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Hyperammonemia and liver disease are closely linked. Most of the ammonia in our body is produced by trans-
amination and deamination activities involving amino acid, purine, pyrimidines, and biogenic amines, and from
the intestine by bacterial splitting of urea. The only way of excretion from the body is by hepatic conversion of
ammonia to urea. Hyperammonemia is associated with widespread toxicities such as cerebral edema, hepatic en-
cephalopathy, immune dysfunction, promoting fibrosis, and carcinogenesis. Over the past two decades, it has
been increasingly utilized for prognostication of cirrhosis, acute liver failure as well as acute on chronic liver fail-
ure. The laboratory assessment of hyperammonemia has certain limitations, despite which its value in the assess-
ment of various forms of liver disease cannot be negated. It may soon become an important tool to make
therapeutic decisions about the use of prophylactic and definitive treatment in various forms of liver disease. ( J
CLIN EXP HEPATOL 2024;14:101361)
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Theword ‘Ammonia’ has possibly been derived from
‘Amen’ an Egyptian god, with a mythical concept
that life arose from a sea of ammonia.1 The earliest

scientific inquiry on the impact of portocaval shunt in
dogs was described in 1893, although ammonia was not
mentioned as the perpetrator.2 Behavior alterations in
cirrhosis were attributed to nitrogenous substances in
diet in 1952, and the first evidence linking ammonia in
the pathogenesis of hepatic encephalopathy(HE) is
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possibly attributed to Lockwood we al.3 Since then, a
huge body of evidence has accumulated to reveal the
important role of ammonia in pathogenesis of various
problems in chronic liver disease. This review will highlight
the basic physiology of ammonia in health and chronic
liver disease and some specific aspects of its clinical impli-
cations.
BASIC PHYSIOLOGY

The basic physiology of ammonia is summarized in
Figure 1. In the human system, ammonia exists as an
ammonium ion (NH4+) at the physiological pH. Most of
the body's ammonia is produced through transamination
and deamination reactions from various amino acids,
other biogenic amines, purines, and pyrimidines, and to
some extent from intestinal bacteria that split the urea.4

The ammonia produced in the peripheral tissues is trans-
ported to the liver mostly as glutamine from the brain, in-
testines, and other organs and as alanine from the muscles.
Glutamine is the main molecule that stores ammonia and
is synthesized (glutamine synthetase is available in all tis-
sues) by adding one ammonia molecule to glutamate.5

Ammonia is required for several vital functions such as
functions synthesis of various amino acids, purines, and
pyrimidines, and helps in acid-base balance regulation by
the kidneys. Acidosis induces kidneys to produce and
extract ammonia from glutamine via glutaminase in the
proximal tubules of the kidneys. Ammonium ion (NH4+)
and potassium ion (K+) have similar biophysical character-
istics in aqueous solutions, and they can be effectively
transported at the transport site of potassium ions.6 Excess
ammonia is excreted to produce bicarbonate.7 In chronic
kidney disease (CKD), an adequate quantity of ammonia
vier B.V. All rights reserved.
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Figure 1 Physiology of ammonia, showing it production, transport, functions and disposal. Major sources of circulating ammonia are deamination
and transamination activities in liver and rest of the body. Over two-thirds of it is in form of glutamine (from most sources) and alanine (only from mus-
cles). Glutamate picks mops up ammonia under the influence of glutamine synthase at brain, muscles & liver. Glutamine released ammonia under the
influence of glutaminase at intestines, liver and kidneys. Ammonia is disposed off as urea through ornithine cycle (Urea cycle) in liver and urea is
excreted mainly in kidneys. aKG, alpha-keto-glutarate; AST, asparate aminotransferase; ALT, alanine aminotransferase.
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cannot be produced and excreted leading to the retention
of acid and the formation of metabolic acidosis.8

The final disposal of ammonia from the body is by the
liver through the ornithine cycle (urea cycle) which con-
verts it to urea to be excreted through kidneys. The gastro-
intestinal system is also an important organ in ammonia
metabolism. Intestines play a secondary role in the excre-
tion of urea. Besides, glutamine is an important nutrient
substrate for the intestine mostly the jejunum and ileum
and to some extent the large intestine.9 High glutaminase
activity in small intestine mucosa produces glutamate and
ammonia from glutamine. The large intestine contributes
significantly to portal venous ammonia concentration by
the bacterial splitting of urea and amino acids.10 (Figure 2).
ALTERED PHYSIOLOGY IN CIRRHOSIS

In liver disease, circulating ammonia levels are high due to
three factors. First, Ammonia clearance by the urea cycle is
reduced (10%–90%) as compared to normal capacity, and
glutamine synthesis is also similarly reduced.11,12 Second,
portosystemic circulation allows ammonia to bypass the
liver.13 Hyperammonemia can be induced by a protein-
rich diet in patients with the trans-jugular intrahepatic
portosystemic shunt (TIPS).14 Last, Kidneys also release
ammonia in circulation, more so under the influence of di-
uretics such as acetazolamide and chlorothiazides.15,16

Increased hyperammonemia has also been reported after
2 © 2024 Indian National Associa
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hyperventilation and during the an-hepatic phase of liver
transplantation.5,17 Muscles act as a sponge in situations
of hyperammonemia by converting Glutamate to gluta-
mine.18 But this capacity is reduced in cirrhosis due to
associated sarcopenia.19 Muscle exercise in cirrhosis also
produces greater ammonia.20
CAUSES OF HYPERAMMONEMIA

While hyperammonemia (elevated ammonia concentration
in systemic circulation greater than or equal to 65 mmol) is
common in chronic liver disease, it can also be seen in a va-
riety of conditions (Table 1). The exact mechanism and
management of all the conditions other than liver disease
are outside the scope of this paper and hence are summa-
rized in the table. The causal relationship of hyperammone-
mia and muscle wasting in cirrhosis has been suggested by
many studies.21 Alcohol tends to aggravate this effect.22 Hy-
perammonemia of cirrhosis can also be aggravated by hem-
orrhagic shock. Bleeding can reduce hepatic blood flow
leading to ischemia in the periportal to the centrilobular he-
patocytes, and subsequent necrosis. The site of glutamine
synthesis is ‘pericentral’ hepatocyte while the urea synthesis
is mainly the function of ‘periportal’ hepatocyte.23

Urea Cycle Disorders
The inheritable disorders of the urea cycle are not uncom-
mon. The urea cycle (Figure 3) in the liver is the body's
tion for Study of the Liver. Published by Elsevier B.V. All rights reserved.
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Figure 2 A cartoon depicting dynamics of ammonia in our body. Left half of the diagram shows normal physiology enclosed in a green line, while right
half shows the consequences of cirrhosis and increased circulating ammonia levels. Its untoward consequences are shown with dotted arrows in the
red color.

