mental questions about the optimal dose and timing of administration. However, the
same could be said of traditional stroke rehabilitation practice. The sheer number of
devices and relative lack of comparative studies make navigating which robot might
be best for a given patient challenging. Implementation into health care systems
has proven challenging in some jurisdictions because of the initial expense of the de-
vice, reimbursement mechanisms for robotic therapy, and a lack of clear guidelines
around best practices for integrating RAAT into clinical practice. The possibility of
further augmenting RAAT with noninvasive brain stimulation or peripheral nerve stim-
ulation remains an active area of research. Perhaps at present, RAAT is best viewed as
a reasonable way to augment upper-limb therapy after stroke with much work to be
done to facilitate and support clinical translation.

Lower-limb Robotics

Independent walking after a stroke is a predictor of autonomy and optimized quality-
of-life outcomes.42 Stroke-induced lower-limb impairments often involve an
abnormal gait, impaired balance, asymmetric weight distribution (more weight on
the unaffected side), and increased postural oscillation. Earlier studies in robot-
assisted gait training (RAGT) focused largely on the use of devices that offered par-
tial body weight support and incorporated a treadmill such as the Lokomat43,44 or
moved the patient’s feet in an elliptical-like motion such as the Gait Trainer 1.45

More recently, wearable exoskeletons (like the EksoGT,46,47 ReWalk,48 Indego,49

or HAL50) are being clinically evaluated and adopted for stroke rehabilitation51

(Fig. 2). RAGT devices have demonstrated the ability to allow patients to ambulate
in a supported environment which might be challenging to accomplish without
several human therapists assisting, particularly for those individuals with more se-
vere lower-limb impairment. In some devices, a patient can be fully supported,
and the robot can simply be used to move the limbs through a range of motion
passively, while at other times the patient must initiate a movement to trigger the
next step, making the rehabilitation more active in nature.
A recent meta-analysis, which included 15 studies, examined the effectiveness of

using treadmill-based exoskeletons as an adjunct to conventional therapy for gait
training, compared with the effectiveness of conventional therapy alone. Although
the authors identified no significant differences in ambulatory function, walking speed,
or walking endurance, they reported marked improvements in balance function and
cadence in chronic stroke in the RAGT group.52 Interestingly, this improvement in bal-
ance was not witnessed in studies where the robot only moved the patient’s limbs
passively, which suggests the importance of encouraging active movement during
gait rehabilitation to maximize effectiveness.
Similar to RAAT, some authors have attempted to determine whether the type of de-

vice employed in RAGT may have an impact on outcomes. In a meta-analysis of 13



Fig. 2. Lower-limb robotics solutions for stroke rehabilitation with stroke patient walking
(black): (A) on a gait training system (green) with body weight support (black) such as
Gait Trainer 1,45 G-EO,92 GAR,93 and Lexo94; (B) on a treadmill with an exoskeleton (green)
and body weight support (black) such as Lokomat and LokomatPro; some commercially
available devices as pictured in (A) and (B) may come with video display screens; (C) over-
ground with forearm crutches (black) using a wearable exoskeleton (green) such as Ek-
soGT,43,44,46 ReWalk,48 HAL,50 Indego,49 and SMA.58 (Figure is adapted from Gassert and
Dietz, with permission.91)
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studies, Bruni and colleagues53 investigated the differences between exoskeletons
(218 participants, 6 robots) and end effectors (469 participants, 7 robots) in RAGT
across chronic (167 participants, 4 trials) and subacute (520 participants, 9 trials)
stroke participants. Their observations indicate that, unlike exoskeletons, end-
effector devices can independently improve walking speed in comparison to conven-
tional therapy. However, this effect was statistically significant for subacute patients
only, suggesting that non-ambulatory patients derive the most benefit from RAGT
when robots support distal parts of the limb and mimic the stance and swing phases
of gait within a few weeks from stroke.53 Furthermore, exoskeletons have also been
successful in reducing the perception of pain,44,54 reducing spasticity,55 improving
muscle tone at the hip, knee, and ankle,43,44 andmaximizing the effectiveness of phys-
iotherapists during gait training.8