JOURNAL OF CLINICAL AND EXPERIMENTAL HEPATOLOGY

-
-

-

main mechanism of clearing nitrogenous waste produced
during the amino acid metabolism. The cycle49 consists
of the sequential action of five catalytic enzymes namely
Carbamoyl phosphate synthetase I (CPS1), Ornithine
Figure 3 A simplified scheme of urea cycle in the liver. (1) Ammonia combine
mate to form Carbamoyl phosphate in the mitochondria. (2) Carbamoyl phosp
to cytosol with the help of ORNT-1. (3) Citrulline combines with aspartate to f
requiring ATP. (4) Arginosuccinate gives off fumarate to form Arginine. (5) Ar
ported to kidneys to be excreted. To complete the cycle, Ornithine moves b
(2). Five enzymes that catalyze these five steps of urea cycle are Carbamoy
synthetase, Argino-succinase and Arginase respectively. ORNT-1: ornithine
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transcarbamylase (OTC), Argininosuccinic acid synthetase
(ASS1), Argininosuccinic acid lyase (ASL) and Arginase
(ARG1). It also involves two amino acid transporters (Orni-
thine translocase or ORNT1 and Citrin) and a co-factor-
s with carbon di oxide with allosteric activator ORNT-1, N-acetyl- gluta-
hate combines with ornithine and is converted to citrulline, whichmoves
orm arginosuccinate. Steps (1) and (3) are energy consuming processes
ginine combines with water to form ornithine and (6) Urea that is trans-
ack to mitochondria through ORNT-1 to take part in urea cycle at step
l phosphate synthetase-1, ornithine transcarbamylase, arginosuccinate
transporter.

| 101361 3
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Table 1 Causes of Hyperammonemia.

Causes Remarks

1 Hepatocellular dysfunction The Liver is the main site where ammonia is detoxified into urea with the help of the urea cycle. Liver
dysfunction is associated with compromise in its capacity to eliminate ammonia. See above in text: ‘Altered
physiology in cirrhosis’

2 Portal-systemic collateral circu-
lation,

Both portal hypertension and portosystemic shunting contribute to hyperammonemia.24

3 Urea cycle disorders Ammonia is converted to urea in the liver through a sequential enzymatic reaction (Figure 3) Inherited
deficiency of any one of the enzymes involved leads to accumulation of ammonia in the body and a series of
adverse effects related to it. See text above: ‘Urea cycle disorders.’

4 Renal failure Ammonia is produced by renal epithelial cells predominantly in the proximal tubules and play an important
role in renal acid base regulation.25,26 In renal failure, hyperammonemia is common and the uremic odor in
breath is largely due to ammonia content.27

5 Lysinuric protein intolerance It is a rare metabolic disease resulting from recessive-inherited mutations in the SLC7A7 gene. It is
characterized by protein-rich food intolerance with secondary urea cycle disorder, but symptoms are
heterogeneous ranging from infiltrative lung disease, kidney failure to auto-immune complications.

6 Carnitine deficiency Carnitine binds fatty acyl-CoA residues and promotes their translocation from the cytoplasm into the
mitochondrial matrix, where b-oxidation and generation of energy occur. Disruption of the carnitine transport
system results in the cytosolic accumulation of unoxidized fatty acyl-CoA molecules. These metabolites are
believed to inhibit the urea cycle, thereby impairing an important mechanism of ammonia excretion.28

7 Medium-chain acyl-CoA
dehydrogenase deficiency

A rare disorder, often presents in infants during an infection, with poor oral intake, vomiting, dehydration,
lethargy, hypoglycemia, seizures, and a presentation similar to Reye syndrome, leading to death from brain
edema and hyperammonemia.29

8 Valproate administration, Valproate consumption may be associated with hyperammonemic encephalopathy (VHE) characterized by a
decreasing level of consciousness, focal neurological deficits, cognitive slowing, vomiting, drowsiness, and
lethargy. Hyperammonemia may be multifactorial, though the main reason may be the inhibition of
carbamoyl phosphate synthetase-I, the first step of the urea cycle. Hyperammonemia reduces after VPA
withdrawal.30

9 Organic acidemias Organic acidemias are a group of disorders that lead to the detection of organic acids in the urine (or
plasma). Organic acids (OAs) are intermediary products of several amino acid catabolism or degradation and
classic OAs include propionic, methylmalonic isovaleric, glutaric acid, and ketogenic/ketolytic acids.
Typically they present in neonates or infants with hyperammonemia and encephalopathy.31

10 Reye's syndrome Reye syndrome is a rare disease presenting as acute encephalopathy related to hyperammonemia and liver
dysfunction possibly related to viral pathogens, fatty liver, and aspirin consumption. It is a medical
emergency and patients should considered for hemodialysis if arterial ammonia levels are >150 mmol/L.32

11 Infections with urea-splitting
organisms such as Proteus
mirabilis, Escherichia coli and
Klebsiella

Hyperammonemia has been described with urinary tract infection, urinary obstruction as well as septic
shock due to sepsis by urea-splitting microorganisms.33,34 Even encephalopathy due to such infections has
been described.35