A recent systematic review of 71 clinical trials investigated the design and clinical
evaluation of nearly 25 commercially available wearable exoskeletons (as of 2021) for
rehabilitating patients with either stroke, spinal cord injury, or other neurologic dis-
eases.56 They found that wearables can improve various aspects of lower-limb
ambulation, including cadence, speed, and asymmetries in step length or stride
length. RCTs comparing the SMA with functional training for stroke patients demon-
strated significant increases in step length of the paretic leg,57 endurance (6MWT),58

balance,58 cortical motor excitability of the paretic rectus femoris,58 and reductions in
asymmetry57 (all cases, P < .05). Another RCT comparing a custom robotics-assisted
ankle-foot orthosis (AFO) with a passive AFO in conventional therapy found that the
robotic group showed significant improvements in vertical loading and braking forces
on the affected side, as well as improved knee flexion on the unaffected side based
on ground reaction data.59 However, the adoption of wearable exoskeletons was
often challenged by economic cost,60,61 ergonomic issues,62 and human-
exoskeleton interaction based control issues.63 The latter included the weight of
the device that increased the metabolic cost of walking, the extensive time required
for donning/doffing the device (up to 30 minutes), and the technical expertise
required for implementing the use. The authors highlighted the lack of dynamic
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assist-as-needed algorithms and the use of deterministic algorithms to identify the
various phases of gait as factors limiting the design of patient-centric rehabilitative
interventions. These findings (both qualitative and quantitative) were recently
confirmed by the ExStRA trial,46 which used the EksoGT for stepping, weight shifting,
and walking practice in a cohort of 36 first-time, subacute stroke patients. Results
from the as-treated analysis of the ExStRA trial showed that patients who completed
the exoskeleton regime had better gait, walking endurance, and walked more inde-
pendently. However, therapists and patients also confirmed a steep learning curve,
confusion, and intimidation in handling the device, lack of trained staff, and lack of
therapy time outside the exoskeleton as limitations for implementing their use clini-
cally. The therapists also acknowledged that the exoskeleton allowed early walking
for individuals with severe stroke who would not be rehabilitated as early with con-
ventional therapeutic approaches.47

Recently, RAGT has been coupled with noninvasive brain stimulation techniques to
improve the efficacy of lower-limb rehabilitation.38 In a randomized sample of 37
chronic stroke participants, Naro and colleagues64 investigated the safety and efficacy
of combining task-specific and repetitive RAGT through the LokomatPro with dual-site
tDCS to restore interhemispheric balance. This study reported improvements in gait
stability, balance, and walking endurance among patients who received brain stimu-
lation during and after RAGT, as opposed to modulating cortical excitability before
each RAGT session.64 Another recent RCT used the Stride Management Assist
(SMA) exoskeleton with 50 chronic stroke patients and concurrently manipulated
the cortical motor excitability using transcranial magnetic stimulation (TMS).58 This
study concluded the SMA group had better endurance and higher absolute activity
level (step count) on therapy days and observed larger changes in the corticomotor
excitability of the paretic rectus femoris muscle.58 Furthermore, by combining robotics
with modulation of motor excitability, these studies have demonstrated the potential
for using RAGT to target specific muscle groups (such as the hamstring, tibialis ante-
rior, and quadriceps) to improve lower-limb strength and function.
In summary, the last few decades have produced some promising evidence for ro-

botic therapy for lower-limb rehabilitation post-stroke, particularly for individuals with
more severe gait impairments. That said, there are ongoing challenges with robot de-
signs and control strategies in many devices that have limited uptake. Like RAAT,
implementation has proven challenging in many centers because of the cost and tech-
nical training required for staff to operate the devices. Further technical optimizations,
speeding up donning and doffing, and lessening the burden on clinicians trying to
operate the robots may lead to more widespread adoption of these technologies
into the health care system and homes.

Virtual Reality for Rehabilitation

VR is a set of computer-generated simulations that allow users to engage and interact
with a simulated environment in a naturalistic fashion, resulting in a wide range of ex-
periences from non-immersive, semi-immersive, and fully immersive65 (Fig. 3). The
adoption of VR to enhance the efficacy of conventional rehabilitative interventions66

in stroke began in the 1990s,67 with a primary focus on improving patient engage-
ment,68 and successful translation of the therapy from hospitals to homes.
A 2017 Cochrane review on VR for both upper- and lower-limb stroke rehabilitation

included 2470 participants and 72 trials.69 The authors suggested for the upper-limb
(22 trials) that VR on its own was not superior to conventional therapy. However, when
VR was used as an add-on to effectively increase the dose of therapy delivered, there
were notable improvements in UE-FM scores amongst other outcomes. However, the