12 Multiple Myeloma and Chemo-
therapy for hematologic malig-
nancies

Hyperammonemia can occur after chemotherapy in about 2.4% of cases after a few weeks of starting
therapy. Pathogenesis is likely to be multifactorial. Some authors have blamed the deamination of
Cytarabine or restriction of Krebs cycle by-products of 5-FU or other drugs metabolism.36

13 Lung transplantation Hyperammonemia after lung transplantation (HALT) occurs in 1%–4% of cases and carries a high mortality.
The exact pathophysiology of this complication has not been clearly elucidated.37

14 Barth syndrome Barth syndrome is a rare X-linked genetic disorder of male infants that presents with cardiomyopathy,
skeletal myopathy, neutropenia, 3-methylglutaconic aciduria, and hypercholesterolemia and
hyperammonemia.38

15 Pyruvate carboxylase defi-
ciency,

Pyruvate carboxylase (PC) is a mitochondrial enzyme that converts pyruvate and CO2 to oxaloacetate for the
Krebs cycle. Clinical presentation may occur in infancy (type A), neonates (type B), or later life (type C). The
presentation may be with lactic acidosis, ketoacidosis, hyperammonemia, severe retardation, failure to
thrive, pyramidal tract signs, ataxia, and convulsions.39

16 Pyruvate dehydrogenase com-
plex deficiency,

Primary pyruvate dehydrogenase complex deficiency (PDCD) is also a mitochondrial disorder and mostly
affects the brain. Basic pathophysiology involves decreased ATP production and energy deficit and
functional deficiency of carbamoyl phosphate synthetase. Affected children present often between 2 and 4
years of age with ataxia and peripheral neuropathy, growth retardation, hypotonia, microcephaly, seizures,
lactic acidosis and sometimes hyperammonemia.40

AMMONIA AND LIVER DISEASE ANAND & ACHARYA
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Table 1 (Continued )

Causes Remarks

17 Hyperinsulinism hyperammo-
nemia syndrome

The hyperinsulinism/hyperammonemia (HI/HA) syndrome is an autosomal dominant disorder. Children
affected by this syndrome have both fasting and protein sensitive hypoglycemia combined with persistently
elevated ammonia levels.41

18 Distal renal tubular acidosis In distal renal tubular acidosis, hyperammonemia is due to the increased ammonia synthesis, in response
to metabolic acidosis, and the impaired ammonia excretion, typical of distal renal tubular acidosis.42

19 Ureterosigmoidostomy In ureterosigmoidostomy, hyperammonemia may be multifactorial with a major contributor being exposure
of the colonic bacteria to urine. Intermittent hyperammonemic encephalopathy can occur decades after
ureterosigmoidostomy.43

20 Use of glycine solution as irri-
gant agent during transurethral
resection of the prostate

Hyperammonemia is possibly related to catabolism of glycine absorbed during the procedure. Factors other
than glycine may also be operative.44

21 Amino acid total parenteral
nutrition, Drug induced with
drugs such as asparaginase, 5-
fluorouracil, carbamazepine,
and topiramate.

Hyperammonemia is well described with parenteral nutrition.45 A long list of drugs have been described to
associated with hyperammonemia either due to increased production of ammonia or due to compromised
elimination of ammonia.46

22 Refeeding after starvation Hyperammonemia is being increasingly recognized as a result of refeeding after starvation and may even
lead to encephalopathy (Food-Coma).47,48

ATP, adenosine triphosphate; OAs, Organic acids; PC, Pyruvate carboxylase; PDCD, Primary pyruvate dehydrogenase complex deficiency; HI/HA, hy-
perinsulinism/hyperammonemia; VHE, Valproate induced hepatic encephalopathy; VPA, Valproate.
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producing enzyme i.e. N-acetyl glutamate synthetase
(NAGS). Inherited deficiencies of any one of the above en-
zymes or transporters leads to a urea cycle disorder. Clin-
ical presentation is dependent on the degree of deficiency
and the site where the cycle is interrupted.

Infants with a urea cycle disorder appear normal at birth
but within a few days/weeks develop cerebral edema and
the related signs of lethargy, anorexia, hyper- or hypoven-
tilation, hypothermia, seizures, neurologic posturing, and
coma. Milder cases may present in later life and are often
precipitated by a critical illness or a period of stress such
as a peripartum period, surgery, or prolonged fasting. A
full discussion on screening, diagnosis, and management
of urea cycle defects is beyond the scope of this paper
and has been reviewed elsewhere.50–56
NEUROTOXICITY OF AMMONIA

Ammonia readily traverses the blood–brain barrier (BBB)
with a positive arterial–venous gradient suggesting net
brain ammonia uptake. The brain contains appreciable
amounts of both glutamine synthetase (GS, mostly in as-
trocytes) and glutaminase enzymes (mostly in neurons).57

Astrocyte GS preferentially takes up ammonia to form
glutamine, which is de-aminated to form GABA and gluta-
mate in neurons.

Acute exposure to high blood ammonia activates
NMDA (N-methyl-D-aspartate) receptors in the brain. A se-
ries of consequences are set in involving depletion of brain
ATP, impairment of mitochondrial function and calcium
homeostasis at different levels, and increased formation
Journal of Clinical and Experimental Hepatology | - 2024 | Vol. 14 | No. 4
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of nitric oxide (NO) formation.58 This leads to Impaired
bioenergetics and neurotransmission, astrocyte swelling,
alteration of key astrocyte proteins, and increased oxidative
and mitochondrial dysfunction. ATP depletion is respon-
sible for the aggravation of ammonia toxicity and is the
most probable cause of seizures. This stage is set for os-
motic as well as cytotoxic cerebral edema. A Major compo-
nent of cerebral edema is swelling of astrocytes which are
the only cells involved in ammonia detoxification in the
brain. The astrocyte swelling is related to altered water
and K+ metabolism in the astrocytes, activation of tumor
suppressor protein p53, and increased uptake of certain
compounds including pyruvate, lactate, and glutamine
and decreased uptake of ketone bodies, glutamate, and
free glucose. The direct consequence of this event is raised
intracranial pressure, which may result in brain hernia-
tion.59

Chronic rise in ammonia levels increases the transport of
tryptophan, across the blood–brain barrier followed by a
resultant increase in serotonin levels in the brain, which
causes anorexia in these patients. There is also increasedGA-
BAergic tone due to Benzodiazepine receptor overstimula-
tion by endogenous benzodiazepines and neurosteroids.
In addition, there is a downregulation of glutamate
receptors due to increased extra-synaptic glutamate
accumulation. Changes in the glutamate-nitric oxide-
cGMP pathway result in impaired signal transmission in
the N-methyl-D-aspartate (NMDA) receptors. This contrib-
utes to the cognitive dysfunction seen in hepatic encepha-
lopathy.60 The role of inflammation, sepsis, and other
mechanisms have been reviewed elsewhere.61
| 101361 5
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Hyperammonemia, Muscles, and Liver Disease
Skeletal muscles are closely associated with ammonia
metabolism and this relationship becomes more impor-
tant in hyperammonemia states. Muscles form the main
reservoir of protein in the body. In the postprandial state,
Glucose is converted into amino acid (alanine) in the liver
and transported to be stored in muscles. In the fasting
state, alanine is broken down to glucose to be transported
to the liver for energy generation. This is called the alanine
cycle or Cahill cycle.62 Muscles, one of the largest organs
of the body, contain a large amount of glutamate made
from alanine, aspartate, or BCAA and can soak up addi-
tional ammonia, especially in hyperammonemia states,
to form glutamine63 (see Figure 4). Glutaminase activity
in muscles is much lower than glutamine synthetase activ-
ity. The pathophysiological relationship between sarcope-
nia (loss of muscle mass) and Hepatic encephalopathy
(HE) is well recognized and is likely linked to the impaired
capacity of muscles to buffer hyperammonemia.

Hyperammonemia and muscles have a reciprocal rela-
tionship. While hyperammonemia can result from intense
muscle activity,64 hyperammonemia from other causes
such as chronic liver disease also leads to loss of muscles.65
Figure 4 Glutamate, a non-essential amino acid is the key molecule in amm
ketoglutarate under the influence of enzymeGlutamate Dehydrogenase. Amm
aminases. Glutamate can accept one more ammonia molecule to form Gluta
to Glutamate and to a-ketoglutarate by action of glutaminase and Glutamate
mine synthetase but hardly any glutaminase. Enzymes are shown in yellow
BCAA: branched chain amino acids, BCKA: branched chain keto acids, GO

6 © 2024 Indian National Associa
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Accumulation of ammonia inhibits the translation of
mRNA and protein synthesis in the skeletal muscle through
inhibition of mTORC1.66 Since alpha keto-glutarate is
consumed in the production of glutamate, the tricarboxylic
acid cycle is compromised leading to loss of ATP,mitochon-
drial dysfunction, reduction of contractile function and
finally to sarcopenia.67 Ammonia activates myostatin which
further inhibits protein synthesis.68

And last, it enhances autophagy69 in cirrhotic patients
with the ultimate effect being progressive sarcopenia in
chronic liver disease. Sarcopenia is, therefore, common in
cirrhosis (prevalence 30%–70%)70 and is attributed to
higher ammonia levels.67 It has been demonstrated that
sarcopenia increases mortality in cirrhotic patients,71 and
also increases the risk of several complications of liver
cirrhosis, such as ascites, spontaneous bacterial peritonitis
(SBP), variceal bleeding, hepatocellular carcinoma, and in-
fections. The relationship of sarcopenia to hepatic enceph-
alopathy is now well accepted.72

Sarcopenia has been linked to MASLD progression and
fibrosis development on liver biopsy.73,74 While hyperam-
monemia of chronic liver disease has been considered as
a major causative factor contributing to the development
onia regulation. It is formed by combining one ammonium radical with a-
onia is derived from amino acids under the influence of respective trans-
mine (enzyme Glutamine Synthetase). Glutamine can be converted back
oxalacetate transaminase respectively. Muscles do contain some gluta-
background. ALT: alanine transaminase, AST: aspartate transaminase,
T: Glutamate oxalacetate transaminase, NH3: ammonia.

tion for Study of the Liver. Published by Elsevier B.V. All rights reserved.
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of sarcopenia,75 the reverse also seems to be true. Korean
sarcopenic obesity study shows that obese people with sar-
copenia are more likely to develop sarcopenia.73 A meta-
analysis of studies has shown that among patients with
MASLD, sarcopenia is associated with enhanced fibrosis
progression.74

Hyperammonemia and Immune Dysfunction
NAFLD and CLD both are characterized by increased sus-
ceptibility to infections as well as increased mortality from
them.76 Animal (rat) studies have shown that innate im-
mune response is compromised in diet-induced NASH
and decreased urea synthesis.77 Ammonia-induced im-
mune dysfunction in MASLD may be similar to that seen
in cirrhosis. Thus hyperammonemia is associated with
neutrophil dysfunction (reduced chemotaxis & phagocy-
tosis)78; drop in dendritic cell count, mitochondrial
dysfunction, poor antigen phagocytosis, and excessive
reactive oxygen species generation ex-vivo in samples
from humans as well mice with cirrhosis.79

It has been pointed out that cirrhosis patients experi-
encing a state of inflammation display significant deterio-
ration in neuropsychological test scores following induced
hyperammonemia.80 It was subsequently shown to be
related to hyperammonemia-induced increased sensitivity
to bacterial lipoprotein polysaccharides (LPS).81
-
-

AMMONIA IN MASLD

Disordered ammonia handling has emerged as a plausible
hypothesis to explain the of progression in MASLD from
steatosis to steatohepatitis, cirrhosis, and hepatocellular
carcinoma.82 In the past, the progression in MASLD was
thought to be related to related to a variety of metabolic
anomalies such as Increased b oxidation of fatty acids, fatty
acid lipid per-oxidation, microsomal oxidation, lipotoxic-
ity, free radical accumulation, apoptosis, gut bacterial
translocation, inflammation and accumulation of DAMPs.
Recent data has highlighted that urea cycle activity is
compromised in MASLD.