Fig. 3. VR solutions for stroke rehabilitation: (A) stroke patient seated in a wheelchair
(black) with an immersive VR headset and VR controllers (green) such as Oculus,95 HTC
Vive96; (B) stroke patient on a treadmill with body weight support (black) in front of a
semi-immersive VR screen (green) (eg, Motek GRAIL,97 Motek CAREN,98 Motek C-mill99);
(C) stroke patient standing in front of a video screen holding a VR controller connected
to non-immersive VR gaming systems (green) such as Xbox Kinect,100 Playstation,101 Nin-
tendo Wii,102 and Leap Motion.103
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evidence was considered to come from low-quality studies (as ranked by GRADE).
Recently, another systematic review (2271 participants, 50 trials) concluded that
VRb was superior to conventional treatment for upper-limb impairment (UE-FM) and
activities of daily living, but not for performance on Box and Block Test andWolf Motor
Function Test.70 The consistent criticism in both these reviews was that VR trials are
often low-quality studies that have a high risk of bias.
In the lower-limb literature, a large systematic review (2328 participants, 61 trials)71

comparing VR gait training with body weight support gait training concluded that VR
gait training helps improve performance on balance battery assessments and dy-
namic balance, but not steady-state balance. Two meta-analyses (809 participants,
32 studies72; 337 participants, 18 trials73) compared VR with treadmill-based training,
or RAGT for chronic stroke patients and reported significant improvements in
cadence, stride length, and gait speed in VR-based gait training. A smaller systematic
review (183 participants, 11 trials, 2 RAGT trials)74 with similar results suggested a
minimum of 10 sessions are required to derive any meaningful changes in motor func-
tion, with immersive VR being more effective than semi- or non-immersive VR.
Some studies have examined the potential impact of VR on cognitive function. A

large meta-analysis of 87 clinical trials involving 3540 participants examined the ability
of VR to improve upper- and lower-limb function, activities of daily living, and cogni-
tion. In this analysis, Zhang and colleagues75 found that only 7 studies reported on
the Mini-Mental State Examination, which included 210 participants. Despite the
low sample size and moderate heterogeneity, Mini-Mental State scores were higher
in the VR groups compared with conventional therapy groups within 4 weeks of the
intervention. Another smaller meta-analysis (196 patients, 8 trials)76 that specifically
investigated the effect of VR on post-stroke cognition alone found no significant differ-
ences between groups who received VR alone and those who received a combination
of VR and conventional therapy.
In summary, there have been many studies examining the use of VR for stroke reha-

bilitation. Critics have consistently suggested higher-quality studies are needed to
b In this paper, VR, augmented reality, and mixed reality technologies were compared with conven-
tional therapy for upper-limb. Of these, the VR technologies reviewed were largely off-the shelf so-
lutions like the Nintendo Wii and Xbox Kinect.
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better assess the efficacy and clinical utility. The studies that do exist have been con-
ducted with many different VR systems and various levels of immersiveness. Several
existing trials were conducted using off-the-shelf solutions like Xbox Kinect, Nintendo
Wii, and PlayStation, to study the effects of gaming-based VR in rehabilitation pro-
grams.77,78 These VR systems cost as little as a few hundred dollars and are a poten-
tially promising solution for improving the patient’s rehabilitation experience outside
the clinical setting. Head-to-head comparisons of these less costly VR approaches
and more complex, fully immersive approaches specifically designed for stroke reha-
bilitation are scarce. More studies are needed to determine how important the level of
immersiveness is in stroke recovery.

The Potential of Combining Robotics and Virtual Reality

Given that rehabilitation is a complex, multifactorial process, Clarke and colleagues79

investigated the efficacy of individually using robotics and VR as an adjunct to conven-
tional therapy versus the combination of robotics and VR (Robotic Therapy [RT]1 CT,
VR 1 CT vs RT 1 VR 1 CT). The authors suggested the benefit of coupling robotics
with VR was the ability to facilitate repetitive, high-intensity and task-specific interven-
tions while also engaging patients, reducing frustration and fatigue, while providing vi-
sual and cognitive feedback in a gamified manner, thus enhancing the overall therapy
experience.79

In a systematic review by Mubin and colleagues80 of 30 studies that employed VR
coupled with robotics (VR 1 RT) showed that the VR, augmented reality, or gamifica-
tion technologies aided in the transition of exoskeleton-based rehabilitation from hos-
pitals to homes. In assessing the effectiveness of VR 1 RT to improve health-related
quality of life across different neurologic conditions (RT 5 52 studies, VR 1 RT 5 18,
largely pilot studies), Zanatta and colleagues81 found that in comparison to using ro-
botics alone, the VR 1 RT significantly improved quality of life in patients with stroke,
despite the shorter therapy and session duration. Most of the studies considered for
this used non-immersive VR mediated through screens and monitors. As a result, it
has been suggested that the combination of VR 1 RT has the potential to stimulate
motor learning and neuroplasticity better than using either in isolation.79
DISCUSSION