In vitro experiments have shown that long chain fatty
acids and triglycerides impact gene expression of enzymes
involved in urea cycle, inhibit urea genesis and increase
plasma ammonia concentration.83,84 In vivo animal studies
show that reduction in gene expression for ornithine trans-
carbamylase (OTC) reduces urea production and leads to
hyperammonemia and fibrosis progression.85,86 Similar re-
sults have been shown in humans.87,88 These changes are
attributed to DNA hypermethylation of the promoter re-
gions of urea cycle enzyme genes. xxviii These epigenetic
changes were more pronounced when MASLD was associ-
ated with more severe steatohepatitis and fibrosis and were
reversible with weight loss indicating remodeling of epige-
netic signatures.89,90 An alternate hypothesis is that
ammonia may directly induce senescence in hepatocytes
Journal of Clinical and Experimental Hepatology | - 2024 | Vol. 14 | No. 4
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(and also astrocytes) which is evidenced by demonstration
of overexpression of the tumor-suppressor gene p53 in hu-
man biopsies.91–93 Therefore it appears very likely that
epigenetic alterations in the expression of urea cycle
enzymes lead to accumulation of ammonia which in turn
contributes to the progression of NAFLD.

Can this knowledge be used to prevent the progression
of NAFLD? Interestingly, the ability to increase the urea cy-
cle's capacity to process nitrogen in response to increased
protein intake is intact in cirrhosis though weakened.94

It can be augmented further by the use of glucagon in
normal individuals but not so much in cirrhosis.95,96 Be-
sides it may worsen associated diabetes. Beta-blockers too
are known to enhance urea synthesis capacity both in
normal as well as cirrhotic subjects.97 Similarly, zinc as a
co-factor of OTC enzyme can improve urea synthesis in
cirrhosis.98 However, the impacts of these treatments in
MASLD have not been adequately studied and remain a
gap in our knowledge. Ammonia-lowering therapies have
been shown to reduce the severity of fibrosis and reduce
the deposition of collagen in steatotic rat liver slices (using
phenyl acetate).86 But no clinical trials have been conduct-
ed so far to validate this strategy to prevent MASLD pro-
gression.

In vitro studies have shown that increased ammonia levels
can activate hepatic stellate cells (HSC), which are instru-
mental in converting the extracellular matrix to its fibro-
genic mode. It has also been shown that removing
ammonia from cell cultures can reverse this process towards
normalcy.99,100 Even in vivo studies in bile duct ligated rats
have shown that HSC activation as well as portal hyperten-
sion can be reduced by ammonia-lowering measures.

Susceptibility to developing malignancy in MASLD,
even before the development of cirrhosis widely known,101

and is possibly related to hyperammonemia. The MASLD
microenvironment specifically favors cells that use
ammonia as a nitrogen source and ammonia has been
shown to increase the proliferation rate of cancer cells.102

Ammonia accumulation in the liver is out of proportion
to the severity of liver disease in patients with metastatic
cancer in the liver.103 In vitro studies have also shown
enhanced growth of breast cancer cells as well as cells
that lacked tumor suppressor gene p53.104,105 It has also
been shown that targeting a heat-shock protein(DNAJC24)
interferes with ammonia utilization and consequently af-
fects proliferation, autophagy, and tumor progression in
hepatocellular carcinoma.106
AMMONIA AND CLD

It is well known that ammonia levels may be raised in
cirrhosis patients. Ammonia levels may be raised due to
Loss of Functional hepatic reserve related to urea cycle
dysfunction, variceal bleeding with added protein load in
gut, gut microbiome change with more urease producing
| 101361 7
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bacteria, portosystemic shunts allowing ammonia to
bypass and sarcopenia with poor capacity of muscles to
mop up ammonia.107,108 So far there were not many
studies stressing on prognostic significance of plasma
ammonia levels.

AMMON consortium has recently published an inter-
esting data from four independent liver units in Europe.109

They reported that high ammonia levels in clinically stable
outpatients were an independent predictor of hospitaliza-
tion as well as mortality due to liver-related complications
(namely (sepsis, variceal bleeding, overt hepatic encepha-
lopathy, acute onset, or worsening ascites) in these pa-
tients. Not only that, but ammonia levels did also better
than traditional liver disease severity scores in prognosti-
cating these patients. AUC for hospitalization was 78%
for ammonia levels, 72% for CTP scores, and 66% for
MELD score (P < 0.001) The high risk of hospitalization
as well as death was predicted if the ammonia levels were
found to be higher than 1.4 times higher than the upper
limit of normal in their labs. Either arterial or venous
ammonia levels were measured in the patients in the
training cohort, while only venous ammonia levels were
measured in the validation cohort. The authors in this
study did not adjust their multi-variable models for sys-
temic inflammation or portal hypertension severity.

Another study from Austria110 went a step further and
studied the prognostic value of venous ammonia to other
important liver-related complications. Patient groups
studied here were again those with ACLD and definitions
of cACLD and ACLF were prevalent for that region.111,112

This study supported the findings described earlier but
also brought out some additional points. The authors re-
ported that the presence of diabetes mellitus was associ-
ated with high ammonia levels. They explained it by
attributing it to autonomic dysfunction, extended gastro-
intestinal transit times, and bacterial overgrowth as well
as increased protein catabolism and accelerated muscle
breakdown.113

Hyperammonemia directly causes immune dysfunction
and activation of HSCs. These associations were supported
by this study which found positive correlations of the high
ammonia levels with ELF-test (reflecting fibrogenesis), and
with systemic inflammation, vWF severity hepatic dysfunc-
tion, and portal hypertension. Still, ammonia levels could
predict liver-related outcomes independently from other es-
tablished prognostic indicators such as MELD, HVPG,
VWF, IL-6, CRP, ELF, and renin levels. While it was indepen-
dent, the prognostic significance of ammonia level was
found to be similar to MELD and HVPG. Since the value
of ammonia was independent of hepatic dysfunction, portal
hypertension severity or inflammation, the authors have
suggested direct toxicity of ammonia to explain this effect.

Around the same time, a paper from Germany reviewed
various scores to predict first episode of hepatic encepha-
lopathy in patients with cirrhosis.114 They analyzed the ev-
8 © 2024 Indian National Associa
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idence or lack of it available for Clinical Covert HE (CCHE)
score; critical flicker frequency (CFF) score, a composite
score including bilirubin, albumin, nonselective beta-
blocker, and statin use (BABS score); MELD-Na-Activity-
Chair stands-Quality of Life Hepatic Encephalopathy
(MASQ-HE) Score; overt HE (OHE) score; Psychometric
Hepatic Encephalopathy (PHES) Score; Sickness Impact
Profile Clinical Covert HE (SIP CHE) score, Stroop Ence-
phalApp, and Animal naming test score (S-ANT1). They
stressed on the need to identify identifying high-risk pop-
ulations with the highest need for subsequent primary pro-
phylaxis.

Soon enough, the AMMON consortium came up with
the predictive importance of serum ammonia levels in pre-
dicting first episode overt hepatic encephalopathy (OHE)
in patients with cirrhosis.115 They have developed an
AMMON-OHE model after studying 426 outpatients
with cirrhosis from three different liver units. The model
is based on patient information about sex, diabetes, albu-
min, creatinine, and ammonia levels and have shown
which has shown excellent predictive ability. Venous
ammonia was measured, and the result was normalized
to the upper limit of normal (AMM-ULN) at the respective
reference laboratory (Figure 5).

The study found that the AMMON-OHE model per-
formed better than existing predictors such as psychomet-
ric hepatic encephalopathy score (PHES) and the critical
flicker frequency (CFF) test. The results were validated in
two validation cohorts consisting of 267 and 381 patients
at two liver units.
AMMONIA AND AD/ACLF

Prognostic value of serum ammonia in patients with
cirrhosis and acute decompensation (AD) or acute on
chronic liver failure (ACLF)116 has also been studied. A
multicenter study from India and UK analyzed 498 pa-
tients with cirrhosis and AD and found that baseline
ammonia levels correlated with severity of HE, and overall
mortality (P < 0.001).117 It was found to be an independent
predictor of 28-day mortality. Absolute ammonia levels
more of 79.5 mmol/L could be associated with a higher fre-
quency of organ failures and could predict 28-day mortal-
ity with a sensitivity of 68.1% and specificity of 67.4%.
Ammonia levels were repeated on day 5 of hospitalization
and patients with persistently high ammonia levels had
higher 28-day mortality (70.6%) in comparison to those
where ammonia levels had improved (35.7%).

In ACLF too, similar observations have been made.118

Serial arterial ammonia was measured in 229 patients
with ACLF If the levers were more than $79.5 mmol/L
on day 3, patients were classified as having persistent or
incident hyperammonemia. This group of patients had
significantly high organ failures and mortality (HR for
28-day mortality was 3.174).
tion for Study of the Liver. Published by Elsevier B.V. All rights reserved.
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Figure 5 Prognostic value of plasma ammonia levels in cACLD. Recent studies have shown that ammonia levels >1.4 times ULN can predict liver
related complications requiring hospitalization, hepatic encephalopathy and mortality in patients with cACLD. cACLD, compensated aldvanced
chronic liver disease; CFF, Critical flickering frequency test; CTP, Child-Pugh-Turcott score; MELD, model for end-stage liver disease; OHE, overt he-
patic encephalopathy; PHES, psychometric hepatic encephalopathy score; ULN, upper limit of normal.
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In yet another study by the APASL-ACLF consortium
(AARC) 3009 patients were followed up for 30 days.119

Of these 43.7% had HE at presentation and its presence
was significantly associated with higher age, systemic in-
flammatory response, elevated ammonia levels, serum
protein, sepsis, and MELD score. New onset HE or pro-
gressive worsening of the level of HE was significantly
associated with AARC score ($9) and ammonia levels
($85 mmol/L) at baseline. The study noted that ammonia
levels were a significant predictor of HE occurrence,
higher HE grades, and 30-day mortality. When a dynamic
increase in the ammonia levels by about 60% over 7 days
was recorded, it seemed to predict non-survivors and
worsening of HE. Several similar reports indicate that hy-
perammonemia translates into poor outcomes in patients
with ACLF.120–123
AMMONIA AND ACUTE LIVER FAILURE

The Prognostic role of ammonia in acute liver failure (ALF)
was studied in eighty consecutive patients in New Delhi
from 2001 to 2003.124 High arterial ammonia level
(>123 mmol/L) could predict mortality with 78.6% sensi-
tivity, 76.3% specificity, and 77.5% diagnostic accuracy.
This study also showed that patients with higher ammonia
levels had higher grades of HE, cerebral edema, and seizures.
This paper laid the foundation for developing a mathemat-
ical model for predicting poor outcomes in ALF. Similar re-
sults were subsequently shown from UK.125 (Figure 6A).

Apart from arterial ammonia levels on admission, the
changes in these levels over ensuing days were also found
to be very important. Follow-up studies showed that
persistent arterial hyperammonemia for 3 days after
admission was more closely related to adverse outcomes
Journal of Clinical and Experimental Hepatology | - 2024 | Vol. 14 | No. 4
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much worse than those who had a decreasing trend
(Figure 6 B). Presence of Infection, renal failure, and
acidosis were found to be independent predictors of persis-
tent hyperammonemia.126 It was speculated that ammonia
could be used as a prognostic tool in acute liver failure.127

The speculation was set aside by another prospective
study128 where a dynamic prognostic model was evolved
to predict outcomes in ALF. The model was derived after
studying a cohort of 244 patients with ALF. Scoring points
were allotted to four parameters that, if showed persis-
tently or increasing trend, significantly and independently
affected mortality in ALF. Their parameters were measured
on day 1 and day 3 and if they had persistent or increasing
levels of

(a) Hepatic encephalopathy grade >2: 2 points,
(b) Arterial ammonia >123 mmol/L: 2 points.
(c) INR>5: 1 point
(d) Serum bilirubin >15 mg/dl: 1 point

The derivation cohort showed and was later confirmed
even in a validation cohort of132 patients with ALF, that
prognosis worsened with rising numbers of points in
each patient (Figure 6C). Patients who were classified as
having 0–1 points, had good outcomes with nearly all of
them recovering. These were called low-risk patients. Accu-
mulated points of 2–3 classified them into moderate risk
and those having 4 or more points were classified as
high-risk patients. Patients with 4 or more points were
shown to have a high positive predictive value (PPV) of
85% and a negative predictive value (NPV) of 87% for death
in the validation cohort and could be used as selection
criteria for transplantation.