In this review, we have described different robotic and VR applications in stroke reha-
bilitation and briefly reviewed the existing evidence for their use. Broadly speaking,
both robotics and VR have demonstrated some level of efficacy in several studies.
However, results should be interpreted with caution as much of the evidence comes
from small clinical trials with significant heterogeneity in the devices used, patient
characteristics, and outcome measures employed.
In examining the literature, there are frequent discrepancies between the findings of

large meta-analyses and some of the larger individual clinical trials. We suspect this
may be due to several factors. Smaller trials are common in the literature and impact
the results of meta-analyses, despite the risk of these trials being underpowered and
having a higher risk of bias. Multiple systematic reviews remarked on the lower quality
ratings of the trials included, and most trials tended to employ a single device. One
would suspect the type of device might impact the outcome, although some sugges-
tions have been that this may not be the case.34 Lastly, patient factors such as time
since stroke and stroke location can drastically influence a trial outcome. In most sys-
tematic reviews and meta-analyses, but not all, different stroke subtypes and/or
stroke chronicity (eg, subacute, chronic) are collapsed together despite differences
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in expected outcomes. Ultimately, we need to consider employing larger, high-
quality, randomized, multicenter trials with appropriate control groups to fully under-
stand the efficacy of device-specific robotic interventions tailored to specific patient
cohorts.
Despite the challenges above, robotics and VR have more evidence behind them

than some other common rehabilitation interventions (eg, splinting for spasticity),
yet their adoption by clinicians and the healthcare system in many parts of the world
is limited. To encourage easy adoption, the technical design of robotic devices needs
to consider the challenges that both therapists and patients face when learning to use
them. Early career therapists in Canada (n5 127) reported a lack of awareness of ro-
botic (62.2%) and VR-based (37%) interventions as a primary reason for not adopting
them in clinical practice, along with a lack of access (RT: 21.2%; VR: 44% did not
have access), increased cost (RT: 11%; VR:12.6%), and lack of time (RT: 0.04%;
VR: 0.1%) to use emerging technologies.82 These challenges exist despite the
emphasis on evidence-based practice in post-secondary training institutions, result-
ing in a drastic need for knowledge translation that can drive the implementation of
technology-based solutions in the clinic. When evaluating the cost-effectiveness of
VR 1 RT technologies, it is important to consider not only the upfront purchasing
cost but also the operational cost of administering therapy. For example, although
the hardware for VR solutions is affordable, ongoing expenses for software develop-
ment and maintenance can be significant. Additionally, in some countries, a clear
reimbursement pathway for interventions is lacking, which limits their uptake in the
clinical setting.
FUTURE PROSPECTS

Although the effectiveness of robotics and VR (or a combination of both) in compari-
son to conventional care remains mixed, these technologies can be used to facilitate
and augment early, intensive, and patient-centered therapy. Robotics has the poten-
tial to be an adjunct to one-on-one therapy, especially in clinical settings with limited
availability of skilled and qualified therapists if someone has the skills to operate the
robot. Furthermore, robotics can minimize the demand for therapists to facilitate re-
petitive movements and thereby reduce potential injuries.83 Both VR and robotics
have demonstrated their ability to safely and effectively engage patients with severe
impairments earlier in therapy than is possible with conventional care alone. Further-
more, the emerging field of wearables combined with affordable VR solutions can
enhance the probability of rehabilitation to extend beyond the clinical setting, allowing
patients to continue their therapy comfortably at home.
The field of integrated robotics and multimodal stimulation in therapy is still in its in-

fancy. However, with ongoing advancements in the development of more human-like
movements and immersive mixed-reality headsets, the potential for adoption in stroke
rehabilitation and improving activities of daily living is encouraging. As the technology
continues to evolve, researchers and clinicians must work together across multiple
centers to gather high-quality evidence to support and optimize the integration of
these emerging solutions into clinical practice.
More importantly, there is also a wealth of data on the severity of impairment and

patient engagement that these robotics and VR solutions capture. This creates a
tremendous opportunity to better understand the impairment and recovery process
following a stroke. It also allows clinicians the potential to integrate kinematic and ki-
netic information into clinical care and tailor therapy to the individual patient, paving
the way for precision rehabilitation.
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SUMMARY

This review highlights the existing evidence for using robotics and VR in stroke reha-
bilitation. Although there are technical and cost-related challenges in the widespread
adoption of robotics and VR in stroke rehabilitation, these emerging solutions offer a
unique advantage by capturing a wealth of data on patient impairment, engagement,
and comfort. This can aid in a precision rehabilitation approach, but it can also help
address staff shortages by delivering therapy effectively in clinics where human re-
sources may be scarce.

CLINICS CARE POINTS
� Robotic devices can be helpful in increasing repetitive training for stroke survivors retraining
their upper and lower limbs. Appropriate patient and device selection would seem to be
important but at present, little data exists to guide these decisions.

� VR can be helpful to supplement ongoing rehabilitation to achieve greater gains and is often
combined in studies with other technology-based tools such as robotics or treadmills.

� At present, several robotic and VR devices are available, but there is little data comparing
different devices.
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