In ALF, the selection of patients for liver transplanta-
tion is a challenging proposition. There are several
| 101361 9
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Figure 6 Hyperammonemia and acute liver failure. A. Data showing that higher ammonia level is associated with higher risk of progressing to
advanced encephalopathy127 B. Ammonia levels that remain persistently high till day 3 after admission are associatedwith significantly highermortality
(ref) C. ALFED score 0-1 indicates low risk, 2–3 moderate risk and >4 suggest high risk mortality128 D. ALFED model is better than othe rprevalent
prognostic scores.134
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 prognostic scores prevalent and validated to select ALF pa-
tients for liver transplantation, namely, King's College
Criteria (KCC),129 Clichy Criteria,130 and MELDNa
score.133 One study from Chandigarh described a clinical
prognostic indicator (CPI) score.132 Possibly King's Col-
lege criteria (KCC) have been themost popular for this pur-
pose. Unfortunately, several independent reports have
suggested that KCC do have a PPV of 70%–100% but the
main limitation is that NPV has been reported to be
25%–94% often much lower than that suggested in the
original study. xcii,133 While KCC remains very useful for
paracetamol overdose-induced ALF, (further improved by
adding post-resuscitation lactate) but for viral hepatitis-
induced ALF, which accounts for most cases in South
Asia, it may not select many patients that are destined to
die.

Another study from New Delhi134 compared the
ALFED score with some other prognostic scores in ALF
related to viral hepatitis including the MELD score,
MELD-Na score, ALFED model, CLIF consortium ACLF
score,135 and KCC.When calculated at admission, the base-
line values of prognostic scores (MELD, MELD-Na,
ALFED, CLIF-C ACLF, and KCH) had modest (AUROC:
0.65–0.77) discriminatory capacity. However, the AUROC
increased when the day 3 values of these scores were
considered with the exception of KCC. At this point,
ALFED score had the highest AUROC of 0.95, followed
by CLIF-C ACLF (0.88), MELD (0.81), MELD-Na (0.77),
10 © 2024 Indian National Associa
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and KCH (0.52) (Figure 6D). Thus, the ALFED score seems
to be ideal for the selection of ALF patients for liver trans-
plantation and has been recommended for this purpose by
INASL.
TREATMENT OF HYPERAMMONEMIA

There are several strategies used for the treatment of hyper-
ammonemia caused by various diseases and the topic has
been reviewed elsewhere.136,137 One may reduce ammonia
production by manipulating gut bacteria or by altering
amino acid metabolism. Alternatively, one may boost
urea cycle activity by supplementing alternative substrates.
Finally, one may help in eliminating ammonia from the
body by artificial means or by boosting liver functions.
Detailed discussion of the treatment is beyond the scope
of this paper and a summary of ammonia elimination stra-
tegies has been placed at Table 2.
PROBLEMS WITH AMMONIA RESEARCH

(a) Method of sample collection and testing

The way ammonia is tested today leaves a lot to be desired.
The results show substantial laboratory variability.159 Arte-
rial ammonia has been preferred over venous ammonia by
several workers, and sample collection is inconvenient,
especially as an outpatient.160,161 Some reports suggest
that venous ammonia may be as good as arterial ammonia
tion for Study of the Liver. Published by Elsevier B.V. All rights reserved.
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Table 2 A Summary of Ammonia-lowering Therapies.

Therapy Remarks Dose

Therapies targeting Intestinal bacteria to reduce ammonia production

Rifaximin138 acidification of the colonic
contents, increase in osmotic pressure,
cathartic effect.

Customized drug dosage to achieve 2–3
semiformed motions.a

Rifaximin139 inhibition of RNA synthesis in intestinal
bacteria

550 mg twice a daya

Neomycin140 inhibition of protein synthesis in intestinal
bacteria

1 gm every 6 h for up to6 daysb

Metronidazole141 inhibition of nucleic acid
synthesis in intestinal bacteria

400 mg twice dailyb

Sodium benzoate142 decrease glycine degradation, Increase
glycine elimination

180 to 650 mg/kg- per daya

Probiotics and synbiotics modulate the gut microbiota–short-chain
fatty acid (SCFA) butyrate hormone axis.

Variablec

Reduce ammonia production by altering amino acid degradation

Sodium phenyl acetate/phenylbutyrate143 decreases glutamine degradation,
increases glutamine elimination Sodium
Phenylbutyrate is a prodrug and converts to
phenyl acetate. It combines with glutamine
to form phenyl acetyl glutamine, which is
rapidly excreted by the kidneys.

Weight: Less than 20 kg: 450–600 mg/
kg/day
Weight: 20 kg or Greater: 9.9–13 g/m2/
day
Sodium Phenylbutyrate tablets (500 mg)
are given 3–12 tablets three times a daya

Glycerol phenylbutyrate144 decreases glutamine degradation,
increases glutamine elimination

Available as liquid 1.1 g/mL
Dose: 4.5–11.2 mL/m2/day
If switching from Phenylbutyrate: Total daily
dose of ‘Ravicti’ (mL) = total daily dosage
of sodium phenyl butyrate (g) x 0.86b

Branched-chain amino acids (BCAA)145 decrease glutamine degradation,
increase glutamine elimination

May increase ammonia levels146

Variable dose usedb

Activation of urea cycle

Carglumic acid147 activation of UC through N-acetyl
glutamate restorement

80–100 mg/kg/daya

L-arginine/L-citrullin148 activation of UC Variable. L-arginine (0.8 mmol/kg of body
weight) or of L-citrulline (1.0 mmol/kg of
body weight) a

L-ornithine/L-aspartate149 activation of UC Intravenous 30 g over 24 h for 5 daysb

L-ornithine phenylacetate150 activation of UC, activation of glycine and
glutamine synthesis, increases glycine and
glutamine elimination

Intravenous 500 ml/24 h for #5 daysb

L-carnitine151 activation of UC 100 mg/kg dose (max 3 gm/24 h) divided
6–8 hourlyb

Liver cell transplantation152 activation of UC For liver metabolic defects, 200–400
million hepatocytes per kilogram of body
weight are injected, theoretically to achieve
5%–10% of the recipient hepaticmass. The
infusion can be scheduled over one or
several sessions. A defined range of 30–
100 million cells per kilogram and an
infusion rate of #8 ml/kg/hr should be
respected per infusion session.c

Liver transplantation153 Activation of UC Not applicableb

Stem cell transplantation activation of UC Not applicablec

(Continued on next page )

JOURNAL OF CLINICAL AND EXPERIMENTAL HEPATOLOGY

Journal of Clinical and Experimental Hepatology | - 2024 | Vol. 14 | No. 4 | 101361 11

Please cite this article as: Anand and Acharya, The Story of Ammonia in Liver Disease: An Unraveling Continuum, Journal of Clinical and Experimental
Hepatology, https://doi.org/10.1016/j.jceh.2024.101361

-
-

-



Table 2 (Continued )

Therapy Remarks Dose

Adenovirus associated gene
delivery154

activation of UC Not applicablec

Increase elimination of ammonia

Albumin-based dialysis155 elimination of albumin-bound
substances

Variable number (1–10) of sessionsa

Peritoneal dialysis156 and CRRT157 decrease of blood ammonia by
transporting ammonia from vascular
system to peritoneal
cavity

Variable number of sessionsb

Bioartificial liver support systems158 support for liver metabolic
activity

Variable number of sessionsc

CRRT: continuous renal replacement therapy, RNA: ribo-nucleic acid, UC: urea cycle; SCFA, short-chain fatty acid.
aAccepted therapy.
balternative therapy.
cunder investigations.
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in patients with cirrhosis162 and venous sampling is signif-
icantly more convenient. Most workers insist that the sam-
ple must be transported immediately in dry ice to be
processed as delay may mean inaccurate results. This re-
quires a dedicated laboratory and staff which is only
feasible in centers that focus on this type of research.
Venous ammonia also has the disadvantage of being
affected by the activity and condition of peripheral tissues
including muscles, intestine, and kidneys. There is a strong
need for point-of-care tests which can be performed at the
patient's bedside tomake ammonia testing a practical tool.
Blood sample analyses are notoriously sensitive to distur-
bances and particular care and diligence are required
throughout collection, transportation, and analysis, which
poses challenges in clinical settings and even in clinical
research protocols. xxviii

(b) Limitations in published research

A bulk of work related to ammonia is in vitro, and in an-
imals and it is difficult to interpret this data in human
terms. There is significant evidence in terms of compro-
mised urea synthesis, but similar data on ammonia dy-
namics in various situations especially follow up tests is
lacking. Similarly, direct proof of sustained effect of
ammonia lowering therapies is not robust and is a major
requirement before we can fully understand ammonia dy-
namics.

(c) Normal levels

While a lot of work has been done on ammonia in
various situations, there is no standardization of normal
ammonia levels in various situations. Some labs mention
it as 11–32 mmol/L.163 It has been variously described as
<45 mmol/L, 150–343 mmol/L in acute liver failure (ALF),
90–120 mmol/L in acute on chronic liver disease, 80–
100 mmol/L after trans-jugular intrahepatic portosystemic
12 © 2024 Indian National Associa

Please cite this article as: Anand and Acharya, The Story of Ammonia in Liver
Hepatology, https://doi.org/10.1016/j.jceh.2024.101361
shunt (TIPS), and 46–60 mmol/L in compensated advanced
chronic liver disease (cACLD).164–167 Impact of
hypothermia, brain activity, sarcopenia and renal disease
has never been qualified. So minor degrees of
hyperammonemia will be difficult to recognize. Many
laboratories may calibrate ammonia for various
neurological syndromes, there is no universal upper limit
of normal. xxviii Recent articles have resorted to using
levels standardized to upper limit of normal worked out
by local laboratories. lxix

(d) Impact of critical illness

Ammonia levels are altered in several critical illnesses,
not involving primary liver disease.168,169 There are myr-
iads of causes of hyperammonemia apart from liver disease
that too need to be considered. Many drugs and diseases as
a cause of raised ammonia levels have been reviewed else-
where.170 We just beginning to understand how sepsis
may affect ammonia levels in the body.171 How an intesti-
nal disease or microbiota affects ammonia levels in health
and disease is not yet fully understood.9 A lot is required to
be done before this test can be introduced in normal clin-
ical practice.

Ammonia levels in plasma may be raised in a variety of
diseases and situations, but its importance in the patho-
genesis and prognostication cannot be overstated. In
cACLD, it can predict the risk of liver-related complica-
tions and the first episode of hepatic encephalopathy and
may help clinicians in the decision to institute prophylactic
therapies. Hyperammonemia has direct prognostic impli-
cations in acute liver failure (ALF) and acute on chronic
liver failure (ACLF). Acute liver failure early dynamic score
(ALFED) score has evolved to predict poor prognosis in
ALF, which has been adopted by several centers to select pa-
tients for liver transplantation in this disease. The current
method of testing and interpretation of ammonia
tion for Study of the Liver. Published by Elsevier B.V. All rights reserved.
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dynamics does have some limitations, but its usefulness for
the clinician cannot be denied. The knowledge about
ammonia handling in the body in various situations is still
evolving and its newer uses continue to unravel.
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